Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals
Meng Xu1,2, Lei Guo2(), Lei Chen3, Ying Zhang4, Shuang-Shuang Li4, Weiyao Zhao5(), Xiaolin Wang6, Shuai Dong2, Ren-Kui Zheng4()
1. College of Science, Hohai University, Nanjing 210098, China 2. School of Physics, Southeast University, Nanjing 211189, China 3. School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China 4. School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, China 5. Department of Materials Science & Engineering, Monash University, Clayton 3800 VIC, Australia 6. Institute for Superconducting and Electronic Materials, & ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Innovation Campus, University of Wollongong, North Wollongong NSW 2500, Australia
Weak antilocalization (WAL) effect is commonly observed in low-dimensional systems, three-dimensional (3D) topological insulators and semimetals. Here, we report the growth of high-quality Ta0.7Nb0.3Sb2 single crystals via the chemical vapor transport (CVT). Clear sign of the WAL effect is observed below 50 K, probably due to the strong spin−orbital coupling in 3D bulk. In addition, it is worth noting that a relatively large MR of 120% appears under 1 T magnetic field at T = 2 K. Hall measurements and two-band model fitting results reveal high carrier mobility (>1000 cm2·V−1·s−1 in 2–300 K region), and off-compensation electron/hole ratio of ~8:1. Due to the angular dependence of the WAL effect and the fermiology of the Ta0.7Nb0.3Sb2 crystals, interesting magnetic-field-induced changes of the symmetry of the anisotropic magnetoresistance (MR) from two-fold (≤ 0.6 T) to four-fold (0.8–1.5 T) and finally to two-fold (≥ 2 T) are observed. This phenomenon is attributed to the mechanism shift from the low-field WAL dominated MR to WAL and fermiology co-dominated MR and finally to high-field fermiology dominated MR. All these signs indicate that Ta0.7Nb0.3Sb2 may be a topological semimetal candidate, and these magnetotransport properties may attract more theoretical and experimental exploration of the (Ta,Nb)Sb2 family.
P. Sun H., Z. Lu H.. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys., 2019, 14(3): 33405 https://doi.org/10.1007/s11467-019-0890-7
7
Guo L., K. Liu Y., Y. Gao G., Y. Huang Y., Gao H., Chen L., Zhao W., Ren W., Y. Li S., G. Li X., Dong S., K. Zheng R.. Extreme magnetoresistance and SdH oscillation in compensated semimetals of NbSb2 single crystals. J. Appl. Phys., 2018, 123(15): 155103 https://doi.org/10.1063/1.5021637
8
Zhou Y., Gu C., Chen X., Zhou Y., An C., Yang Z.. Structural and transport properties of the topological semimetal TaSb2 at high pressures. J. Solid State Chem., 2018, 265: 359 https://doi.org/10.1016/j.jssc.2018.06.027
9
Wang K., Graf D., Li L., Wang L., Petrovic C.. Anisotropic giant magnetoresistance in NbSb2. Sci. Rep., 2015, 4(1): 7328 https://doi.org/10.1038/srep07328
10
Li Y., Li L., Wang J., Wang T., Xu X., Xi C., Cao C., Dai J.. Resistivity plateau and negative magnetoresistance in the topological semimetal TaSb2. Phys. Rev. B, 2016, 94(12): 121115(R) https://doi.org/10.1103/PhysRevB.94.121115
11
Pariari A., Singha R., Roy S., Satpati B., Mandal P.. Anisotropic transverse magnetoresistance and Fermi surface in TaSb2. Sci. Rep., 2018, 8(1): 10527 https://doi.org/10.1038/s41598-018-28922-9
12
Guo L., Xu M., Chen L., Huang X., Y. Shi X., S. Ying J., Zhang T., Zhao W., Dong S., K. Zheng R.. Electronic transport properties of Nb1–xTaxSb2 single-crystal semimetals grown by a chemical vapor transport based high-throughput method. Cryst. Growth Des., 2021, 21(1): 653 https://doi.org/10.1021/acs.cgd.0c01457
13
Gresch D., Wu Q., W. Winkler G., A. Soluyanov A.. Hidden Weyl points in centrosymmetric paramagnetic metals. New J. Phys., 2017, 19(3): 035001 https://doi.org/10.1088/1367-2630/aa5de7
14
Xu C., Chen J., X. Zhi G., Li Y., Dai J., Cao C., Electronic structures of transition metal dipnictides XPn2(X = Ta, Nb Pn = Sb). Phys. Rev. B, 2016, 93(19): 195106 https://doi.org/10.1103/PhysRevB.93.195106
15
Belopolski I., S. Sanchez D., Ishida Y., C. Pan X., Yu P., Y. Xu S., Q. Chang G., R. Chang T., Zheng H., Alidoust N., Bian G., Neupane M., M. Huang S., C. Lee C., Song Y., Bu H., Wang G., Li S., Eda G., T. Jeng H., Kondo T., Lin H., Liu Z., Song F., Shin S., Z. Hasan M.. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2. Nat. Commun., 2016, 7(1): 13643 https://doi.org/10.1038/ncomms13643
16
R. Chang T., Y. Xu S., Chang G., C. Lee C., M. Huang S., K. Wang B., Bian G., Zheng H., S. Sanchez D., Belopolski I., Alidoust N., Neupane M., Bansil A., T. Jeng H., Lin H., Z. Hasan M.. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2. Nat. Commun., 2016, 7(1): 10639 https://doi.org/10.1038/ncomms10639
17
Wang Y., Liu E., Liu H., Pan Y., Zhang L., Zeng J., Fu Y., Wang M., Xu K., Huang Z., Wang Z., Z. Lu H., Xing D., Wang B., Wan X., Miao F.. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat. Commun., 2016, 7(1): 13142 https://doi.org/10.1038/ncomms13142
Xing Y., Sun Y., Singh M., F. Zhao Y., H. W. Chan M., Wang J.. Electronic transport properties of topological insulator films and low dimensional superconductors. Front. Phys., 2013, 8(5): 491 https://doi.org/10.1007/s11467-013-0380-2
20
Laitinen A., Kumar M., J. Hakonen P.. Weak antilocalization of composite fermions in graphene. Phys. Rev. B, 2018, 97(7): 075113 https://doi.org/10.1103/PhysRevB.97.075113
21
Jenderka M., Barzola-Quiquia J., Zhang Z., Frenzel H., Grundmann M., Lorenz M.. Mott variable-range hopping and weak antilocalization effect in heteroepitaxial Na2IrO3 thin films. Phys. Rev. B, 2013, 88(4): 045111 https://doi.org/10.1103/PhysRevB.88.045111
22
Xu M., W. Chen T., M. Yan J., Guo L., Wang H., Y. Gao G., S. Luo H., Chai Y., K. Zheng R.. Tunable magnetoresistance and charge carrier density in Cr: In2O3/PbMg1/3Nb2/3O3−PbTiO3 ferroelectric field-effect devices. Phys. Rev. Appl., 2020, 13(6): 064006 https://doi.org/10.1103/PhysRevApplied.13.064006
23
Gan Y., Liang J., Cho C., Li S., Guo Y., Ma X., Wu X., Wen J., Du X., He M., Liu C., A. Yang S., Wang K., Zhang L.. Bandgap opening in MoTe2 thin flakes induced by surface oxidation. Front. Phys., 2020, 15(3): 33602 https://doi.org/10.1007/s11467-020-0952-x
24
Shrestha K., Chou M., Graf D., D. Yang H., Lorenz B., W. Chu C.. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator. Phys. Rev. B, 2017, 95(19): 195113 https://doi.org/10.1103/PhysRevB.95.195113
25
Chiatti O., Riha C., Lawrenz D., Busch M., Dusari S., Sanchez-Barriga J., Mogilatenko A., V. Yashina L., Valencia S., A. Unal A., Rader O., F. Fischer S.. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Sci. Rep., 2016, 6(1): 27483 https://doi.org/10.1038/srep27483
26
Shekhar C., E. ViolBarbosa C., Yan B., Ouardi S., Schnelle W., H. Fecher G., Felser C.. Evidence of surface transport and weak antilocalization in a single crystal of the Bi2Te2Se topological insulator. Phys. Rev. B, 2014, 90(16): 165140 https://doi.org/10.1103/PhysRevB.90.165140
27
Shrestha K., Graf D., Marinova V., Lorenz B., W. Chu C.. Weak antilocalization effect due to topological surface states in Bi2Se2.1Te0.9. J. Appl. Phys., 2017, 122(14): 145901 https://doi.org/10.1063/1.4997947
28
Zhao W., Chen L., Yue Z., Li Z., Cortie D., Fuhrer M., Wang X.. Quantum oscillations of robust topological surface states up to 50 K in thick bulk-insulating topological insulator. npj Quantum Mater., 2019, 4(1): 56 https://doi.org/10.1038/s41535-019-0195-7
29
Xu G., Wang W., Zhang X., Du Y., Liu E., Wang S., Wu G., Liu Z., X. Zhang X.. Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi. Sci. Rep., 2015, 4(1): 5709 https://doi.org/10.1038/srep05709
30
Pavlosiuk O., Kaczorowski D., Wisniewski P.. Shubnikov−de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi. Sci. Rep., 2015, 5(1): 9158 https://doi.org/10.1038/srep09158
31
Hou Z., Wang Y., Liu E., Zhang H., Wang W., Wu G.. Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal. Appl. Phys. Lett., 2015, 107(20): 202103 https://doi.org/10.1063/1.4936179
32
Laha A., Malick S., Singha R., Mandal P., Rambabu P., Kanchana V., Hossain Z.. Magnetotransport properties of the correlated topological nodal-line semimetal YbCdGe. Phys. Rev. B, 2019, 99(24): 241102(R) https://doi.org/10.1103/PhysRevB.99.241102
33
Laha A., Rambabu P., Kanchana V., Petit L., Szotek Z., Hossain Z.. Experimental and theoretical study of the correlated compound YbCdSn: Evidence for large magnetoresistance and mass enhancement. Phys. Rev. B, 2020, 102(23): 235135 https://doi.org/10.1103/PhysRevB.102.235135
34
Sasmal S., Mondal R., Kulkarni R., Thamizhavel A., Singh B.. Magnetotransport properties of noncentrosymmetric CaAgBi single crystal. J. Phys.: Condens. Matter, 2020, 32(33): 335701 https://doi.org/10.1088/1361-648X/ab8520
35
Zhang J., Hou Z., Zhang C., Chen J., Li P., Wen Y., Zhang Q., Wang W., Zhang X.. Weak antilocalization effect and high-pressure transport properties of ScPdBi single crystal. Appl. Phys. Lett., 2019, 115(17): 172407 https://doi.org/10.1063/1.5123349
36
Deng L., H. Liu Z., Q. Ma X., P. Hou Z., K. Liu E., K. Xi X., H. Wang W., H. Wu G., X. Zhang X.. Observation of weak antilocalization effect in high-quality ScNiBi single crystal. J. Appl. Phys., 2017, 121(10): 105106 https://doi.org/10.1063/1.4978015
37
Chen J., Li H., Ding B., Hou Z., Liu E., Xi X., Zhang H., Wu G., Wang W.. Structural and magnetotransport properties of topological trivial LuNiBi single crystals. J. Alloys Compd., 2019, 784: 822 https://doi.org/10.1016/j.jallcom.2019.01.128
38
Hou Z., Wang Y., Xu G., Zhang X., Liu E., Wang W., Liu Z., Xi X., Wang W., Wu G.. Transition from semiconducting to metallic-like conducting and weak antilocalization effect in single crystals of LuPtSb. Appl. Phys. Lett., 2015, 106(10): 102102 https://doi.org/10.1063/1.4914545
39
Hikami S., I. Larkin A., Nagaoka Y.. Spin−orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys., 1980, 63(2): 707 https://doi.org/10.1143/PTP.63.707
40
A. Assaf B., Cardinal T., Wei P., Katmis F., S. Moodera J., Heiman D.. Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures. Appl. Phys. Lett., 2013, 102(1): 012102 https://doi.org/10.1063/1.4773207
Singha R., K. Pariari A., Satpati B., Mandal P.. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. Proc. Natl. Acad. Sci. USA, 2017, 114(10): 2468 https://doi.org/10.1073/pnas.1618004114
43
Sun S., Wang Q., J. Guo P., Liu K., Lei H.. Large magnetoresistance in LaBi: Origin of field-induced resistivity upturn and plateau in compensated semimetals. New J. Phys., 2016, 18(8): 082002 https://doi.org/10.1088/1367-2630/18/8/082002
44
F. Tafti F., D. Gibson Q., K. Kushwaha S., Haldolaarachchige N., J. Cava R.. Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys., 2016, 12(3): 272 https://doi.org/10.1038/nphys3581
45
Guo L., W. Chen T., Chen C., Chen L., Zhang Y., Y. Gao G., Yang J., G. Li X., Y. Zhao W., Dong S., K. Zheng R.. Electronic transport evidence for topological nodal-line semimetals of ZrGeSe single crystals. ACS Appl. Electron. Mater., 2019, 1(6): 869 https://doi.org/10.1021/acsaelm.9b00061
46
M. Ziman J., Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford University Press, 1960
47
L. Wang Y., R. Thoutam L., L. Xiao Z., Hu J., Das S., Q. Mao Z., Wei J., Divan R., Luican-Mayer A., W. Crabtree G., K. Kwok W.. Origin of the turn-on temperature behavior in WTe2. Phys. Rev. B, 2015, 92(18): 180402(R)
48
Kopelevich Y., C. M. Pantoja J., R. da Silva R., Moehlecke S.. Universal magnetic-field-driven metal−insulator−metal transformations in graphite and bismuth. Phys. Rev. B, 2006, 73(16): 165128 https://doi.org/10.1103/PhysRevB.73.165128
49
M. Hurd C., The Hall Effect in Metals and Alloys, Plenum, New York, 1972
50
T. He H., Wang G., Zhang T., K. Sou I., K. L. Wong G., N. Wang J., Z. Lu H., Q. Shen S., C. Zhang F.. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett., 2011, 106(16): 166805 https://doi.org/10.1103/PhysRevLett.106.166805
51
Yuan Z., Lu H., Liu Y., Wang J., Jia S.. Large magnetoresistance in compensated semimetals TaAs2 and NbAs2. Phys. Rev. B, 2016, 93(18): 184405 https://doi.org/10.1103/PhysRevB.93.184405
52
Collaudin A., Fauqué B., Fuseya Y., Kang W., Behnia K.. Angle dependence of the orbital magnetoresistance in Bismuth. Phys. Rev. X, 2015, 5(2): 021022 https://doi.org/10.1103/PhysRevX.5.021022
53
Luo Y., D. McDonald R., F. S. Rosa P., Scott B., Wakeham N., J. Ghimire N., D. Bauer E., D. Thompson J., Ronning F.. Anomalous electronic structure and magnetoresistance in TaAs2. Sci. Rep., 2016, 6(1): 27294 https://doi.org/10.1038/srep27294