Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (6): 62503   https://doi.org/10.1007/s11467-022-1195-9
  本期目录
A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors
Zongyu Hou1,2, Weilun Gu1,2, Tianqi Li1,2, Zhe Wang1,2(), Liang Li3, Xiang Yu4, Yecai Zhang5, Zijun Liu6
1. State Key Lab of Power System, Department of Energy and Power Engineering, International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
2. Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
3. Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101149, China
4. China National Uranium Corporation, Beijing 100013, China
5. Guoneng Shenwan Energy Co., Ltd, China
6. Jinneng Holding Tashan Power Generation Co., Ltd, China
 全文: PDF(3749 KB)   HTML
Abstract

Calibration-free (CF) laser-induced breakdown spectroscopy (LIBS) is normally only applicable for gated detectors due to its dependence on the assumption of a steady-state plasma. However, most currently available LIBS systems are equipped with non-gated detectors such as charge-coupled device (CCD), which degrades the accuracy of CF method. In this paper, the reason for the less satisfactory quantification performance of CF for LIBS with non-gated detectors was clarified and a time-integration calibration-free (TICF) model was proposed for applications with non-gated detectors. It was based on an assumed temporal profile of plasma properties, including temperature and electron density, obtained from another pre-experiment. The line intensity at different time during the signal collection time window was estimated with self-absorption correction according to the temporal profile of the plasma properties. The proposed model was validated on titanium alloys and compared with traditional CF. The accuracy of elemental concentration measurement was improved significantly: the average relative error of aluminum and vanadium decreased from 6.07% and 22.34% to 2.01% and 1.92%, respectively. The quantification results showed that TICF method was able to extend the applicability of CF to LIBS with non-gated detectors.

Key wordslaser-induced breakdown spectroscopy    calibration-free    non-gated detector    self-absorption correction
收稿日期: 2022-07-05      出版日期: 2022-09-19
Corresponding Author(s): Zhe Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(6): 62503.
Zongyu Hou, Weilun Gu, Tianqi Li, Zhe Wang, Liang Li, Xiang Yu, Yecai Zhang, Zijun Liu. A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors. Front. Phys. , 2022, 17(6): 62503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1195-9
https://academic.hep.com.cn/fop/CN/Y2022/V17/I6/62503
Fig.1  
Fig.2  
Serial Number Al V Fe Si C
1# (GBW02503) 3.90 5.65 0.390 0.277 0.158
2# (GBW02504) 4.67 5.01 0.314 0.196 0.119
3# (GBW02505) 5.38 3.41 0.239 0.115 0.095
4# (GBW02506) 6.48 4.46 0.143 0.052 0.051
5# (GBW02507) 6.78 3.85 0.131 0.085 0.023
Tab.1  
Species Wavelength(nm)
Ti II 252.560 252.975 253.125 253.462 253.587 257.103 283.218 284.193
285.110 288.410 301.718 302.973 304.668 307.522 309.718 310.380
310.508 310.623 311.980 315.225 316.852 319.087 320.253 321.705
321.827 322.284 322.424 323.228 324.198 324.860 325.425 328.233
330.880 331.532 331.802 332.170 332.293 332.676 332.945 333.211
333.519 334.674 339.457 340.242 340.981 345.246 345.638 347.718
349.105 350.489 351.084 352.025 353.541 357.373 358.713 359.605
365.976 366.223 374.164 390.054 391.346
V II 268.795 270.093 290.308 290.882 295.207 296.838 309.310 310.230
311.071 313.333 313.494 313.652 351.730 354.520
Ti I 395.633 395.820 398.176 398.976
Al I 394.400 396.152
Tab.2  
Fig.3  
Element Sample Reference value (wt%) CF TICF
Measurementvalue (wt%) Relativeerror (%) Measurementvalue (wt%) Relativeerror (%)
Al 1# 3.9 3.64 ?6.46 3.85 ?1.31
2# 4.67 4.29 ?7.83 4.51 ?3.50
3# 5.38 4.99 ?6.98 5.29 ?1.62
4# 6.48 6.2 ?4.12 6.63 2.25
5# 6.78 6.43 ?4.95 6.87 1.35
Average / / 6.07 / 2.01
V 1# 5.65 6.54 18.17 5.65 0
2# 5.01 5.4 10.09 4.95 ?1.14
3# 3.41 4.29 28.64 3.63 6.38
4# 4.46 5.49 25.73 4.46 0
5# 3.85 4.86 29.09 4.02 4.34
Average / / 22.34 / 1.92
Tab.3  
1 F. Andrade D. , R. Pereira-Filho E. , Amarasiriwardena D. . Current trends in laser-induced breakdown spectroscopy: A tutorial review. Appl. Spectrosc. Rev., 2021, 56( 2): 98
https://doi.org/10.1080/05704928.2020.1739063
2 Wang Z. , S. Afgan M. , Gu W. , Song Y. , Wang Y. , Hou Z. , Song W. , Li Z. . Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. Trends Analyt. Chem., 2021, 143 : 116385
https://doi.org/10.1016/j.trac.2021.116385
3 B. Guo L. , Zhang D. , X. Sun L. , C. Yao S. , Zhang L. , Z. Wang Z. , Q. Wang Q. , B. Ding H. , Lu Y. , Y. Hou Z. , Wang Z. . Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Front. Phys., 2021, 16( 2): 22500
https://doi.org/10.1007/s11467-020-1007-z
4 Wang Z. , B. Yuan T. , Y. Hou Z. , D. Zhou W. , D. Lu J. , B. Ding H. , Y. Zeng X. . Laser-induced breakdown spectroscopy in China. Front. Phys., 2014, 9( 4): 419
https://doi.org/10.1007/s11467-013-0410-0
5 Li J. , Xu M. , Ma Q. , Zhao N. , Li X. , Zhang Q. , Guo L. , Lu Y. . Sensitive determination of silicon contents in low-alloy steels using micro laser-induced breakdown spectroscopy assisted with laser-induced fluorescence. Talanta, 2019, 194 : 697
https://doi.org/10.1016/j.talanta.2018.10.069
6 Sheta S. , S. Afgan M. , Hou Z. , Yao S. , Zhang L. , Li Z. , Wang Z. . Coal analysis by laser-induced breakdown spectroscopy: A tutorial review. J. Anal. At. Spectrom., 2019, 34( 6): 1047
https://doi.org/10.1039/C9JA00016J
7 Ma S. , Tang Y. , Zhang S. , Ma Y. , Sheng Z. , Wang Z. , Guo L. , Yao J. , Lu Y. . Chlorine and sulfur determination in water using indirect laser-induced breakdown spectroscopy. Talanta, 2020, 214 : 120849
https://doi.org/10.1016/j.talanta.2020.120849
8 Li Q. , Zhang W. , Tang Z. , Liu K. , Zhu C. , Zhou R. , Liu K. , Li X. . Determination of fluorine content in rocks using laser-induced breakdown spectroscopy assisted with radical synthesis. Talanta, 2021, 234 : 122712
https://doi.org/10.1016/j.talanta.2021.122712
9 Yuan R. , Tang Y. , Zhu Z. , Hao Z. , Li J. , Yu H. , Yu Y. , Guo L. , Zeng X. , Lu Y. . Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration. Anal. Chim. Acta, 2019, 1064 : 11
https://doi.org/10.1016/j.aca.2019.02.056
10 Hou Z. , Wang Z. , Li L. , Yu X. , Li T. , Yao H. , Yan G. , Ye Q. , Liu Z. , Zheng H. . Fast measurement of coking properties of coal using laser induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2022, 191 : 106406
https://doi.org/10.1016/j.sab.2022.106406
11 Pagnotta S. Lezzerini M. Campanella B. Legnaioli S. Poggialini F. Palleschi V., A new approach to non-linear multivariate calibration in laser-induced breakdown spectroscopy analysis of silicate rocks, Spectrochim. Acta B At. Spectrosc. 166, 105804 ( 2020)
12 Song W. , Hou Z. , Gu W. , Wang H. , Cui J. , Zhou Z. , Yan G. , Ye Q. , Li Z. , Wang Z. . Industrial at-line analysis of coal properties using laser-induced breakdown spectroscopy combined with machine learning. Fuel, 2021, 306 : 121667
https://doi.org/10.1016/j.fuel.2021.121667
13 C. Costa V. , L. de Mello M. , V. Babos D. , P. Castro J. , R. Pereira-Filho E. . Calibration strategies for determination of Pb content in recycled polypropylene from car batteries using laser-induced breakdown spectroscopy (LIBS). Microchem. J., 2020, 159 : 105558
https://doi.org/10.1016/j.microc.2020.105558
14 Gu W. , Hou Z. , Song W. , Li L. , Yu X. , Liu J. , Song Y. , S. Afgan M. , Li Z. , Liu Z. , Wang Z. . Compensation for the variation of total number density to improve signal repeatability for laser-induced breakdown spectroscopy. Anal. Chim. Acta, 2022, 1205 : 339752
https://doi.org/10.1016/j.aca.2022.339752
15 J. Hou J. , Zhang L. , B. Yin W. , C. Yao S. , Zhao Y. , G. Ma W. , Dong L. , T. Xiao L. , T. Jia S. . Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements. Opt. Express, 2017, 25( 19): 23024
https://doi.org/10.1364/OE.25.023024
16 Dong J. Liang L. Wei J. Tang H. Zhang T. Yang X. Wang K. Li H., A method for improving the accuracy of calibration-free laser-induced breakdown spectroscopy (CF-LIBS) using determined plasma temperature by genetic algorithm (GA), J. Anal. At. Spectrom. 30(6), 1336 ( 2015)
17 Ciucci A. , Corsi M. , Palleschi V. , Rastelli S. , Salvetti A. , Tognoni E. . New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spctroscopy, 1999, 53 : 960
https://doi.org/10.1366/0003702991947612
18 Zhang S. , Hu Z. , Zhao Z. , Chen F. , Tang Y. , Sheng Z. , Zhang D. , Zhang Z. , Jin H. , Pu H. , Guo L. . Quantitative analysis of mineral elements in hair and nails using calibration-free laser-induced breakdown spectroscopy. Optik (Stuttg. ), 2021, 242 : 167067
https://doi.org/10.1016/j.ijleo.2021.167067
19 Tognoni E. , Cristoforetti G. , Legnaioli S. , Palleschi V. . Calibration-free laser-induced breakdown spectroscopy: State of the art. Spectrochim. Acta B At. Spectrosc., 2010, 65( 1): 1
https://doi.org/10.1016/j.sab.2009.11.006
20 Taleb A. , Motto-Ros V. , J. Carru M. , Axente E. , Craciun V. , Pelascini F. , Hermann J. . Measurement error due to self-absorption in calibration-free laser-induced breakdown spectroscopy. Anal. Chim. Acta, 2021, 1185 : 339070
https://doi.org/10.1016/j.aca.2021.339070
21 Tognoni E. Cristoforetti G. Legnaioli S. Palleschi V. Salvetti A. Mueller M. Panne U. Gornushkin I., A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma, Spectrochim. Acta B At. Spectrosc. 62(12), 1287 ( 2007)
22 Sun L. , Yu H. . Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method. Talanta, 2009, 79( 2): 388
https://doi.org/10.1016/j.talanta.2009.03.066
23 Qasim M. , Anwar-ul-Haq M. , Shah A. , Sher Afgan M. , U. Haq S. , Abbas Khan R. , Aslam Baig M. . Self-absorption effect in calibration-free laser-induced breakdown spectroscopy: Analysis of mineral profile in Maerua oblongifolia plant. Microchem. J., 2022, 175 : 107106
https://doi.org/10.1016/j.microc.2021.107106
24 M. Díaz Pace D. , E. Miguel R. , O. Di Rocco H. , Anabitarte García F. , Pardini L. , Legnaioli S. , Lorenzetti G. , Palleschi V. . Quantitative analysis of metals in waste foundry sands by calibration free-laser induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2017, 131 : 58
https://doi.org/10.1016/j.sab.2017.03.007
25 Jabbar A. , Hou Z. , Liu J. , Ahmed R. , Mahmood S. , Wang Z. . Calibration-free analysis of immersed metal alloys using long-pulse-duration laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2019, 157 : 84
https://doi.org/10.1016/j.sab.2019.05.013
26 Shakeel H. , U. Haq S. , Abbas Q. , Nadeem A. , Palleschi V. . Quantitative analysis of Ge/Si alloys using double-pulse calibration-free laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2018, 146 : 101
https://doi.org/10.1016/j.sab.2018.05.008
27 Grifoni E. , Legnaioli S. , Lezzerini M. , Lorenzetti G. , Pagnotta S. , Palleschi V. . Extracting time-resolved information from time-integrated laser-induced breakdown spectra. J. Spectrosc., 2014, 2014 : 1
https://doi.org/10.1155/2014/849310
28 Hu Z. Chen F. Zhang D. Chu Y. Wang W. Tang Y. Guo L., A method for improving the accuracy of calibration-free laser-induced breakdown spectroscopy by exploiting self-absorption, Anal. Chim. Acta 1183, 339008 ( 2021)
29 Aragón C. , A. Aguilera J. . Quantitative analysis by laser-induced breakdown spectroscopy based on generalized curves of growth. Spectrochim. Acta B At. Spectrosc., 2015, 110 : 124
https://doi.org/10.1016/j.sab.2015.06.010
30 B. Gornushkin I. , M. Anzano J. , A. King L. , W. Smith B. , Omenetto N. , D. Winefordner J. . Curve of growth methodology applied to laser-induced plasma emission spectroscopy. Spectrochim. Acta B At. Spectrosc., 1999, 54( 3−4): 491
https://doi.org/10.1016/S0584-8547(99)00004-X
31 Zhang Y. , Lu Y. , Tian Y. , Li Y. , Ye W. , Guo J. , Zheng R. . Quantitation improvement of underwater laser induced breakdown spectroscopy by using self-absorption correction based on plasma images. Anal. Chim. Acta, 2022, 1195 : 339423
https://doi.org/10.1016/j.aca.2021.339423
32 O. Bredice F. O. D. Rocco H. M. Sobral H. Villagrán-Muniz M. Palleschi V., A new method for determination of self-absorption coefficients of emission lines in laser-induced breakdown spectroscopy experiments, Appl. Spectrosc. 64(3), 320 ( 2010)
33 J. Hou J. , Zhang L. , Zhao Y. , Wang Z. , Zhang Y. , G. Ma W. , Dong L. , B. Yin W. , T. Xiao L. , T. Jia S. . Mechanisms and efficient elimination approaches of self-absorption in LIBS. Plasma Sci. Technol., 2019, 21( 3): 034016
https://doi.org/10.1088/2058-6272/aaf875
34 Rezaei F. Cristoforetti G. Tognoni E. Legnaioli S. Palleschi V. Safi A., A review of the current analytical approaches for evaluating, compensating and exploiting self-absorption in laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 169, 105878 ( 2020)
35 Bulajic D. Corsi M. Cristoforetti G. Legnaioli S. Palleschi V. Salvetti A. Tognoni E., A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 57(2), 339 ( 2002)
36 M. El Sherbini A. , M. El Sherbini T. , Hegazy H. , Cristoforetti G. , Legnaioli S. , Palleschi V. , Pardini L. , Salvetti A. , Tognoni E. . Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochim. Acta B At. Spectrosc., 2005, 60( 12): 1573
https://doi.org/10.1016/j.sab.2005.10.011
37 Aragón C. , A. Aguilera J. . Direct analysis of aluminum alloys by CSigma laser-induced breakdown spectroscopy. Anal. Chim. Acta, 2018, 1009 : 12
https://doi.org/10.1016/j.aca.2018.01.019
38 Y. Moon H. , K. Herrera K. , Omenetto N. , W. Smith B. , D. Winefordner J. . On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2009, 64( 7): 702
https://doi.org/10.1016/j.sab.2009.06.011
39 Demidov A. , Eschlböck-Fuchs S. , Y. Kazakov A. , B. Gornushkin I. , J. Kolmhofer P. , D. Pedarnig J. , Huber N. , Heitz J. , Schmid T. , Rössler R. , Panne U. . Monte Carlo standardless approach for laser induced breakdown spectroscopy based on massive parallel graphic processing unit computing. Spectrochim. Acta B At. Spectrosc., 2016, 125 : 97
https://doi.org/10.1016/j.sab.2016.09.016
40 Zhu Z. , Li J. , Guo Y. , Cheng X. , Tang Y. , Guo L. , Li X. , Lu Y. , Zeng X. . Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy. J. Anal. At. Spectrom., 2018, 33( 2): 205
https://doi.org/10.1039/C7JA00356K
41 Li T. , Hou Z. , Fu Y. , Yu J. , Gu W. , Wang Z. . Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference. Anal. Chim. Acta, 2019, 1058 : 39
https://doi.org/10.1016/j.aca.2019.01.016
42 Sobral H. , Quintana-Silva G. , Robledo-Martinez A. . Time-resolved optical characterization of the interaction between a laser produced plasma and a spark discharge. Spectrochim. Acta B At. Spectrosc., 2020, 167 : 105844
https://doi.org/10.1016/j.sab.2020.105844
43 Dong M. , Mao X. , J. Gonzalez J. , Lu J. , E. Russo R. . Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium. J. Anal. At. Spectrom., 2012, 27( 12): 2066
https://doi.org/10.1039/c2ja30222e
44 T. Fu Y. , L. Gu W. , Y. Hou Z. , A. Muhammed S. , Q. Li T. , Wang Y. , Wang Z. . Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy. Front. Phys., 2021, 16( 2): 22502
https://doi.org/10.1007/s11467-020-1006-0
45 C. He G. , L. Zhu X. , N. Shi L. , J. Zhao S. , L. Hua Y. . The self-absorption temporal evolution of spectral lines emitted from laser-induced plasmas. Opt. Laser Technol., 2021, 143 : 107324
https://doi.org/10.1016/j.optlastec.2021.107324
46 Konjević N. . Plasma broadening and shifting of non-hydrogenic spectral lines: Present status and applications. Phys. Rep., 1999, 316( 6): 339
https://doi.org/10.1016/S0370-1573(98)00132-X
47 Q. Li T. , Sheta S. , Y. Hou Z. , Dong J. , Wang Z. . Impacts of a collection system on laser-induced breakdown spectroscopy signal detection. Appl. Opt., 2018, 57( 21): 6120
https://doi.org/10.1364/AO.57.006120
48 Yang Y. , Hao X. , Ren L. . Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy(CF-LIBS) by considering plasma temperature and electron density. Optik (Stuttg. ), 2020, 208 : 163702
https://doi.org/10.1016/j.ijleo.2019.163702
49 B. Gornushkin I. , Völker T. , Y. Kazakov A. . Extension and investigation by numerical simulations of algorithm for calibration-free laser induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2018, 147 : 149
https://doi.org/10.1016/j.sab.2018.06.011
50 Cristoforetti G. , De Giacomo A. , Dell’Aglio M. , Legnaioli S. , Tognoni E. , Palleschi V. , Omenetto N. . Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: Beyond the McWhirter criterion. Spectrochim. Acta B At. Spectrosc., 2010, 65( 1): 86
https://doi.org/10.1016/j.sab.2009.11.005
51 C. L. Borduchi L. , M. B. P. Milori D. , R. Villas-Boas P. . Study of the effects of detection times in laser-induced breakdown spectroscopy and missed variation of plasma parameters with gate width. Spectrochim. Acta B At. Spectrosc., 2022, 191 : 106409
https://doi.org/10.1016/j.sab.2022.106409
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed