Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (6): 64602   https://doi.org/10.1007/s11467-022-1206-x
  本期目录
Prospective study on observations of γ-ray sources in the Galaxy using the HADAR experiment
Xiangli Qian1,2, Huiying Sun1, Tianlu Chen2(), Danzengluobu2, Youliang Feng2, Qi Gao2, Quanbu Gou3, Yiqing Guo3,4, Hongbo Hu3,4, Mingming Kang5, Haijin Li2, Cheng Liu3, Maoyuan Liu2, Wei Liu3, Bingqiang Qiao3, Xu Wang1, Zhen Wang6, Guangguang Xin7, Yuhua Yao5, Qiang Yuan8, Yi Zhang8
1. School of Intelligent Engineering, Shandong Management University, Jinan 250357, China
2. The Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China
3. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
4. University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
5. College of Physics, Sichuan University, Chengdu 610064, China
6. Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
7. School of Physics and Technology, Wuhan University, Wuhan 430072, China
8. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
 全文: PDF(5709 KB)   HTML
Abstract

The High Altitude Detection of Astronomical Radiation (HADAR) experiment is a refracting terrestrial telescope array based on the atmospheric Cherenkov imaging technique. It focuses the Cherenkov light emitted by extensive air showers through a large aperture water-lens system for observing very-high-energy γ-rays and cosmic rays. With the advantages of a large field-of-view (FOV) and low energy threshold, the HADAR experiment operates in a large-scale sky scanning mode to observe galactic sources. This study presents the prospects of using the HADAR experiment for the sky survey of TeV γ-ray sources from TeVCat and provids a one-year survey of statistical significance. Results from the simulation show that a total of 23 galactic point sources, including five supernova remnant sources and superbubbles, four pulsar wind nebula sources, and 14 unidentified sources, were detected in the HADAR FOV with a significance greater than 5 standard deviations (σ). The statistical significance for the Crab Nebula during one year of operation reached 346.0 σ and the one-year integral sensitivity of HADAR above 1 TeV was ~1.3%–2.4% of the flux from the Crab Nebula.

Key wordsHADAR    Galactic sources    significance    gamma rays
收稿日期: 2022-05-26      出版日期: 2022-10-11
Corresponding Author(s): Tianlu Chen,Yiqing Guo   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(6): 64602.
Xiangli Qian, Huiying Sun, Tianlu Chen, Danzengluobu, Youliang Feng, Qi Gao, Quanbu Gou, Yiqing Guo, Hongbo Hu, Mingming Kang, Haijin Li, Cheng Liu, Maoyuan Liu, Wei Liu, Bingqiang Qiao, Xu Wang, Zhen Wang, Guangguang Xin, Yuhua Yao, Qiang Yuan, Yi Zhang. Prospective study on observations of γ-ray sources in the Galaxy using the HADAR experiment. Front. Phys. , 2022, 17(6): 64602.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1206-x
https://academic.hep.com.cn/fop/CN/Y2022/V17/I6/64602
Fig.1  
Performance Values
Field of view (sr) 0.84
Sky coverage (dec.) 0.102°–60.102°
Energy 30 GeV–10 TeV
Effective area (100 GeV) 2.4 × 105 m2
Angular resolution (100 GeV) 0.44°
Energy resolution (100 GeV) 30%
Sensitivity (Crab) ~1.3%–2.4%
Tab.1  
Fig.2  
Fig.3  
Source R.A. (°) Dec. (°) J0 (TeV−1·cm−2·s−1) E0 (TeV) Γ Extension (°) Livetime (hrs) S(σ) Ref.
W 49B 287.78 9.16 3.15 ×1013 1 3.14 195.0 8.6 [7]
HESS J1912+101 288.20 10.15 3.66 ×1014 7 2.64 0.7 203.3 20.6 [14]
W 51 290.73 14.19 2.61 ×1014 7 2.51 0.9 230.4 8.2 [14]
ARGO J2031+4157 307.80 42.50 3.50 ×109 0.1 2.16 2.0 277.7 23.6 [32]
Cassiopeia A 350.81 58.81 1.10 ×1011 0.433 2.40 98.7 5.7 [33]
Tab.2  
Source R.A. (°) Dec. (°) J0 (TeV−1·cm−2·s−1) E0 (TeV) Γ Extension (°) Livetime (hrs) S(σ) Ref.
Crab 83.63 22.01 1.85 ×1013 7 2.58 241.8 346.0 [14]
Geminga 98.12 17.37 4.87 ×1014 7 2.23 2.0 230.2 13.7 [14]
TeV J1930+188 292.63 18.87 1.96 ×1014 7 2.18 255.0 10.5 [34]
2HWC J1953+294 298.26 29.48 8.30 ×1015 7 2.78 288.6 31.4 [14]
Tab.3  
Source R.A. (°) Dec. (°) J0 (TeV−1·cm−2·s−1) E0 (TeV) Γ Extension (°) Livetime (hrs) S(σ) Ref.
MAGIC J0223+403 35.80 43.01 1.70 ×1011 0.3 3.10 252.5 13.5 [35]
2HWC J1829+070 277.34 7.03 8.10 ×1015 7 2.69 173.8 14.4 [14]
2HWC J1852+013 283.01 1.38 1.82 ×1014 7 2.90 73.6 36.9 [14]
MAGIC J1857.6+0297 284.40 2.97 6.10 ×1012 1 2.39 0.1 112.2 25.5 [36]
2HWC J1902+048 285.51 4.86 8.30 ×1015 7 3.22 145.7 82.1 [14]
2HWC J1907+084 286.79 8.50 7.30 ×1015 7 3.25 189.4 102.5 [14]
MGRO J1908+06 286.98 6.27 8.51 ×1014 7 2.33 0.8 164.6 12.4 [14]
2HWC J1914+117 288.68 11.72 8.50 ×1015 7 2.83 215.3 29.1 [14]
2HWC J1921+131 290.30 13.13 7.90 ×1015 7 2.75 223.8 21.5 [14]
2HWC J1928+177 292.15 17.78 1.07 ×1014 7 2.60 249.9 19.8 [37]
2HWC J1938+238 294.74 23.81 7.40 ×1015 7 2.96 274.7 51.9 [14]
2HWC J1955+285 298.83 28.59 5.70 ×1015 7 2.40 286.7 7.3 [14]
2HWC J2006+341 301.55 34.18 9.60 ×1015 7 2.64 292.0 42.7 [14]
VER J2019+407 305.02 40.76 1.50 ×1012 1 2.37 0.23 284.3 14.9 [38]
Tab.4  
Fig.4  
Fig.5  
Type Number of sources in 4FGL Number of sources in HADAR region Expected to be observed by HADAR
Pulsars 239 86 36
PWNe, SNR, Star-forming region 61 21 12
SNR/PWNe (SPPs) 78 18 0
Globular cluster 30 4 0
High-mass Binary, Low-mass Binary, Binary, Nova 12 4 0
Unknown 92 27 3
Unassociated 1336 346 11
Total 1848 506 62
Tab.5  
1 O. Drury L.. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys., 1983, 46(8): 973
https://doi.org/10.1088/0034-4885/46/8/002
2 Blandford R., Eichler D.. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep., 1987, 154(1): 1
https://doi.org/10.1016/0370-1573(87)90134-7
3 Holder J.. TeV gamma-ray astronomy: A summary. Astropart. Phys., 2012, 39: 61
https://doi.org/10.1016/j.astropartphys.2012.02.014
4 M. Schure K., R. Bell A., O. Drury L., M. Bykov A.. Diffusive shock acceleration and magnetic field amplification. Space. Sci. Rev., 2012, 173: 491
https://doi.org/10.1007/s11214-012-9871-7
5 L. Ginzburg V.I. Syrovatskii S., The Origin of Cosmic Rays, New York, 1964
6 Yuan Q., M. Liu S., J. Bi X.. An attempt at a unified model for the gamma-ray emission of supernova remnants. Astrophys. J., 2012, 761(2): 133
https://doi.org/10.1088/0004-637X/761/2/133
7 Abdalla H., Abramowski A., Aharonian F.. et al.. The H.E.S.S. galactic plane survey. Astron. Astrophys., 2018, 612: A1
https://doi.org/10.1051/0004-6361/201732098
8 A. Hinton J.. The status of the HESS project. New. Astron. Rev., 2004, 48(5): 331
https://doi.org/10.1016/j.newar.2003.12.004
9 Aleksić J., Ansoldi S., A. Antonelli L.. et al.. The major upgrade of the MAGIC telescopes (Part I): The hardware improvements and the commissioning of the system. Astropart. Phys., 2016, 72: 61
https://doi.org/10.1016/j.astropartphys.2015.04.004
10 Holder J., W. Atkins R., M. Badran H.. et al.. The first VERITAS telescope. Astropart. Phys., 2006, 25(6): 391
https://doi.org/10.1016/j.astropartphys.2006.04.002
11 CTA Consortium, Science with the Cherenkov Telescope Array, World Scientific, Singapore, 2018
12 de Naurois M., The very high energy sky from ~20 GeV to hundreds of TeV - selected highlights, Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July − 6 August, 34, 021 (2015)
13 A. Mostafá M.. et al.. The high-altitude water cherenkov observatory. Braz. J. Phys., 2014, 44: 571
https://doi.org/10.1007/s13538-014-0225-7
14 U. Abeysekara A., Albert A., Alfaro R.. et al.. The 2HWC HAWC observatory gamma-ray catalog. Astrophys. J., 2017, 843(1): 40
https://doi.org/10.3847/1538-4357/aa7556
15 Atkins R., Benbow W., Berley D.. et al.. TeV gamma-ray survey of the northern hemisphere sky using the Milagro observatory. Astrophys. J., 2004, 608(2): 680
https://doi.org/10.1086/420880
16 Bartoli B., Bernardini P., J. Bi X.. et al.. TeV gamma-ray survey of the northern sky using the ARGO-YBJ detector. Astrophys. J., 2013, 779(1): 27
https://doi.org/10.1088/0004-637X/779/1/27
17 H. Ma X., J. Bi Y., Cao Z.. et al.. Chapter 1 LHAASO Instruments and detector technology. Chin. Phys. C, 2022, 46(3): 030001
https://doi.org/10.1088/1674-1137/ac3fa6
18 Cao Z., A. Aharonian F., An Q.. et al.. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray galactic sources. Nature, 2021, 594(7861): 33
https://doi.org/10.1038/s41586-021-03498-z
19 Amenomori M., W. Bao Y., J. Bi X.. et al.. First detection of photons with energy beyond 100 TeV from an astrophysical source. Phys. Rev. Lett., 2019, 123: 051101
https://doi.org/10.1103/PhysRevLett.123.051101
20 U. Abeysekara A., Albert A., Alfaro R.. et al.. Multiple galactic sources with emission above 56 TeV detected by HAWC. Phys. Rev. Lett., 2020, 124: 021102
https://doi.org/10.1103/PhysRevLett.124.021102
21 Gress O., Astapov I., Budnev N.. et al.. The wide-aperture gamma-ray telescope TAIGA-HiSCORE in the Tunka valley: Design, composition and commissioning. Nucl. Instrum. Meth. A, 2017, 845: 367
https://doi.org/10.1016/j.nima.2016.08.031
22 Cai H., Zhang Y., Liu C., Gao Q., Wang Z., L. Chen T., Y. Zhang X., L. Feng Y., Wang Q., Tian Z., Q. Guo Y., B. Gou Q., Y. Liu Danzengluobu, J. Li M., E. Yao H.. Wide field-of-view atmospheric cherenkov telescope based on refractive lens. J. Instrum., 2017, 12: 09023
https://doi.org/10.1088/1748-0221/12/09/P09023
23 L. Chen T., Liu C., Gao Q., Cai H., Wang Z., Zhang Y., L. Feng Y., Wang Q., Q. Guo Y., B. Hu H., Y. Liu Danzengluobu, J. Li M., G. Xin H., B. Gou G., Cai Q., Shi H.. Performance of a wide field-of-view atmospheric cherenkov telescope prototype based on a refractive lens. Nucl. Instrum. Meth. A, 2019, 927: 46
https://doi.org/10.1016/j.nima.2019.02.020
24 Wang Z., Q. Guo Y., Cai H., F. Chang J., L. Chen T., L. Feng Danzengluobu, Gao Y., B. Gou Q., Y. Guo Q., Hou Y., B. Hu C., Liu H., J. Li Labaciren, Liu C., Y. Liu H., Q. Qiao J., L. Qian M., D. Sheng B., Tian X., Wang X., Xue Z., H. Yao Q., R. Zhang L., Y. Zhang Y., Zhang S.. Performance of a scintillation detector array operated with LHAASO-KM2A electronics. Exp. Astron., 2018, 45: 363
https://doi.org/10.1007/s10686-018-9588-z
25 J. Völk H., Bernlöhr K.. Imaging very high energy gamma-ray telescopes. Exp. Astron., 2009, 25: 173
https://doi.org/10.1007/s10686-009-9151-z
26 G. Xin G., H. Yao Y., L. Qian X., Liu C., Gao Q., L. Feng Danzengluobu, B. Gou Y., B. Hu Q., J. Li H., Y. Liu H., Liu M., Q. Qiao W., Wang B., Zhang Z., Cai Y., L. Chen H., Q. Guo T.. Prospects for the detection of the prompt very-high-energy emission from γ-ray bursts with the high altitude detection of astronomical radiation experiment. Astrophys. J., 2021, 923(1): 112
https://doi.org/10.3847/1538-4357/ac2df7
27 Holler M.Balzer A.Chalmé-Calvet R.de Naurois M.Zaborov D., Photon reconstruction for H.E.S.S. using a semi-analytical model, Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July − 6 August, 34, 980 (2015)
28 Aleksić J., Ansoldi S., A. Antonelli L.. et al.. The major upgrade of the MAGIC telescopes (Part II): A performance study using observations of the Crab Nebula. Astropart. Phys., 2016, 72: 76
https://doi.org/10.1016/j.astropartphys.2015.02.005
29 DeYoung T.. The HAWC observatory. Nucl. Instrum. Meth. A, 2012, 692: 72
https://doi.org/10.1016/j.nima.2012.01.026
30 Amenomori M., Ayabe S., Chen D.. et al.. A northern sky survey for steady tera-electron volt gamma-ray point sources using the Tibet air shower array. Astrophys. J., 2005, 633(2): 1005
https://doi.org/10.1086/491612
31 K. Gaisser T., Stanev T., Tilav S.. Cosmic ray energy spectrum from measurements of air showers. Front. Phys., 2013, 8(6): 748
https://doi.org/10.1007/s11467-013-0319-7
32 Bartoli B., Bernardini P., J. Bi X.. et al.. Identification of the TeV gamma-ray source ARGO J2031+4157 with the cygnus cocoon. Astrophys. J., 2014, 790(2): 152
https://doi.org/10.1088/0004-637X/790/2/152
33 L. Ahnen M., Ansoldi S., A. Antonelli L.. et al.. A cut-off in the TeV gamma-ray spectrum of the SNR Cassiopeia A. Mon. Not. R. Astron. Soc., 2017, 472(3): 2956
https://doi.org/10.1093/mnras/stx2079
34 U. Abeysekara A., Archer A., Benbow W.. et al.. VERITAS and Fermi-LAT observations of TeV gamma-ray sources discovered by HAWC in the 2HWC catalog. Astrophys. J., 2018, 866(1): 24
https://doi.org/10.3847/1538-4357/aade4e
35 Aliu E., Anderhub H., A. Antonelli L.. et al.. Discovery of a very high energy gamma-ray signal from the 3C 66A/B region. Astrophys. J., 2009, 692(1): L29
https://doi.org/10.1088/0004-637X/692/1/L29
36 Aharonian F., G. Akhperjanian A., B. De Almeida U.. et al.. HESS very-high-energy gamma-ray sources without identified counterparts. Astron. Astrophys., 2008, 477(1): 353
https://doi.org/10.1051/0004-6361:20078516
37 López-Coto R.Marandon V.Brun F., Morphologi-856 cal and spectral measurements of 2HWC J1928+177 with 857 HAWC and H.E.S.S., Proceedings of the 35th International 858 Cosmic Ray Conference, Bexco, Busan, Korea, 10−20 July, 35, 732 (2017)
38 Aliu E., Archambault S., Arlen T.. et al.. Discovery of TeV gamma-ray emission toward supernova remnant SNR G78.2+2.1. Astrophys. J., 2013, 770(2): 93
https://doi.org/10.1088/0004-637X/770/2/93
39 Aharonian F., G. Akhperjanian A., R. Bazer-Bachi A.. et al.. Observations of the crab nebula with HESS. Astron. Astrophys., 2006, 457(3): 899
https://doi.org/10.1051/0004-6361:20065351
40 Aharonian F., G. Akhperjanian A., B. De Almeida U.. et al.. Discovery of very-high-energy γ-ray emission from the vicinity of PSR J1913+1011 with HESS. Astron. Astrophys., 2008, 484(2): 435
https://doi.org/10.1051/0004-6361:20078715
41 Bartoli B., Bernardini P., J. Bi X.. et al.. Observation of TeV gamma rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment. Astrophys. J., 2013, 767(2): 99
https://doi.org/10.1088/0004-637X/767/2/99
42 Ranasinghe S., A. Leahy D.. Revised distances to 21 supernova remnants. Astrophys. J., 2018, 155(5): 204
https://doi.org/10.3847/1538-3881/aab9be
43 C. Koo B., T. Kim K., D. Seward F.. Rosat observations of the supernova remnant W51C. Astrophys. J., 1995, 447: 211
https://doi.org/10.1086/175867
44 A. Abdo A., Ackermann M., Ajello M.. et al.. Fermi LAT discovery of extended gamma-ray emission in the direction of supernova remnant W51C. Astrophys. J., 2009, 706(1): L1
https://doi.org/10.1088/0004-637X/706/1/L1
45 Fiasson A.Marandon V.C. G. Chaves R.Tibolla O., Discovery of a VHE gamma-ray source in the W51 region, Proceedings of the 31th International Cosmic Ray Conference, Lodz, Poland, 7−15 July, 31, 889 (2009)
46 Aleksić J., A. Alvarez E., A. Antonelli L.. et al.. Morphological and spectral properties of the W51 region measured with the MAGIC telescopes. Astron. Astrophys., 2012, 541: A13
https://doi.org/10.1051/0004-6361/201218846
47 Aharonian F., Akhperjanian A., Beilicke M.. et al.. The unidentified TeV source (TeV J2032+4130) and surrounding field: Final HEGRA IACT-system results. Astron. Astrophys., 2005, 431(1): 197
https://doi.org/10.1051/0004-6361:20041552
48 Konopelko A., W. Atkins R., Blaylock G.. et al.. Observations of the unidentified TeV γ-ray source TeV J2032+4130 with the whipple observatory 10 m telescope. Astrophys. J., 2007, 658(2): 1062
https://doi.org/10.1086/511262
49 Albert J., Aliu E., Anderhub H.. et al.. MAGIC observations of the unidentified γ-ray source TeV J2032+4130. Astrophys. J., 2008, 675(1): L25
https://doi.org/10.1086/529520
50 Aliu E., Aune T., Behera B.. et al.. Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS. Astrophys. J., 2014, 783(1): 16
https://doi.org/10.1088/0004-637X/783/1/16
51 U. Abeysekara A., Benbow W., Bird R.. et al.. Periastron observations of TeV gamma-ray emission from a binary system with a 50-year period. Astrophys. J. Lett., 2018, 867(1): L19
https://doi.org/10.3847/2041-8213/aae70e
52 Ackermann M., Ajello M., Allafort A.. et al.. A cocoon of freshly accelerated cosmic rays detected by Fermi in the cygnus superbubble. Science, 2011, 334(6059): 1103
https://doi.org/10.1126/science.1210311
53 Bartoli B., Bernardini P., J. Bi X.. et al.. Observation of TeV gamma rays from the cygnus region with the ARGO-YBJ experiment. Astrophys. J. Lett., 2012, 745(2): L22
https://doi.org/10.1088/2041-8205/745/2/L22
54 A. Abdo A., Allen B., Berley D.. et al.. TeV gamma-ray sources from a survey of the galactic plane with Milagro. Astrophys. J., 2007, 664(2): L91
https://doi.org/10.1086/520717
55 B. Ashworth W.. A probable flamsteed observation of the Cassiopeia A supernova. J. Hist. Astron., 1980, 11(1): 1
https://doi.org/10.1177/002182868001100102
56 E. Reed J., J. Hester J., C. Fabian A., F. Winkler P.. The three-dimensional structure of the Cassiopeia A supernova remnant I: The spherical shell. Astrophys. J., 1995, 440: 706
https://doi.org/10.1086/175308
57 A. Abdo A., Ackermann M., Ajello M.. et al.. Fermi-lat discovery of GeV gamma-ray emission from the young supernova remnant Cassiopeia A. Astrophys. J. Lett., 2010, 710(1): L92
https://doi.org/10.1088/2041-8205/710/1/L92
58 J. Yuan Y., Funk S., Jóhannesson G., Lande J., Tibaldo L., Uchiyama Y.. Fermi large area telescope detection of a break in the gamma-ray spectrum of the supernova remnant Cassiopeia A. Astrophys. J., 2013, 779(2): 117
https://doi.org/10.1088/0004-637X/779/2/117
59 Aharonian F., Akhperjanian A., Barrio J.. et al.. Evidence for TeV gamma ray emission from Cassiopeia A. Astron. Astrophys., 2001, 370(1): 112
https://doi.org/10.1051/0004-6361:20010243
60 Albert J., Aliu E., Anderhub H.. et al.. Observation of VHE γ-rays from Cassiopeia A with the MAGIC telescope. Astron. Astrophys., 2007, 474(3): 937
https://doi.org/10.1051/0004-6361:20078168
61 A. Acciari V., Aliu E., Arlen T.. et al.. Observations of the shell-type supernova remnant Cassiopeia A at TeV energies with VERITAS. Astrophys. J., 2010, 714(1): 163
https://doi.org/10.1088/0004-637X/714/1/163
62 J. Hester J.. The Crab nebula: An astrophysical chimera. Annu. Rev. Astron. Astr., 2008, 46: 127
https://doi.org/10.1146/annurev.astro.45.051806.110608
63 Aharonian F., Akhperjanian A., Beilicke M.. et al.. The crab nebula and pulsar between 500 GeV and 80 TeV: Observations with the HEGRA stereoscopic air cerenkov telescopes. Astrophys. J., 2004, 614(2): 897
https://doi.org/10.1086/423931
64 C. Weekes T., F. Cawley M., J. Fegan D., G. Gibbs K., M. Hillas A., W. Kwok P., C. Lamb R., A. Lewis D., Macomb D., A. Porter N., T. Reynolds P., Vacanti G.. Observation of TeV gamma-rays from the crab nebula using the atmospheric cherenkov imaging technique. Astrophys. J., 1989, 342: 379
https://doi.org/10.1086/167599
65 Meagher K., Six years of VERITAS observations of the crab nebula, Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July − 6 August, 34, 792 (2015)
66 Aleksić J., Ansoldi S., A. Antonelli L.. et al.. Measurement of the crab nebula spectrum over three decades in energy with the MAGIC telescopes. J. High. Energy Astrophys., 2015, 5: 30
https://doi.org/10.1016/j.jheap.2015.01.002
67 U. Abeysekara A., Albert A., Alfaro R.. et al.. Observation of the crab nebula with the HAWC gamma-ray observatory. Astrophys. J., 2017, 843(1): 39
https://doi.org/10.3847/1538-4357/aa7555
68 M. Atoyan A., A. Aharonian F.. On the mechanisms of gamma radiation in the crab nebula. Mon. Not. R. Astron. Soc., 1996, 278(2): 525
https://doi.org/10.1093/mnras/278.2.525
69 Nigro C., Deil C., Zanin R.. et al.. Towards open and reproducible multi-instrument analysis in gamma-ray astronomy. Astron. Astrophys., 2019, 625: A10
https://doi.org/10.1051/0004-6361/201834938
70 P. Halpern J., S. Holt S.. Discovery of soft X-ray pulsations from the γ-ray source geminga. Nature, 1992, 357(6375): 222
https://doi.org/10.1038/357222a0
71 Faherty J., M. Walter F., Anderson J.. The trigonometric parallax of the neutron star geminga. Astrophys. Space. Sci., 2007, 308: 225
https://doi.org/10.1007/s10509-007-9368-0
72 A. Abdo A., T. Allen B., Aune T.. et al.. Milagro observations of multi-TeV emission from galactic sources in the FERMI bright source list. Astrophys. J., 2009, 700(2): L127
https://doi.org/10.1088/0004-637X/700/2/L127
73 L. Ahnen M., Ansoldi S., A. Antonelli L.. et al.. Search for VHE gamma-ray emission from geminga pulsar and nebula with the MAGIC telescopes. Astron. Astrophys., 2016, 591: A138
https://doi.org/10.1051/0004-6361/201527722
74 U. Abeysekara A., Albert A., Alfaro R.. et al.. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at earth. Science, 2017, 358(6365): 911
https://doi.org/10.1126/science.aan4880
75 Y. Liu R., R. Yan H., S. Zhang H.. Understanding the multiwavelength observation of geminga’s TeV halo: The role of anisotropic diffusion of particles. Phys. Rev. Lett., 2019, 123(22): 221103
https://doi.org/10.1103/PhysRevLett.123.221103
76 López-Coto R., Giacinti G.. Constraining the properties of the magnetic turbulence in the geminga region using HAWC γ-ray data. Mon. Not. R. Astron. Soc., 2018, 479(4): 4526
https://doi.org/10.1093/mnras/sty1821
77 Fang K., J. Bi X., F. Yin P., Yuan Q.. Two-zone diffusion of electrons and positrons from geminga explains the positron anomaly. Astrophys. J., 2018, 863(1): 30
https://doi.org/10.3847/1538-4357/aad092
78 Camilo F., R. Lorimer D., D. R. Bhat N., V. Gotthelf E., P. Halpern J., D. Wang Q., J. Lu F., Mirabal N.. Discovery of a 136 millisecond radio and X-ray pulsar in supernova remnant G54.1+0.3. Astrophys. J., 2002, 574(1): L71
https://doi.org/10.1086/342351
79 A. Acciari V., Aliu E., Arlen T.. et al.. Discovery of very high energy γ-ray emission from the SNR G54.1+0.3. Astrophys. J. Lett., 2010, 719(1): L69
https://doi.org/10.1088/2041-8205/719/1/L69
80 Holder J.. Latest results from VERITAS: Gamma 2016. AIP Conference Proceedings, 2017, 1792: 020013
https://doi.org/10.1063/1.4968898
81 Kothes R., L. Landecker T., Reich W., Safi-Harb S., Arzoumanian Z.. DA 495: An aging pulsar wind nebula. Astrophys. J., 2008, 687(1): 516
https://doi.org/10.1086/591653
82 Aharonian F., G. Akhperjanian A., M. Aye K.. et al.. Discovery of the binary pulsar PSR B1259-63 in very-high-energy gamma rays around periastron with HESS. Astron. Astrophys., 2005, 442(1): 1
https://doi.org/10.1051/0004-6361:20052983
83 Aharonian F., G. Akhperjanian A., M. Aye K.. et al.. Discovery of very high energy gamma rays associated with an X-ray binary. Science, 2005, 309(5735): 746
https://doi.org/10.1126/science.1113764
84 Albert J., Aliu E., Anderhub H.. et al.. Variable very-high-energy gamma-ray emission from the microquasar LS I+61° 303. Science, 2006, 312(5781): 1771
https://doi.org/10.1126/science.1128177
85 Archambault S., Archer A., Aune T.. et al.. Exceptionally bright TeV flares from the binary LS I+61° 303. Astrophys. J. Lett., 2016, 817(1): L7
https://doi.org/10.3847/2041-8205/817/1/L7
86 A. Aharonian F., G. Akhperjanian A., R. Bazer-Bachi A.. et al.. Discovery of a point-like very-high-energy γ-ray source in monoceros. Astron. Astrophys., 2007, 469(1): L1
https://doi.org/10.1051/0004-6361:20077299
87 Abramowski A., Aharonian F., A. Benkhali F.. et al.. Discovery of variable VHE γ-ray emission from the binary system 1FGL J1018.6-5856. Astron. Astrophys., 2015, 577: A131
https://doi.org/10.1051/0004-6361/201525699
88 G. Lyne A., W. Stappers B., J. Keith M., S. Ray P., Kerr M., Camilo F., J. Johnson T.. The binary nature of PSR J2032+4127. Mon. Not. R. Astron. Soc., 2015, 451(1): 581
https://doi.org/10.1093/mnras/stv236
89 C. G. Ho W., Y. Ng C., G. Lyne A., W. Stappers B., J. Coe M., P. Halpern J., J. Johnson T., A. Steele I.. Multiwavelength monitoring and X-ray brightening of Be X-ray binary PSR J2032+4127/MT91 213 on its approach to periastron. Mon. Not. R. Astron. Soc., 2017, 464(1): 1211
https://doi.org/10.1093/mnras/stw2420
90 Johnston S., N. Manchester R., G. Lyne A., Bailes M., M. Kaspi V., J. Qiao G., D’Amico N.. PSR 1259-63: A binary radio pulsar with a Be star companion. Astrophys. J., 1992, 387: L37
https://doi.org/10.1086/186300
91 A. Abdo A., Ackermann M., Ajello M.. et al.. Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT. Science, 2009, 325(5942): 840
https://doi.org/10.1126/science.1175558
92 W. Morgan W., D. Code A., E. Whitford A.. Studies in galactic structure. II. Luminosity classification for 1270 blue giant stars. Astrophys. J. Suppl. S., 1955, 2: 41
https://doi.org/10.1086/190016
93 A. Hinton J., L. Skilton J., Funk S., Brucker J., A. Aharonian F., Dubus G., Fiasson A., Gallant Y., Hofmann W., Marcowith A., Reimer O.. HESS J0632+057: A new gamma-ray binary?. Astrophys. J., 2008, 690(2): L101
https://doi.org/10.1088/0004-637X/690/2/L101
94 Aragona C., V. McSwain M., De Becker M.. HD 259440: The proposed optical counterpart of the γ-ray binary HESS J0632+057. Astrophys. J., 2010, 724(1): 306
https://doi.org/10.1088/0004-637X/724/1/306
95 Aliu E., Archambault S., Aune T.. et al.. Long-term TeV and X-ray observations of the gamma-ray binary HESS J0632+057. Astrophys. J., 2013, 780(2): 168
https://doi.org/10.1088/0004-637X/780/2/168
96 A. Acciari V., Aliu E., Arlen T.. et al.. Evidence for long-term gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057. Astrophys. J., 2009, 698(2): L94
https://doi.org/10.1088/0004-637X/698/2/L94
97 Aleksić J., A. Alvarez E., A. Antonelli L.. et al.. Detection of VHE γ-rays from HESS J0632+057 during the 2011 February X-ray outburst with the MAGIC telescopes. Astrophys. J. Lett., 2012, 754(1): L10
https://doi.org/10.1088/2041-8205/754/1/L10
98 D. Bongiorno S., D. Falcone A., Stroh M., Holder J., L. Skilton J., A. Hinton J., Gehrels N., Grube J.. A new TeV binary: The discovery of an orbital period in HESS J0632+057. Astrophys. J. Lett., 2011, 737(1): L11
https://doi.org/10.1088/2041-8205/737/1/L11
99 D. Falcone1 A., Grube J., Hinton J., Holder J., Maier G., Mukherjee R., Skilton J., Stroh M.. Probing the nature of the unidentified TeV gamma-ray source HESS J0632+057 with SWIFT. Astrophys. J. Lett., 2009, 708(1): L52
100 Casares J., Ribó M., Ribas I., M. Paredes J., Vilardell F., Negueruela I.. On the binary nature of the γ-ray sources AGL J2241+4454 (= MWC 656) and HESS J0632+057 (= MWC 148). Mon. Not. R. Astron. Soc., 2012, 421(2): 1103
https://doi.org/10.1111/j.1365-2966.2011.20368.x
101 B. Adams C., Benbow W., Brill A.. et al.. Observation of the gamma-ray binary HESS J0632+057 with the H.E.S.S., MAGIC, and VERITAS telescopes. Astrophys. J., 2021, 923(2): 241
https://doi.org/10.3847/1538-4357/ac29b7
102 Abdollahi S., Acero F., Ackermann M.. et al.. Fermi large area telescope fourth source catalog. Astrophys. J. Suppl. S., 2020, 247(1): 33
https://doi.org/10.3847/1538-4365/ab6bcb
103 Albert A., Alfaro R., Alvarez C.. et al.. 3HWC: The third HAWC catalog of very-high-energy gamma-ray sources. Astrophys. J., 2020, 905(1): 76
https://doi.org/10.3847/1538-4357/abc2d8
104 Z. Yang R., Liu B.. On the surface brightness radial profile of the extended γ-ray sources. Sci. China. Phys. Chem., 2022, 65(1): 1
https://doi.org/10.1007/s11426-021-1144-3
105 M. W. Mitchell A.Caroff S.Hinton J. Mohrmannd L., et al.., Detection of extended TeV emission around the geminga pulsar with H.E.S.S., arXiv: 210802556 (2021)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed