Generalized high-order twisted partially coherent beams and their propagation characteristics
Hai-Yun Wang1, Zhao-Hui Yang1, Kun Liu1, Ya-Hong Chen1, Lin Liu1(), Fei Wang1(), Yang-Jian Cai1,2()
1. School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China 2. Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Twist phase is a nontrivial statistical phase that only exists in partially coherent fields, which makes the beam carry orbital angular momentum (OAM). In this paper, we introduce a new kind of partially coherent beams carrying high-order twist phase, named generalized high-order twisted partially coherent beams (GHTPCBs). The propagation dynamics such as the spectral density and OAM flux density propagating in free space are investigated numerically with the help of mode superposition and fast Fourier transform (FFT) algorithm. Our results show that the GHTPCBs are capable of self-focusing, and the beam spot during propagation exhibits teardrop-like or the diamond-like shape in some certain cases. Moreover, the influences of the twist order and the twist factor on the OAM flux density during propagation are also illustrated in detail. Finally, we experimentally synthesize the GHTPCBs with controllable twist phase by means of pseudo-mode superposition and measure their spectral density during propagation. The experimental results agree well with the theoretical predictions. Our studies may find applications in nonlinear optics and particle trapping.
T. Friberg A. , Tervonen E. , Turunen J. . Interpretation and experimental demonstration of twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1994, 11( 6): 1818 https://doi.org/10.1364/JOSAA.11.001818
3
Sundar K. , Mukunda N. , Simon R. . Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1995, 12( 3): 560 https://doi.org/10.1364/JOSAA.12.000560
4
Ambrosini D. , Bagini V. , Gori F. , Santarsiero M. . Twisted Gaussian Schell-model beams: A superposition model. J. Mod. Opt., 1994, 41( 7): 1391 https://doi.org/10.1080/09500349414551331
5
Bastiaans M. . Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems. J. Opt. Soc. Am. A, 2000, 17( 12): 2475 https://doi.org/10.1364/JOSAA.17.002475
6
Lin Q. , Cai Y. . Tensor ABCD law for partially coherent twisted anisotropic Gaussian−Schell model beams. Opt. Lett., 2002, 27( 4): 216 https://doi.org/10.1364/OL.27.000216
7
Borghi R. , Gori F. , Guattari G. , Santarsiero M. . Twisted Schell-model beams with axial symmetry. Opt. Lett., 2015, 40( 19): 4504 https://doi.org/10.1364/OL.40.004504
Wu G. . Propagation properties of a radially polarized partially coherent twisted beam in free space. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 2016, 33( 3): 345 https://doi.org/10.1364/JOSAA.33.000345
13
Zhou Y. , Zhao D. . Propagation properties of a twisted rectangular multi-Gaussian Schell-model beam in free space and oceanic turbulence. Appl. Opt., 2018, 57( 30): 8978
14
Zhang C. , Zhou Z. , Xu H. , Zhou Z. , Han Y. , Yuan Y. , Qu J. . Evolution properties of twisted Hermite Gaussian Schell-model beams in non-Kolmogorov turbulence. Opt. Express, 2022, 30( 3): 4071 https://doi.org/10.1364/OE.448717
15
Santarsiero M. , Gori F. , Alonzo M. . Higher-order twisted/astigmatic Gaussian Schell-model cross-spectral densities and their separability features. Opt. Express, 2019, 27( 6): 8554 https://doi.org/10.1364/OE.27.008554
16
Zhang J. , Wang J. , Huang H. , Wang H. , Zhu S. , Li Z. , Lu J. . Propagation characteristics of a twisted cosine-Gaussian correlated radially polarized beam. Appl. Sci. (Basel), 2018, 8( 9): 1485 https://doi.org/10.3390/app8091485
17
Zhang B. , Huang H. , Xie C. , Zhu S. , Li Z. . Twisted rectangular Laguerre–Gaussian correlated sources in anisotropic turbulent atmosphere. Opt. Commun., 2019, 459( 15): 125004
18
Cai Y. , Lin Q. , Korotkova O. . Ghost imaging with twisted Gaussian Schell-model beam. Opt. Express, 2009, 17( 4): 2453 https://doi.org/10.1364/OE.17.002453
Wang L. , Wang J. , Yuan C. , Zheng G. , Chen Y. . Beam wander of partially coherent twisted elliptical vortex beam in turbulence. Optik (Stuttg.), 2020, 218 : 165037 https://doi.org/10.1016/j.ijleo.2020.165037
21
Tong Z. , Korotkova O. . Beyond the classical Rayleigh limit with twisted light. Opt. Lett., 2012, 37( 13): 2595 https://doi.org/10.1364/OL.37.002595
22
Hutter L. , Lima G. , P. Walborn S. . Boosting entanglement generation in down-conversion with incoherent illumination. Phys. Rev. Lett., 2020, 125( 19): 193602 https://doi.org/10.1103/PhysRevLett.125.193602
23
H. dos Santos G. , G. de Oliveira A. , Rubiano da Silva N. , Cañas G. , S. Gómez E. , Joshi S. , Ismail Y. , H. Souto Ribeiro P. , P. Walborn S. . Phase conjugation of twisted Gaussian Schell model beams in stimulated down-conversion. Nanophotonics, 2022, 11( 4): 763 https://doi.org/10.1515/nanoph-2021-0502
24
Wang H. , Peng X. , Liu L. , Wang F. , Cai Y. , A. Ponomarenko S. . Generating bona fide twisted Gaussian Schell-model beams. Opt. Lett., 2019, 44( 15): 3709 https://doi.org/10.1364/OL.44.003709
25
Tian C. , Zhu S. , Huang H. , Cai Y. , Li Z. . Customizing twisted Schell-model beams. Opt. Lett., 2020, 45( 20): 5880 https://doi.org/10.1364/OL.405149
26
Wang H. , Peng X. , Zhang H. , Liu L. , Chen Y. , Wang F. , Cai Y. . Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum. Nanophotonics, 2022, 11( 4): 689 https://doi.org/10.1515/nanoph-2021-0432
27
Serna J. , M. Movilla J. . Orbital angular momentum of partially coherent beams. Opt. Lett., 2001, 26( 7): 405 https://doi.org/10.1364/OL.26.000405
Cai Y. , Zhu S. . Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain. Opt. Lett., 2014, 39( 7): 1968 https://doi.org/10.1364/OL.39.001968
30
Liu L. , Huang Y. , Chen Y. , Guo L. , Cai Y. . Orbital angular moment of an electromagnetic Gaussian Schell model beam with a twist phase. Opt. Express, 2015, 23( 23): 30283 https://doi.org/10.1364/OE.23.030283
31
Wan L. , Zhao D. . Generalized partially coherent beams with nonseparable phases. Opt. Lett., 2019, 44( 19): 4714 https://doi.org/10.1364/OL.44.004714
32
A. Collins S. . Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am., 1970, 60( 9): 1168 https://doi.org/10.1364/JOSA.60.001168
33
Mandel L. Wolf E., Optical Coherence and Quantum Optics, Cambridge University Press, 1995
34
Wang R. , Zhu S. , Chen Y. , Huang H. , Li Z. , Cai Y. . Experimental synthesis of partially coherent sources. Opt. Lett., 2020, 45( 7): 1874 https://doi.org/10.1364/OL.388307
35
Arrizón V. , Ruiz U. , Carrada R. , A. González L. . Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 2007, 24( 11): 3500 https://doi.org/10.1364/JOSAA.24.003500