Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (5): 52507   https://doi.org/10.1007/s11467-022-1202-1
  本期目录
Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system
Junya Yang, Chengsong Zhao, Zhen Yang, Rui Peng, Shilei Chao, Ling Zhou()
School of Physics, Dalian University of Technology, Dalian 116024,China
 全文: PDF(4252 KB)   HTML
Abstract

We theoretically present a scheme for nonreciprocal ground-state cooling in a double-cavity spinning optomechanical system which is consisted of an optomechanical resonator and a spinning optical harmonic resonator with directional driving. The optical Sagnac effect generated by the whispering-gallery cavity (WGC) rotation creates frequency difference between the WGC mode, we found that the mechanical resonator (MR) can be cooled to the ground state when the propagation direction of driving light is opposite to the spin direction of the WGC, but not from the other side, vice versa, so that the nonreciprocal cooling is achieved. By appropriately selecting the system parameters, the heating process can be completely suppressed due to the quantum interference effect. The proposed approach provides a platform for quantum manipulation of macroscopic mechanical devices beyond the resolved sideband limit.

Key wordsnonreciprocal ground-state cooling    spinning optomechanical system    optical Sagnac effect
收稿日期: 2022-05-04      出版日期: 2022-10-09
Corresponding Author(s): Ling Zhou   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(5): 52507.
Junya Yang, Chengsong Zhao, Zhen Yang, Rui Peng, Shilei Chao, Ling Zhou. Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system. Front. Phys. , 2022, 17(5): 52507.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1202-1
https://academic.hep.com.cn/fop/CN/Y2022/V17/I5/52507
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Poot M., S. van der Zant H.. Mechanical systems in the quantum regime. Phys. Rep. , 2012, 511( 5): 273
https://doi.org/10.1016/j.physrep.2011.12.004
2 Aspelmeyer M., J. Kippenberg T., Marquardt F.. Cavity optomechanics. Rev. Mod. Phys. , 2014, 86( 4): 1391
https://doi.org/10.1103/RevModPhys.86.1391
3 y. Zhang K., Zhou L., Dong G., Zhang W.. Cavity optomechanics with cold atomic gas. Front. Phys. , 2011, 6( 3): 237
https://doi.org/10.1007/s11467-011-0164-5
4 Carmon T., Rokhsari H., Yang L., J. Kippenberg T., J. Vahala K.. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. , 2005, 94( 22): 223902
https://doi.org/10.1103/PhysRevLett.94.223902
5 J. Kippenberg T., Rokhsari H., Carmon T., Scherer A., J. Vahala K.. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. , 2005, 95( 3): 033901
https://doi.org/10.1103/PhysRevLett.95.033901
6 C. Liu Y., F. Xiao Y.. Macroscopic mechanical systems are entering the quantum world. Natl. Sci. Rev. , 2015, 2( 1): 9
https://doi.org/10.1093/nsr/nwu050
7 Schliesser A., Riviere R., Anetsberger G., Arcizet O., J. Kippenberg T.. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. , 2008, 4( 5): 415
https://doi.org/10.1038/nphys939
8 D. Teufel J., Donner T., Li D., W. Harlow J., Allman M., Cicak K., J. Sirois A., D. Whittaker J., W. Lehnert K., W. Simmonds R.. Sideband cooling of micromechanical motion to the quantum ground state. Nature , 2011, 475( 7356): 359
https://doi.org/10.1038/nature10261
9 J. Kippenberg T., J. Vahala K.. Cavity optomechanics: Back-action at the mesoscale. Science , 2008, 321( 5893): 1172
https://doi.org/10.1126/science.1156032
10 C. Liu Y., W. Hu Y., W. Wong C., F. Xiao Y.. Review of cavity optomechanical cooling. Chin. Phys. B , 2013, 22( 11): 114213
https://doi.org/10.1088/1674-1056/22/11/114213
11 Guo Y., Li K., Nie W., Li Y.. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A , 2014, 90( 5): 053841
https://doi.org/10.1103/PhysRevA.90.053841
12 C. Liu Y., F. Xiao Y., Luan X., Gong Q., W. Wong C.. Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Phys. Rev. A , 2015, 91( 3): 033818
https://doi.org/10.1103/PhysRevA.91.033818
13 Gu W., Li G.. Quantum interference effects on ground-state optomechanical cooling. Phys. Rev. A , 2013, 87( 2): 025804
https://doi.org/10.1103/PhysRevA.87.025804
14 Zhang S., Q. Zhang J., Zhang J., W. Wu C., Wu W., X. Chen P.. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom. Opt. Express , 2014, 22( 23): 28118
https://doi.org/10.1364/OE.22.028118
15 Genes C., Ritsch H., Vitali D.. Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Phys. Rev. A , 2009, 80( 6): 061803
https://doi.org/10.1103/PhysRevA.80.061803
16 Vogell B., Stannigel K., Zoller P., Hammerer K., T. Rakher M., Korppi M., Jöckel A., Treutlein P.. Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Phys. Rev. A , 2013, 87( 2): 023816
https://doi.org/10.1103/PhysRevA.87.023816
17 Chen X., C. Liu Y., Peng P., Zhi Y., F. Xiao Y.. Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A , 2015, 92( 3): 033841
https://doi.org/10.1103/PhysRevA.92.033841
18 Y. Yang J., Y. Wang D., H. Bai C., Y. Guan S., Y. Gao X., D. Zhu A., F. Wang H.. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Opt. Express , 2019, 27( 16): 22855
https://doi.org/10.1364/OE.27.022855
19 Genes C., Vitali D., Tombesi P.. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. , 2008, 10( 9): 095009
https://doi.org/10.1088/1367-2630/10/9/095009
20 Yang Z., Zhao C., Peng R., L. Chao S., Yang J., Zhou L.. The simultaneous ground-state cooling and synchronization of two mechanical oscillators by driving nonlinear medium. Ann. Phys. , 2022, 534( 5): 2100494
https://doi.org/10.1002/andp.202100494
21 G. Lai D., F. Huang J., L. Yin X., P. Hou B., Li W., Vitali D., Nori F., Q. Liao J.. Nonreciprocal ground-state cooling of multiple mechanical resonators. Phys. Rev. A , 2020, 102( 1): 011502
https://doi.org/10.1103/PhysRevA.102.011502
22 X. Yang Z., Wang L., M. Liu Y., Y. Wang D., H. Bai C., Zhang S., F. Wang H.. Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys. , 2020, 15( 5): 52504
https://doi.org/10.1007/s11467-020-0996-y
23 Bi L., Hu J., Jiang P., H. Kim D., F. Dionne G., C. Kimerling L., Ross C.. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics , 2011, 5( 12): 758
https://doi.org/10.1038/nphoton.2011.270
24 J. Potton R.. Reciprocity in optics. Rep. Prog. Phys. , 2004, 67( 5): 717
https://doi.org/10.1088/0034-4885/67/5/R03
25 Lodahl P., Mahmoodian S., Stobbe S., Rauschenbeutel A., Schneeweiss P., Volz J., Pichler H., Zoller P.. Chiral quantum optics. Nature , 2017, 541( 7638): 473
https://doi.org/10.1038/nature21037
26 W. Xu X., Q. Shi H., X. Chen A.. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys. , 2022, 17( 4): 42505
https://doi.org/10.1007/s11467-021-1138-x
27 B. Yan X., L. Lu H., Gao F., Yang L.. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys. , 2019, 14( 5): 52601
https://doi.org/10.1007/s11467-019-0922-3
28 Lin Z., Ramezani H., Eichelkraut T., Kottos T., Cao H., N. Christodoulides D.. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. , 2011, 106( 21): 213901
https://doi.org/10.1103/PhysRevLett.106.213901
29 A. Miri M., Ruesink F., Verhagen E., Alù A.. Optical nonreciprocity based on optomechanical coupling. Phys. Rev. Appl. , 2017, 7( 6): 064014
https://doi.org/10.1103/PhysRevApplied.7.064014
30 Feng L., Ayache M., Huang J., L. Xu Y., H. Lu M., F. Chen Y., Fainman Y., Scherer A.. Nonreciprocal light propagation in a silicon photonic circuit. Science , 2011, 333( 6043): 729
https://doi.org/10.1126/science.1206038
31 Scheucher M., Hilico A., Will E., Volz J., Rauschenbeutel A.. Quantum optical circulator controlled by a single chirally coupled atom. Science , 2016, 354( 6319): 1577
https://doi.org/10.1126/science.aaj2118
32 Peng B., K. Özdemir Ş., Lei F., Monifi F., Gianfreda M., L. Long G., Fan S., Nori F., M. Bender C., Yang L.. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. , 2014, 10( 5): 394
https://doi.org/10.1038/nphys2927
33 Xiong H., G. Si L., Yang X., Wu Y.. Asymmetric optical transmission in an optomechanical array. Appl. Phys. Lett. , 2015, 107( 9): 091116
https://doi.org/10.1063/1.4930166
34 Kim J., C. Kuzyk M., Han K., Wang H., Bahl G.. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. , 2015, 11( 3): 275
https://doi.org/10.1038/nphys3236
35 Barzanjeh S., Wulf M., Peruzzo M., Kalaee M., Dieterle P., Painter O., M. Fink J.. Mechanical on-chip microwave circulator. Nat. Commun. , 2017, 8( 1): 953
https://doi.org/10.1038/s41467-017-01304-x
36 Huang R., Miranowicz A., Q. Liao J., Nori F., Jing H.. Nonreciprocal photon blockade. Phys. Rev. Lett. , 2018, 121( 15): 153601
https://doi.org/10.1103/PhysRevLett.121.153601
37 Wang K., Wu Q., F. Yu Y., M. Zhang Z.. Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity. Phys. Rev. A , 2019, 100( 5): 053832
https://doi.org/10.1103/PhysRevA.100.053832
38 Li B., Huang R., Xu X., Miranowicz A., Jing H.. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res. , 2019, 7( 6): 630
https://doi.org/10.1364/PRJ.7.000630
39 F. Jiao Y., D. Zhang S., L. Zhang Y., Miranowicz A., M. Kuang L., Jing H.. Nonreciprocal optomechanical entanglement against backscattering losses. Phys. Rev. Lett. , 2020, 125( 14): 143605
https://doi.org/10.1103/PhysRevLett.125.143605
40 Jiang Y., Maayani S., Carmon T., Nori F., Jing H.. Nonreciprocal phonon laser. Phys. Rev. Appl. , 2018, 10( 6): 064037
https://doi.org/10.1103/PhysRevApplied.10.064037
41 S. Chen S., S. Meng S., Deng H., J. Yang G.. Nonreciprocal mechanical squeezing in a spinning optomechanical system. Ann. Phys. , 2021, 533( 1): 2000343
https://doi.org/10.1002/andp.202000343
42 M. Spillane S., J. Kippenberg T., J. Painter O., J. Vahala K.. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. , 2003, 91( 4): 043902
https://doi.org/10.1103/PhysRevLett.91.043902
43 B. Malykin G.. The Sagnac effect: Correct and incorrect explanations. Phys. Uspekhi , 2000, 43( 12): 1229
https://doi.org/10.1070/PU2000v043n12ABEH000830
44 Lü H., Jiang Y., Wang Y.-Z., Jing H.. Optomechanically induced transparency in a spinning resonator. Photon. Res. , 2017, 5( 4): 367
https://doi.org/10.1364/PRJ.5.000367
45 Maayani S., Dahan R., Kligerman Y., Moses E., U. Hassan A., Jing H., Nori F., N. Christodoulides D., Carmon T.. Flying couplers above spinning resonators generate irreversible refraction. Nature , 2018, 558( 7711): 569
https://doi.org/10.1038/s41586-018-0245-5
46 Ding L., Baker C., Senellart P., Lemaitre A., Ducci S., Leo G., Favero I.. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. , 2011, 98( 11): 113108
https://doi.org/10.1063/1.3563711
47 Enzian G., Szczykulska M., Silver J., Del Bino L., Zhang S., A. Walmsley I., Del’Haye P., R. Vanner M.. Observation of Brillouin optomechanical strong coupling with an 11 GHz mechanical mode. Optica , 2019, 6( 1): 7
https://doi.org/10.1364/OPTICA.6.000007
48 Snijders H., A. Frey J., Norman J., P. Bakker M., C. Langman E., Gossard A., E. Bowers J., P. van Exter M., Bouwmeester D., Löffler W.. Purification of a single-photon nonlinearity. Nat. Commun. , 2016, 7( 1): 12578
https://doi.org/10.1038/ncomms12578
49 L. Chao S., Yang Z., S. Zhao C., Peng R., Zhou L.. Force sensing in a dual-mode optomechanical system with linear–quadratic coupling and modulated photon hopping. Opt. Lett. , 2021, 46( 13): 3075
https://doi.org/10.1364/OL.425484
50 Li X., Xiong B., Chao S., Zhao C., T. Tan H., Zhou L.. Remote weak-signal measurement via bound states in optomechanical systems. Commum. Theor. Phys. , 2021, 73( 2): 025102
https://doi.org/10.1088/1572-9494/abd0e8
51 Wilson-Rae I., Nooshi N., Zwerger W., J. Kippenberg T.. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. , 2007, 99( 9): 093901
https://doi.org/10.1103/PhysRevLett.99.093901
52 Marquardt F., P. Chen J., A. Clerk A., M. Girvin S.. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. , 2007, 99( 9): 093902
https://doi.org/10.1103/PhysRevLett.99.093902
53 J. Vahala K.. Optical microcavities. Nature , 2003, 424( 6950): 839
https://doi.org/10.1038/nature01939
54 C. Righini G., Dumeige Y., Feron P., Ferrari M., Nunzi Conti G., Ristic D., Soria S.. Whispering gallery mode microresonators: Fundamentals and applications. Riv. Nuovo Cim. , 2011, 34 : 435
https://doi.org/10.1393/ncr/i2011-10067-2
55 Reimann R., Doderer M., Hebestreit E., Diehl R., Frimmer M., Windey D., Tebbenjohanns F., Novotny L.. GHZ rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett. , 2018, 121( 3): 033602
https://doi.org/10.1103/PhysRevLett.121.033602
56 Ahn J., Xu Z., Bang J., H. Deng Y., M. Hoang T., Han Q., M. Ma R., Li T.. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. , 2018, 121( 3): 033603
https://doi.org/10.1103/PhysRevLett.121.033603
57 Verhagen E., Deléglise S., Weis S., Schliesser A., J. Kippenberg T.. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature , 2012, 482( 7383): 63
https://doi.org/10.1038/nature10787
58 Zeng Y., Xiong B., Li C.. Suppressing laser phase noise in an optomechanical system. Front. Phys. , 2022, 17( 1): 12503
https://doi.org/10.1007/s11467-021-1097-2
59 Zhang J., Peng B., K. Özdemir Ş., Pichler K., O. Krimer D., Zhao G., Nori F., Liu Y., Rotter S., Yang L.. A phonon laser operating at an exceptional point. Nat. Photonics , 2018, 12( 8): 479
https://doi.org/10.1038/s41566-018-0213-5
60 Li M., Pernice W., Tang H.. Tunable bipolar optical interactions between guided lightwaves. Nat. Photonics , 2009, 3( 8): 464
https://doi.org/10.1038/nphoton.2009.116
61 S. Grudinin I., Lee H., Painter O., J. Vahala K.. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. , 2010, 104( 8): 083901
https://doi.org/10.1103/PhysRevLett.104.083901
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed