We theoretically present a scheme for nonreciprocal ground-state cooling in a double-cavity spinning optomechanical system which is consisted of an optomechanical resonator and a spinning optical harmonic resonator with directional driving. The optical Sagnac effect generated by the whispering-gallery cavity (WGC) rotation creates frequency difference between the WGC mode, we found that the mechanical resonator (MR) can be cooled to the ground state when the propagation direction of driving light is opposite to the spin direction of the WGC, but not from the other side, vice versa, so that the nonreciprocal cooling is achieved. By appropriately selecting the system parameters, the heating process can be completely suppressed due to the quantum interference effect. The proposed approach provides a platform for quantum manipulation of macroscopic mechanical devices beyond the resolved sideband limit.
Carmon T., Rokhsari H., Yang L., J. Kippenberg T., J. Vahala K.. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. , 2005, 94( 22): 223902 https://doi.org/10.1103/PhysRevLett.94.223902
5
J. Kippenberg T., Rokhsari H., Carmon T., Scherer A., J. Vahala K.. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. , 2005, 95( 3): 033901 https://doi.org/10.1103/PhysRevLett.95.033901
6
C. Liu Y., F. Xiao Y.. Macroscopic mechanical systems are entering the quantum world. Natl. Sci. Rev. , 2015, 2( 1): 9 https://doi.org/10.1093/nsr/nwu050
7
Schliesser A., Riviere R., Anetsberger G., Arcizet O., J. Kippenberg T.. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. , 2008, 4( 5): 415 https://doi.org/10.1038/nphys939
8
D. Teufel J., Donner T., Li D., W. Harlow J., Allman M., Cicak K., J. Sirois A., D. Whittaker J., W. Lehnert K., W. Simmonds R.. Sideband cooling of micromechanical motion to the quantum ground state. Nature , 2011, 475( 7356): 359 https://doi.org/10.1038/nature10261
9
J. Kippenberg T., J. Vahala K.. Cavity optomechanics: Back-action at the mesoscale. Science , 2008, 321( 5893): 1172 https://doi.org/10.1126/science.1156032
Guo Y., Li K., Nie W., Li Y.. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A , 2014, 90( 5): 053841 https://doi.org/10.1103/PhysRevA.90.053841
12
C. Liu Y., F. Xiao Y., Luan X., Gong Q., W. Wong C.. Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Phys. Rev. A , 2015, 91( 3): 033818 https://doi.org/10.1103/PhysRevA.91.033818
Zhang S., Q. Zhang J., Zhang J., W. Wu C., Wu W., X. Chen P.. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom. Opt. Express , 2014, 22( 23): 28118 https://doi.org/10.1364/OE.22.028118
15
Genes C., Ritsch H., Vitali D.. Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Phys. Rev. A , 2009, 80( 6): 061803 https://doi.org/10.1103/PhysRevA.80.061803
16
Vogell B., Stannigel K., Zoller P., Hammerer K., T. Rakher M., Korppi M., Jöckel A., Treutlein P.. Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Phys. Rev. A , 2013, 87( 2): 023816 https://doi.org/10.1103/PhysRevA.87.023816
17
Chen X., C. Liu Y., Peng P., Zhi Y., F. Xiao Y.. Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A , 2015, 92( 3): 033841 https://doi.org/10.1103/PhysRevA.92.033841
18
Y. Yang J., Y. Wang D., H. Bai C., Y. Guan S., Y. Gao X., D. Zhu A., F. Wang H.. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Opt. Express , 2019, 27( 16): 22855 https://doi.org/10.1364/OE.27.022855
19
Genes C., Vitali D., Tombesi P.. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. , 2008, 10( 9): 095009 https://doi.org/10.1088/1367-2630/10/9/095009
20
Yang Z., Zhao C., Peng R., L. Chao S., Yang J., Zhou L.. The simultaneous ground-state cooling and synchronization of two mechanical oscillators by driving nonlinear medium. Ann. Phys. , 2022, 534( 5): 2100494 https://doi.org/10.1002/andp.202100494
21
G. Lai D., F. Huang J., L. Yin X., P. Hou B., Li W., Vitali D., Nori F., Q. Liao J.. Nonreciprocal ground-state cooling of multiple mechanical resonators. Phys. Rev. A , 2020, 102( 1): 011502 https://doi.org/10.1103/PhysRevA.102.011502
22
X. Yang Z., Wang L., M. Liu Y., Y. Wang D., H. Bai C., Zhang S., F. Wang H.. Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys. , 2020, 15( 5): 52504 https://doi.org/10.1007/s11467-020-0996-y
23
Bi L., Hu J., Jiang P., H. Kim D., F. Dionne G., C. Kimerling L., Ross C.. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics , 2011, 5( 12): 758 https://doi.org/10.1038/nphoton.2011.270
W. Xu X., Q. Shi H., X. Chen A.. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys. , 2022, 17( 4): 42505 https://doi.org/10.1007/s11467-021-1138-x
27
B. Yan X., L. Lu H., Gao F., Yang L.. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys. , 2019, 14( 5): 52601 https://doi.org/10.1007/s11467-019-0922-3
28
Lin Z., Ramezani H., Eichelkraut T., Kottos T., Cao H., N. Christodoulides D.. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. , 2011, 106( 21): 213901 https://doi.org/10.1103/PhysRevLett.106.213901
29
A. Miri M., Ruesink F., Verhagen E., Alù A.. Optical nonreciprocity based on optomechanical coupling. Phys. Rev. Appl. , 2017, 7( 6): 064014 https://doi.org/10.1103/PhysRevApplied.7.064014
30
Feng L., Ayache M., Huang J., L. Xu Y., H. Lu M., F. Chen Y., Fainman Y., Scherer A.. Nonreciprocal light propagation in a silicon photonic circuit. Science , 2011, 333( 6043): 729 https://doi.org/10.1126/science.1206038
31
Scheucher M., Hilico A., Will E., Volz J., Rauschenbeutel A.. Quantum optical circulator controlled by a single chirally coupled atom. Science , 2016, 354( 6319): 1577 https://doi.org/10.1126/science.aaj2118
32
Peng B., K. Özdemir Ş., Lei F., Monifi F., Gianfreda M., L. Long G., Fan S., Nori F., M. Bender C., Yang L.. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. , 2014, 10( 5): 394 https://doi.org/10.1038/nphys2927
33
Xiong H., G. Si L., Yang X., Wu Y.. Asymmetric optical transmission in an optomechanical array. Appl. Phys. Lett. , 2015, 107( 9): 091116 https://doi.org/10.1063/1.4930166
34
Kim J., C. Kuzyk M., Han K., Wang H., Bahl G.. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. , 2015, 11( 3): 275 https://doi.org/10.1038/nphys3236
35
Barzanjeh S., Wulf M., Peruzzo M., Kalaee M., Dieterle P., Painter O., M. Fink J.. Mechanical on-chip microwave circulator. Nat. Commun. , 2017, 8( 1): 953 https://doi.org/10.1038/s41467-017-01304-x
Wang K., Wu Q., F. Yu Y., M. Zhang Z.. Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity. Phys. Rev. A , 2019, 100( 5): 053832 https://doi.org/10.1103/PhysRevA.100.053832
38
Li B., Huang R., Xu X., Miranowicz A., Jing H.. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res. , 2019, 7( 6): 630 https://doi.org/10.1364/PRJ.7.000630
39
F. Jiao Y., D. Zhang S., L. Zhang Y., Miranowicz A., M. Kuang L., Jing H.. Nonreciprocal optomechanical entanglement against backscattering losses. Phys. Rev. Lett. , 2020, 125( 14): 143605 https://doi.org/10.1103/PhysRevLett.125.143605
S. Chen S., S. Meng S., Deng H., J. Yang G.. Nonreciprocal mechanical squeezing in a spinning optomechanical system. Ann. Phys. , 2021, 533( 1): 2000343 https://doi.org/10.1002/andp.202000343
42
M. Spillane S., J. Kippenberg T., J. Painter O., J. Vahala K.. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. , 2003, 91( 4): 043902 https://doi.org/10.1103/PhysRevLett.91.043902
Lü H., Jiang Y., Wang Y.-Z., Jing H.. Optomechanically induced transparency in a spinning resonator. Photon. Res. , 2017, 5( 4): 367 https://doi.org/10.1364/PRJ.5.000367
45
Maayani S., Dahan R., Kligerman Y., Moses E., U. Hassan A., Jing H., Nori F., N. Christodoulides D., Carmon T.. Flying couplers above spinning resonators generate irreversible refraction. Nature , 2018, 558( 7711): 569 https://doi.org/10.1038/s41586-018-0245-5
46
Ding L., Baker C., Senellart P., Lemaitre A., Ducci S., Leo G., Favero I.. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. , 2011, 98( 11): 113108 https://doi.org/10.1063/1.3563711
47
Enzian G., Szczykulska M., Silver J., Del Bino L., Zhang S., A. Walmsley I., Del’Haye P., R. Vanner M.. Observation of Brillouin optomechanical strong coupling with an 11 GHz mechanical mode. Optica , 2019, 6( 1): 7 https://doi.org/10.1364/OPTICA.6.000007
48
Snijders H., A. Frey J., Norman J., P. Bakker M., C. Langman E., Gossard A., E. Bowers J., P. van Exter M., Bouwmeester D., Löffler W.. Purification of a single-photon nonlinearity. Nat. Commun. , 2016, 7( 1): 12578 https://doi.org/10.1038/ncomms12578
49
L. Chao S., Yang Z., S. Zhao C., Peng R., Zhou L.. Force sensing in a dual-mode optomechanical system with linear–quadratic coupling and modulated photon hopping. Opt. Lett. , 2021, 46( 13): 3075 https://doi.org/10.1364/OL.425484
50
Li X., Xiong B., Chao S., Zhao C., T. Tan H., Zhou L.. Remote weak-signal measurement via bound states in optomechanical systems. Commum. Theor. Phys. , 2021, 73( 2): 025102 https://doi.org/10.1088/1572-9494/abd0e8
51
Wilson-Rae I., Nooshi N., Zwerger W., J. Kippenberg T.. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. , 2007, 99( 9): 093901 https://doi.org/10.1103/PhysRevLett.99.093901
52
Marquardt F., P. Chen J., A. Clerk A., M. Girvin S.. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. , 2007, 99( 9): 093902 https://doi.org/10.1103/PhysRevLett.99.093902
C. Righini G., Dumeige Y., Feron P., Ferrari M., Nunzi Conti G., Ristic D., Soria S.. Whispering gallery mode microresonators: Fundamentals and applications. Riv. Nuovo Cim. , 2011, 34 : 435 https://doi.org/10.1393/ncr/i2011-10067-2
55
Reimann R., Doderer M., Hebestreit E., Diehl R., Frimmer M., Windey D., Tebbenjohanns F., Novotny L.. GHZ rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett. , 2018, 121( 3): 033602 https://doi.org/10.1103/PhysRevLett.121.033602
56
Ahn J., Xu Z., Bang J., H. Deng Y., M. Hoang T., Han Q., M. Ma R., Li T.. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. , 2018, 121( 3): 033603 https://doi.org/10.1103/PhysRevLett.121.033603
57
Verhagen E., Deléglise S., Weis S., Schliesser A., J. Kippenberg T.. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature , 2012, 482( 7383): 63 https://doi.org/10.1038/nature10787
Zhang J., Peng B., K. Özdemir Ş., Pichler K., O. Krimer D., Zhao G., Nori F., Liu Y., Rotter S., Yang L.. A phonon laser operating at an exceptional point. Nat. Photonics , 2018, 12( 8): 479 https://doi.org/10.1038/s41566-018-0213-5
60
Li M., Pernice W., Tang H.. Tunable bipolar optical interactions between guided lightwaves. Nat. Photonics , 2009, 3( 8): 464 https://doi.org/10.1038/nphoton.2009.116
61
S. Grudinin I., Lee H., Painter O., J. Vahala K.. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. , 2010, 104( 8): 083901 https://doi.org/10.1103/PhysRevLett.104.083901