Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (6): 61505   https://doi.org/10.1007/s11467-022-1192-z
  本期目录
Collisional dynamics of symmetric two-dimensional quantum droplets
Yanming Hu1, Yifan Fei2, Xiao-Long Chen2(), Yunbo Zhang2()
1. Institute of Theoretical Physics and State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
2. Department of Physics and Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(2827 KB)   HTML
Abstract

The collisional dynamics of two symmetric droplets with equal intraspecies scattering lengths and particle number density for each component is studied by solving the corresponding extended Gross−Pitaevskii equation in two dimensions by including a logarithmic correction term in the usual contact interaction. We find the merging droplet after collision experiences a quadrupole oscillation in its shape and the oscillation period is found to be independent of the incidental momentum for small droplets. With increasing collision momentum the colliding droplets may separate into two, or even more, and finally into small pieces of droplets. For these dynamical phases we manage to present boundaries determined by the remnant particle number in the central area and the damped oscillation of the quadrupole mode. A stability peak for the existence of droplets emerges at the critical particle numberNc ≃ 48 for the quasi-Gaussian and flat-top shapes of the droplets.

Key wordsultracold atoms    quantum droplets    collisions
收稿日期: 2022-04-19      出版日期: 2022-08-18
Corresponding Author(s): Xiao-Long Chen,Yunbo Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(6): 61505.
Yanming Hu, Yifan Fei, Xiao-Long Chen, Yunbo Zhang. Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys. , 2022, 17(6): 61505.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1192-z
https://academic.hep.com.cn/fop/CN/Y2022/V17/I6/61505
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Margenau H. . Van der Waals forces. Rev. Mod. Phys., 1939, 11( 1): 1
https://doi.org/10.1103/RevModPhys.11.1
2 Bulgac A. . Dilute quantum droplets. Phys. Rev. Lett., 2002, 89( 5): 050402
https://doi.org/10.1103/PhysRevLett.89.050402
3 D. Lee T. , Huang K. , N. Yang C. . Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev., 1957, 106( 6): 1135
https://doi.org/10.1103/PhysRev.106.1135
4 S. Petrov D. . Quantum mechanical stabilization of a collapsing Bose−Bose mixture. Phys. Rev. Lett., 2015, 115( 15): 155302
https://doi.org/10.1103/PhysRevLett.115.155302
5 S. Petrov D. , E. Astrakharchik G. . Ultradilute low-dimensional liquids. Phys. Rev. Lett., 2016, 117( 10): 100401
https://doi.org/10.1103/PhysRevLett.117.100401
6 Wang Y. , Guo L. , Yi S. , Shi T. . Theory for self-bound states of dipolar Bose−Einstein condensates. Phys. Rev. Res., 2020, 2( 4): 043074
https://doi.org/10.1103/PhysRevResearch.2.043074
7 Ma Y. , Peng C. , Cui X. . Borromean droplet in three-component ultracold Bose gases. Phys. Rev. Lett., 2021, 127( 4): 043002
https://doi.org/10.1103/PhysRevLett.127.043002
8 Li Y. , Chen Z. , Luo Z. , Huang C. , Tan H. , Pang W. , A. Malomed B. . Two-dimensional vortex quantum droplets. Phys. Rev. A, 2018, 98( 6): 063602
https://doi.org/10.1103/PhysRevA.98.063602
9 Hu H. , J. Liu X. . Consistent theory of self-bound quantum droplets with bosonic pairing. Phys. Rev. Lett., 2020, 125( 19): 195302
https://doi.org/10.1103/PhysRevLett.125.195302
10 H. Luo Z. , Pang W. , Liu B. , Y. Li Y. , A. Malomed B. . A new form of liquid matter: Quantum droplets. Front. Phys., 2021, 16( 3): 32201
https://doi.org/10.1007/s11467-020-1020-2
11 I. Mistakidis S. G. Volosniev A. E. Barfknecht R. Fogarty T. Busch Th. Foerster A. Schmelcher P. T. Zinner N., Cold atoms in low dimensions − a laboratory for quantum dynamics, arXiv: 2202.11071 ( 2022)
12 Ferrier-Barbut I. , Kadau H. , Schmitt M. , Wenzel M. , Pfau T. . Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett., 2016, 116( 21): 215301
https://doi.org/10.1103/PhysRevLett.116.215301
13 Schmitt M. , Wenzel M. , Böttcher F. , Ferrier-Barbut I. , Pfau T. . Self-bound droplets of a dilute magnetic quantum liquid. Nature, 2016, 539( 7628): 259
https://doi.org/10.1038/nature20126
14 Guo M. , Pfau T. . A new state of matter of quantum droplets. Front. Phys., 2021, 16( 3): 32202
https://doi.org/10.1007/s11467-020-1035-8
15 A. Malomed B. . The family of quantum droplets keeps expanding. Front. Phys., 2021, 16( 2): 22504
https://doi.org/10.1007/s11467-020-1024-y
16 Y. Zheng Y. , T. Chen S. , P. Huang Z. , X. Dai S. , Liu B. , Y. Li Y. , R. Wang S. . Quantum droplets in two-dimensional optical lattices. Front. Phys., 2021, 16( 2): 22501
https://doi.org/10.1007/s11467-020-1011-3
17 Chomaz L. Ferrier-Barbut I. Ferlaino F. Laburthe-Tolra B. L. Lev B. Pfau T., Dipolar physics: A review of experiments with magnetic quantum gases, arXiv: 2201.02672 ( 2022)
18 E. Wilson K. , Guttridge A. , Segal J. , L. Cornish S. . Quantum degenerate mixtures of Cs and Yb. Phys. Rev. A, 2021, 103( 3): 033306
https://doi.org/10.1103/PhysRevA.103.033306
19 R. Cabrera C. , Tanzi L. , Sanz J. , Naylor B. , Thomas P. , Cheiney P. , Tarruell L. . Quantum liquid droplets in a mixture of Bose−Einstein condensates. Science, 2018, 359( 6373): 301
https://doi.org/10.1126/science.aao5686
20 Baillie D. , B. Blakie P. . Droplet crystal ground states of a dipolar Bose gas. Phys. Rev. Lett., 2018, 121( 19): 195301
https://doi.org/10.1103/PhysRevLett.121.195301
21 A. Norcia M. , Politi C. , Klaus L. , Poli E. , Sohmen M. , J. Mark M. , N. Bisset R. , Santos L. , Ferlaino F. . Two-dimensional supersolidity in a dipolar quantum gas. Nature, 2021, 596( 7872): 357
https://doi.org/10.1038/s41586-021-03725-7
22 Cheiney P. , R. Cabrera C. , Sanz J. , Naylor B. , Tanzi L. , Tarruell L. . Bright soliton to quantum droplet transition in a mixture of Bose−Einstein condensates. Phys. Rev. Lett., 2018, 120( 13): 135301
https://doi.org/10.1103/PhysRevLett.120.135301
23 Semeghini G. , Ferioli G. , Masi L. , Mazzinghi C. , Wolswijk L. , Minardi F. , Modugno M. , Modugno G. , Inguscio M. , Fattori M. . Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett., 2018, 120( 23): 235301
https://doi.org/10.1103/PhysRevLett.120.235301
24 Ferioli G. , Semeghini G. , Masi L. , Giusti G. , Modugno G. , Inguscio M. , Gallemi A. , Recati A. , Fattori M. . Collisions of self-bound quantum droplets. Phys. Rev. Lett., 2019, 122( 9): 090401
https://doi.org/10.1103/PhysRevLett.122.090401
25 Cikojević V. , V. Markić L. , Pi M. , Barranco M. , Ancilotto F. , Boronat J. . Dynamics of equilibration and collisions in ultradilute quantum droplets. Phys. Rev. Res., 2021, 3( 4): 043139
https://doi.org/10.1103/PhysRevResearch.3.043139
26 Lao J. , Zhou Z. , Zhang X. , Ye F. , Zhong H. . Oscillatory stability of quantum droplets in PT-symmetric optical lattice. Commum. Theor. Phys., 2021, 73( 6): 065103
https://doi.org/10.1088/1572-9494/abf093
27 E. Astrakharchik G. , A. Malomed B. . Dynamics of one-dimensional quantum droplets. Phys. Rev. A, 2018, 98( 1): 013631
https://doi.org/10.1103/PhysRevA.98.013631
28 Parisi L. , Giorgini S. . Quantum droplets in one-dimensional Bose mixtures: A quantum Monte Carlo study. Phys. Rev. A, 2020, 102( 2): 023318
https://doi.org/10.1103/PhysRevA.102.023318
29 I. Mistakidis S. , Mithun T. , G. Kevrekidis P. , R. Sadeghpour H. , Schmelcher P. . Formation and quench of homonuclear and heteronuclear quantum droplets in one dimension. Phys. Rev. Res., 2021, 3( 4): 043128
https://doi.org/10.1103/PhysRevResearch.3.043128
30 B. Baizakov B. , A. Malomed B. , Salerno M. . Multidimensional solitons in a low-dimensional periodic potential. Phys. Rev. A, 2004, 70( 5): 053613
https://doi.org/10.1103/PhysRevA.70.053613
31 Lehtovaara L. , Toivanen J. , Eloranta J. . Solution of time-independent Schrödinger equation by the imaginary time propagation method. J. Comput. Phys., 2007, 221( 1): 148
https://doi.org/10.1016/j.jcp.2006.06.006
32 Ashgriz N. , Y. Poo J. . Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech., 1990, 221 : 183
https://doi.org/10.1017/S0022112090003536
33 Qian J. , K. Law C. . Regimes of coalescence and separation in droplet collision. J. Fluid Mech., 1997, 331 : 59
https://doi.org/10.1017/S0022112096003722
34 Pan Y. , Suga K. . Numerical simulation of binary liquid droplet collision. Phys. Fluids, 2005, 17( 8): 082105
https://doi.org/10.1063/1.2009527
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed