Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (5): 52506   https://doi.org/10.1007/s11467-022-1196-8
  本期目录
Generalized high-order twisted partially coherent beams and their propagation characteristics
Hai-Yun Wang1, Zhao-Hui Yang1, Kun Liu1, Ya-Hong Chen1, Lin Liu1(), Fei Wang1(), Yang-Jian Cai1,2()
1. School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
2. Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
 全文: PDF(16819 KB)   HTML
Abstract

Twist phase is a nontrivial statistical phase that only exists in partially coherent fields, which makes the beam carry orbital angular momentum (OAM). In this paper, we introduce a new kind of partially coherent beams carrying high-order twist phase, named generalized high-order twisted partially coherent beams (GHTPCBs). The propagation dynamics such as the spectral density and OAM flux density propagating in free space are investigated numerically with the help of mode superposition and fast Fourier transform (FFT) algorithm. Our results show that the GHTPCBs are capable of self-focusing, and the beam spot during propagation exhibits teardrop-like or the diamond-like shape in some certain cases. Moreover, the influences of the twist order and the twist factor on the OAM flux density during propagation are also illustrated in detail. Finally, we experimentally synthesize the GHTPCBs with controllable twist phase by means of pseudo-mode superposition and measure their spectral density during propagation. The experimental results agree well with the theoretical predictions. Our studies may find applications in nonlinear optics and particle trapping.

Key wordslight manipulation    statistical optics    twist phase    coherence structure    orbital angular momentum
收稿日期: 2022-04-12      出版日期: 2022-09-06
Corresponding Author(s): Lin Liu,Fei Wang,Yang-Jian Cai   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(5): 52506.
Hai-Yun Wang, Zhao-Hui Yang, Kun Liu, Ya-Hong Chen, Lin Liu, Fei Wang, Yang-Jian Cai. Generalized high-order twisted partially coherent beams and their propagation characteristics. Front. Phys. , 2022, 17(5): 52506.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1196-8
https://academic.hep.com.cn/fop/CN/Y2022/V17/I5/52506
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 Simon R. , Mukunda N. . Twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1993, 10( 1): 95
https://doi.org/10.1364/JOSAA.10.000095
2 T. Friberg A. , Tervonen E. , Turunen J. . Interpretation and experimental demonstration of twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1994, 11( 6): 1818
https://doi.org/10.1364/JOSAA.11.001818
3 Sundar K. , Mukunda N. , Simon R. . Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1995, 12( 3): 560
https://doi.org/10.1364/JOSAA.12.000560
4 Ambrosini D. , Bagini V. , Gori F. , Santarsiero M. . Twisted Gaussian Schell-model beams: A superposition model. J. Mod. Opt., 1994, 41( 7): 1391
https://doi.org/10.1080/09500349414551331
5 Bastiaans M. . Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems. J. Opt. Soc. Am. A, 2000, 17( 12): 2475
https://doi.org/10.1364/JOSAA.17.002475
6 Lin Q. , Cai Y. . Tensor ABCD law for partially coherent twisted anisotropic Gaussian−Schell model beams. Opt. Lett., 2002, 27( 4): 216
https://doi.org/10.1364/OL.27.000216
7 Borghi R. , Gori F. , Guattari G. , Santarsiero M. . Twisted Schell-model beams with axial symmetry. Opt. Lett., 2015, 40( 19): 4504
https://doi.org/10.1364/OL.40.004504
8 Borghi R. . Twisting partially coherent light. Opt. Lett., 2018, 43( 8): 1627
https://doi.org/10.1364/OL.43.001627
9 Gori F. , Santarsiero M. . Devising genuine spatial correlation functions. Opt. Lett., 2007, 32( 24): 3531
https://doi.org/10.1364/OL.32.003531
10 Gori F. , Santarsiero M. . Devising genuine twisted cross-spectral densities. Opt. Lett., 2018, 43( 3): 595
https://doi.org/10.1364/OL.43.000595
11 Mei Z. , Korotkova O. . Random sources for rotating spectral densities. Opt. Lett., 2017, 42( 2): 255
https://doi.org/10.1364/OL.42.000255
12 Wu G. . Propagation properties of a radially polarized partially coherent twisted beam in free space. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 2016, 33( 3): 345
https://doi.org/10.1364/JOSAA.33.000345
13 Zhou Y. , Zhao D. . Propagation properties of a twisted rectangular multi-Gaussian Schell-model beam in free space and oceanic turbulence. Appl. Opt., 2018, 57( 30): 8978
14 Zhang C. , Zhou Z. , Xu H. , Zhou Z. , Han Y. , Yuan Y. , Qu J. . Evolution properties of twisted Hermite Gaussian Schell-model beams in non-Kolmogorov turbulence. Opt. Express, 2022, 30( 3): 4071
https://doi.org/10.1364/OE.448717
15 Santarsiero M. , Gori F. , Alonzo M. . Higher-order twisted/astigmatic Gaussian Schell-model cross-spectral densities and their separability features. Opt. Express, 2019, 27( 6): 8554
https://doi.org/10.1364/OE.27.008554
16 Zhang J. , Wang J. , Huang H. , Wang H. , Zhu S. , Li Z. , Lu J. . Propagation characteristics of a twisted cosine-Gaussian correlated radially polarized beam. Appl. Sci. (Basel), 2018, 8( 9): 1485
https://doi.org/10.3390/app8091485
17 Zhang B. , Huang H. , Xie C. , Zhu S. , Li Z. . Twisted rectangular Laguerre–Gaussian correlated sources in anisotropic turbulent atmosphere. Opt. Commun., 2019, 459( 15): 125004
18 Cai Y. , Lin Q. , Korotkova O. . Ghost imaging with twisted Gaussian Schell-model beam. Opt. Express, 2009, 17( 4): 2453
https://doi.org/10.1364/OE.17.002453
19 A. Ponomarenko S. . Twisted Gaussian Schell-model solitons. Phys. Rev. E, 2001, 64( 3): 036618
https://doi.org/10.1103/PhysRevE.64.036618
20 Wang L. , Wang J. , Yuan C. , Zheng G. , Chen Y. . Beam wander of partially coherent twisted elliptical vortex beam in turbulence. Optik (Stuttg.), 2020, 218 : 165037
https://doi.org/10.1016/j.ijleo.2020.165037
21 Tong Z. , Korotkova O. . Beyond the classical Rayleigh limit with twisted light. Opt. Lett., 2012, 37( 13): 2595
https://doi.org/10.1364/OL.37.002595
22 Hutter L. , Lima G. , P. Walborn S. . Boosting entanglement generation in down-conversion with incoherent illumination. Phys. Rev. Lett., 2020, 125( 19): 193602
https://doi.org/10.1103/PhysRevLett.125.193602
23 H. dos Santos G. , G. de Oliveira A. , Rubiano da Silva N. , Cañas G. , S. Gómez E. , Joshi S. , Ismail Y. , H. Souto Ribeiro P. , P. Walborn S. . Phase conjugation of twisted Gaussian Schell model beams in stimulated down-conversion. Nanophotonics, 2022, 11( 4): 763
https://doi.org/10.1515/nanoph-2021-0502
24 Wang H. , Peng X. , Liu L. , Wang F. , Cai Y. , A. Ponomarenko S. . Generating bona fide twisted Gaussian Schell-model beams. Opt. Lett., 2019, 44( 15): 3709
https://doi.org/10.1364/OL.44.003709
25 Tian C. , Zhu S. , Huang H. , Cai Y. , Li Z. . Customizing twisted Schell-model beams. Opt. Lett., 2020, 45( 20): 5880
https://doi.org/10.1364/OL.405149
26 Wang H. , Peng X. , Zhang H. , Liu L. , Chen Y. , Wang F. , Cai Y. . Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum. Nanophotonics, 2022, 11( 4): 689
https://doi.org/10.1515/nanoph-2021-0432
27 Serna J. , M. Movilla J. . Orbital angular momentum of partially coherent beams. Opt. Lett., 2001, 26( 7): 405
https://doi.org/10.1364/OL.26.000405
28 M. Kim S. , Gbur G. . Angular momentum conservation in partially coherent wave fields. Phys. Rev. A, 2012, 86( 4): 043814
https://doi.org/10.1103/PhysRevA.86.043814
29 Cai Y. , Zhu S. . Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain. Opt. Lett., 2014, 39( 7): 1968
https://doi.org/10.1364/OL.39.001968
30 Liu L. , Huang Y. , Chen Y. , Guo L. , Cai Y. . Orbital angular moment of an electromagnetic Gaussian Schell model beam with a twist phase. Opt. Express, 2015, 23( 23): 30283
https://doi.org/10.1364/OE.23.030283
31 Wan L. , Zhao D. . Generalized partially coherent beams with nonseparable phases. Opt. Lett., 2019, 44( 19): 4714
https://doi.org/10.1364/OL.44.004714
32 A. Collins S. . Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am., 1970, 60( 9): 1168
https://doi.org/10.1364/JOSA.60.001168
33 Mandel L. Wolf E., Optical Coherence and Quantum Optics, Cambridge University Press, 1995
34 Wang R. , Zhu S. , Chen Y. , Huang H. , Li Z. , Cai Y. . Experimental synthesis of partially coherent sources. Opt. Lett., 2020, 45( 7): 1874
https://doi.org/10.1364/OL.388307
35 Arrizón V. , Ruiz U. , Carrada R. , A. González L. . Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 2007, 24( 11): 3500
https://doi.org/10.1364/JOSAA.24.003500
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed