Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect
Cui Kong1, Jibing Liu1(), Hao Xiong2()
1. College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China 2. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Nonreciprocal microwave devices, in which the transmission of waves is non-symmetric between two ports, are indispensable for the manipulation of information processing and communication. In this work, we show the nonreciprocal microwave transmission in a cavity magnonic system under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect. In contrast to the schemes based on the standard phase modulation or magnon Kerr nonlinearity, we find that the joint mechanism enables the nonreciprocal transmission even at low power and makes us obtain a high nonreciprocal isolation ratio. Moreover, when two microwave modes are coupled to the magnon mode via a different coupling strength, the presented strong nonreciprocal response occurs, and it makes the nonreciprocal transmission manipulating by the magnetic field within a large adjustable range possible, which overcomes narrow operating bandwidths. This study may provide promising opportunities to realize nonreciprocal structures for wave transmission.
Walther H. , T. H. Varcoe B. , G. Englert B. , Becker T. . Cavity quantum electrodynamics. Rep. Prog. Phys., 2006, 69(5): 1325 https://doi.org/10.1088/0034-4885/69/5/R02
2
P. Su Q. , Zhang Y. , Bin L. , P. Yang C. . Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys., 2022, 17(5): 53505 https://doi.org/10.1007/s11467-022-1163-4
3
D. Stancil D.Prabhakar A., Spin Waves, Springer, New York, 2009
4
O. Soykal Ö. , E. Flatté M. . Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett., 2010, 104(7): 077202 https://doi.org/10.1103/PhysRevLett.104.077202
Tabuchi Y. , Ishino S. , Noguchi A. , Ishikawa T. , Yamazaki R. , Usami K. , Nakamura Y. . Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 2015, 349(6246): 405 https://doi.org/10.1126/science.aaa3693
7
Shim J. , J. Kim S. , K. Kim S. , J. Lee K. . Enhanced magnon−photon coupling at the angular momentum compensation point of ferrimagnets. Phys. Rev. Lett., 2020, 125(2): 027205 https://doi.org/10.1103/PhysRevLett.125.027205
8
Wang K. , P. Gao Y. , Z. Jiao R. , Wang C. . Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 2022, 17(4): 42201 https://doi.org/10.1007/s11467-022-1165-2
W. Zhou J. , F. Wang P. , Z. Shi F. , Huang P. , Kong X. , K. Xu X. , Zhang Q. , X. Wang Z. , Rong X. , F. Du J. . Quantum information processing and metrology with color centers in diamonds. Front. Phys., 2014, 9(5): 587 https://doi.org/10.1007/s11467-014-0421-5
12
Zhang X. , L. Zou C. , Jiang L. , X. Tang H. . Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett., 2014, 113(15): 156401 https://doi.org/10.1103/PhysRevLett.113.156401
13
Goryachev M. , G. Farr W. , L. Creedon D. , Fan Y. , Kostylev M. , E. Tobar M. . High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl., 2014, 2(5): 054002 https://doi.org/10.1103/PhysRevApplied.2.054002
14
Zhang D. , Wang X.-M. , Li T.-F. , Luo X.-Q. , Wu W. , Nori F. , Q. You J. . Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. npj Quantum Inf., 2015, 1: 15014 https://doi.org/10.1038/npjqi.2015.14
15
Yao B. , Gui Y. , Rao J. , Kaur S. , Chen X. , Lu W. , Xiao Y. , Guo H. , P. Marzlin K. , M. Hu C. . Cooperative polariton dynamics in feedback-coupled cavities. Nat. Commun., 2017, 8(1): 1437 https://doi.org/10.1038/s41467-017-01796-7
16
Tabuchi Y. , Ishino S. , Ishikawa T. , Yamazaki R. , Usami K. , Nakamura Y. . Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett., 2014, 113(8): 083603 https://doi.org/10.1103/PhysRevLett.113.083603
17
Kostylev N. , Goryachev M. , E. Tobar M. . Superstrong coupling of a microwave cavity to yttrium iron garnet magnons. Appl. Phys. Lett., 2016, 108(6): 062402 https://doi.org/10.1063/1.4941730
18
Bourhill J. , Kostylev N. , Goryachev M. , Creedon D. , Tobar M. . Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere. Phys. Rev. B, 2016, 93(14): 144420 https://doi.org/10.1103/PhysRevB.93.144420
19
Flower G. , Goryachev M. , Bourhill J. , E. Tobar M. . Experimental implementations of cavity-magnon systems: From ultra strong coupling to applications in precision measurement. New J. Phys., 2019, 21(9): 095004 https://doi.org/10.1088/1367-2630/ab3e1c
20
Bai L. , Harder M. , P. Chen Y. , Fan X. , Q. Xiao J. , M. Hu C. . Spin pumping in electrodynamically coupled magnon−photon systems. Phys. Rev. Lett., 2015, 114(22): 227201 https://doi.org/10.1103/PhysRevLett.114.227201
21
P. Wang Y. , Q. Zhang G. , Zhang D. , F. Li T. , M. Hu C. , Q. You J. . Bistability of cavity magnon polaritons. Phys. Rev. Lett., 2018, 120(5): 057202 https://doi.org/10.1103/PhysRevLett.120.057202
22
F. Zhang X. , L. Zou C. , Zhu N. , Marquardt F. , Jiang L. , X. Tang H. . Magnon dark modes and gradient memory. Nat. Commun., 2015, 6(1): 8914 https://doi.org/10.1038/ncomms9914
23
C. Shen R. , P. Wang Y. , Li J. , Y. Zhu S. , S. Agarwal G. , Q. You J. . Long-time memory and ternary logic gate using a multistable cavity magnonic system. Phys. Rev. Lett., 2021, 127(18): 183202 https://doi.org/10.1103/PhysRevLett.127.183202
24
P. Wang Y. , M. Hu C. . Dissipative couplings in cavity magnonics. J. Appl. Phys., 2020, 127(13): 130901 https://doi.org/10.1063/1.5144202
25
Harder M. , Yang Y. , M. Yao B. , H. Yu C. , W. Rao J. , S. Gui Y. , L. Stamps R. , M. Hu C. . Level attraction due to dissipative magnon−photon coupling. Phys. Rev. Lett., 2018, 121(13): 137203 https://doi.org/10.1103/PhysRevLett.121.137203
26
W. Rao J. , H. Yu C. , T. Zhao Y. , S. Gui Y. , Fan X. , Xue D. , M. Hu C. . Level attraction and level repulsion of magnon coupled with a cavity anti-resonance. New J. Phys., 2019, 21(6): 065001 https://doi.org/10.1088/1367-2630/ab2482
27
Cao Y. , Yan P. , Huebl H. , T. B. Goennenwein S. , E. W. Bauer G. . Exchange magnon-polaritons in microwave cavities. Phys. Rev. B, 2015, 91(9): 094423 https://doi.org/10.1103/PhysRevB.91.094423
28
Bai L. , Harder M. , Hyde P. , Zhang Z. , M. Hu C. , P. Chen Y. , Q. Xiao J. . Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton. Phys. Rev. Lett., 2017, 118(21): 217201 https://doi.org/10.1103/PhysRevLett.118.217201
29
Zhang D. , Q. Luo X. , P. Wang Y. , F. Li T. , Q. You J. . Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 2017, 8(1): 1368 https://doi.org/10.1038/s41467-017-01634-w
Huang R. , K. Özdemir Ş. , Q. Liao J. , Minganti F. , M. Kuang L. , Nori F. , Jing H. . Exceptional photon blockade: engineering photon blockade with chiral exceptional points. Laser Photonics Rev., 2022, 16(7): 2100430 https://doi.org/10.1002/lpor.202100430
32
X. Yang Z. , Wang L. , M. Liu Y. , Y. Wang D. , H. Bai C. , Zhang S. , F. Wang H. . Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys., 2020, 15(5): 52504 https://doi.org/10.1007/s11467-020-0996-y
33
Q. Zhang G. , P. Wang Y. , Q. You J. . Theory of the magnon Kerr effect in cavity magnonics. Sci. China Phys. Mech. Astron., 2019, 62(8): 987511 https://doi.org/10.1007/s11433-018-9344-8
34
P. Wang Y. , Q. Zhang G. , Zhang D. , Q. Luo X. , Xiong W. , P. Wang S. , F. Li T. , M. Hu C. , Q. You J. . Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B, 2016, 94(22): 224410 https://doi.org/10.1103/PhysRevB.94.224410
35
B. Yang Z. , Jin H. , W. Jin J. , Y. Liu J. , Y. Liu H. , C. Yang R. . Bistability of squeezing and entanglement in cavity magnonics. Phys. Rev. A, 2021, 3: 023126
36
Haghshenasfarda Z. , G. Cottam M. . Sub-Poissonian statistics and squeezing of magnons due to the Kerr effect in a hybrid coupled cavity-magnon system. J. Appl. Phys., 2020, 128(3): 033901 https://doi.org/10.1063/5.0012072
37
X. Liu Z. , Wang B. , Xiong H. , Wu Y. . Magnon-induced high-order sideband generation. Opt. Lett., 2018, 43(15): 3698 https://doi.org/10.1364/OL.43.003698
38
L. Liu Y. , Ling L. , Shui T. , Ji N. , P. Liu S. , X. Yang W. . Two-color second-order sideband generation via magnon Kerr nonlinearity in a cavity magnonical system. J. Opt. Soc. Am. B, 2022, 39: 1042 https://doi.org/10.1038/s41598-018-19556-y
39
X. Liu Z. , You C. , Wang B. , Xiong H. , Wu Y. . Phase-mediated magnon chaos-order transition in cavity optomagnonics. Opt. Lett., 2019, 44(3): 507 https://doi.org/10.1364/OL.44.000507
40
P. Wang Y. , W. Rao J. , Yang Y. , C. Xu P. , S. Gui Y. , M. Yao B. , Q. You J. , M. Hu C. . Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett., 2019, 123(12): 127202 https://doi.org/10.1103/PhysRevLett.123.127202
41
B. Yang Z. , S. Liu J. , D. Zhu A. , Y. Liu H. , C. Yang R. . Nonreciprocal transmission and nonreciprocal entanglement in a spinning microwave magnomechanical system. Ann. Phys., 2020, 532(9): 2000196 https://doi.org/10.1002/andp.202000196
42
B. Yan X. , L. Lu H. , Gao F. , Yang L. . Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601 https://doi.org/10.1007/s11467-019-0922-3
43
Y. Hua S. , M. Wen J. , S. Jiang X. , Hua Q. , Jiang L. , Xiao M. . Demonstration of a chip-based optical isolator with parametric amplification. Nat. Commun., 2016, 7(1): 13657 https://doi.org/10.1038/ncomms13657
44
Tokura Y. , Kawasaki M. , Nagaosa N. . Emergent functions of quantum materials. Nat. Phys., 2017, 13(11): 1056 https://doi.org/10.1038/nphys4274
45
Doyeux P. , A. H. Gangaraj S. , W. Hanson G. , Antezza M. . Giant interatomic energy-transport amplification with nonreciprocal photonic topological insulators. Phys. Rev. Lett., 2017, 119(17): 173901 https://doi.org/10.1103/PhysRevLett.119.173901
46
D. M. Haldane F. , Raghu S. . Possible realization of directional optical wave-guides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 2008, 100(1): 013904 https://doi.org/10.1103/PhysRevLett.100.013904
47
Hadad Y. , Z. Steinberg B. . Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys. Rev. Lett., 2010, 105(23): 233904 https://doi.org/10.1103/PhysRevLett.105.233904
48
X. Guo X. , M. Ding Y. , Duan Y. , J. Ni X. . Nonreciprocal metasurface with space-time phase modulation. Light Sci. Appl., 2019, 8(1): 123 https://doi.org/10.1038/s41377-019-0225-z
49
S. Kang M. , Butsch A. , S. J. Russell P. . Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photonics, 2011, 5(9): 549 https://doi.org/10.1038/nphoton.2011.180
50
Shi Y. , F. Yu Z. , H. Fan S. . Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics, 2015, 9(6): 388 https://doi.org/10.1038/nphoton.2015.79
Shui T. , X. Yang W. , T. Cheng M. , K. Lee R. . Optical nonreciprocity and nonreciprocal photonic devices with directional four-wave mixing effect. Opt. Express, 2022, 30(4): 6284 https://doi.org/10.1364/OE.446238
T. Zhao Y. , W. Rao J. , S. Gui Y. , P. Wang Y. , M. Hu C. . Broadband nonreciprocity realized by locally controlling the magnon’s radiation. Phys. Rev. Appl., 2020, 14(1): 014035 https://doi.org/10.1103/PhysRevApplied.14.014035
55
Zhu N. , Han X. , L. Zou C. , R. Xu M. , X. Tang H. . Magnon−photon strong coupling for tunable microwave circulators. Phys. Rev. A, 2020, 101(4): 043842 https://doi.org/10.1103/PhysRevA.101.043842
56
F. Zhang X. , Galda A. , Han X. , F. Jin D. , M. Vinokur V. . Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl., 2020, 13(4): 044039 https://doi.org/10.1103/PhysRevApplied.13.044039
Kong C. , M. Bao X. , B. Liu J. , Xiong H. . Magnon-mediated nonreciprocal microwave transmission based on quantum interference. Opt. Lett., 2021, 29: 16
59
Manipatruni S. , T. Robinson J. , Lipson M. . Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 2009, 102(21): 213903 https://doi.org/10.1103/PhysRevLett.102.213903
60
Metelmann A. , A. Clerk A. . Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X, 2015, 5(2): 021025 https://doi.org/10.1103/PhysRevX.5.021025
61
Ciuti C. , Carusotto I. . Input−output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters. Phys. Rev. A, 2006, 74(3): 033811 https://doi.org/10.1103/PhysRevA.74.033811
62
W. Gardiner C.Zoller P., Quantum Noise, Springer, 2004