1. College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China 2. Department of Physics, Henan Normal University, Xinxiang 453007, China 3. Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Henan Normal University, Xinxiang 453007, China
Constructing two-dimensional (2D) van der Waals heterostructures (vdWHs) can expand the electronic and optoelectronic applications of 2D semiconductors. However, the work on the 2D vdWHs with robust band alignment is still scarce. Here, we employ a global structure search approach to construct the vdWHs with monolayer MoSi2N4 and wide-bandgap GeO2. The studies show that the GeO2/MoSi2N4 vdWHs have the characteristics of direct structures with the band gap of 0.946 eV and type-II band alignment with GeO2 and MoSi2N4 layers as the conduction band minimum (CBM) and valence band maximum (VBM), respectively. Also, the direct-to-indirect band gap transition can be achieved by applying biaxial strain. In particular, the 2D GeO2/MoSi2N4 vdWHs show a robust type-II band alignment under the effects of biaxial strain, interlayer distance and external electric field. The results provide a route to realize the robust type-II band alignment vdWHs, which is helpful for the implementation of optoelectronic nanodevices with stable characteristics.
Wang W., Si C., Lei W., Xiao F., Liu Y., Autieri C., Ming X.. Stacking order and Coulomb correlation effect in the layered charge density wave phase of 1T-NbS2. Phys. Rev. B, 2022, 105(3): 035119 https://doi.org/10.1103/PhysRevB.105.035119
2
Aharon-Steinberg A., Marguerite A., J. Perello D., Bagani K., Holder T., Myasoedov Y., S. Levitov L., K. Geim A., Zeldov E.. Long-range nontopological edge currents in charge-neutral graphene. Nature, 2021, 593(7860): 528 https://doi.org/10.1038/s41586-021-03501-7
3
Li X., Yuan P., Li L., He M., Li J., Xia C.. Sub-5-nm monolayer GaSe MOSFET with ultralow subthreshold swing and high on-state current: Dielectric layer effect. Phys. Rev. Appl., 2022, 18(4): 044012 https://doi.org/10.1103/PhysRevApplied.18.044012
4
Wang T., Dong A., Zhang X., K. Hocking R., Sun C.. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys., 2022, 17(2): 23501 https://doi.org/10.1007/s11467-021-1115-4
5
Q. Kong Q., G. An X., Zhang J., T. Yao W., H. Sun C.. Design of heterojunction with components in different dimensions for electrocatalysis applications. Front. Phys., 2022, 17(4): 43601 https://doi.org/10.1007/s11467-022-1183-0
6
Long C., Dai Y., R. Gong Z., Jin H.. Robust type-II band alignment in Janus-MoSSe bilayer with extremely long carrier lifetime induced by the intrinsic electric field. Phys. Rev. B, 2019, 99(11): 115316 https://doi.org/10.1103/PhysRevB.99.115316
7
Ubrig N., Ponomarev E., Zultak J., Domaretskiy D., Zolyomi V., Terry D., Howarth J., Gutierrez-Lezama I., Zhukov A., R. Kudrynskyi Z., D. Kovalyuk Z., Patane A., Taniguchi T., Watanabe K., V. Gorbachev R., I. Fal’ko V., F. Morpurgo A.. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater., 2020, 19(3): 299 https://doi.org/10.1038/s41563-019-0601-3
8
G. Azadani J., Lee S., R. Kim H., Alsalman H., K. Kwon Y., Tersoff J., Low T.. Simple linear response model for predicting energy band alignment of two-dimensional vertical heterostructures. Phys. Rev. B, 2021, 103(20): 205129 https://doi.org/10.1103/PhysRevB.103.205129
9
H. Davies F., J. Price C., T. Taylor N., G. Davies S., P. Hepplestone S.. Band alignment of transition metal dichalcogenide heterostructures. Phys. Rev. B, 2021, 103(4): 045417 https://doi.org/10.1103/PhysRevB.103.045417
10
Rivera P., R. Schaibley J., M. Jones A., S. Ross J., Wu S., Aivazian G., Klement P., Seyler K., Clark G., J. Ghimire N., Yan J., G. Mandrus D., Yao W., Xu X.. Observation of long-lived interlayer excitons in monolayer MoSe2−WSe2 heterostructures. Nat. Commun., 2015, 6(1): 6242 https://doi.org/10.1038/ncomms7242
11
Rivera P., L. Seyler K., Yu H., R. Schaibley J., Yan J., G. Mandrus D., Yao W., Xu X.. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688 https://doi.org/10.1126/science.aac7820
12
Y. Wang Y., P. Li F., Wei W., B. Huang B., Dai Y.. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2020, 16(1): 13501
13
Li X., Liu T., Li L., He M., Shen C., Li J., Xia C.. Reconfifigurable band alignment of m-GaS/n-XTe2 (X = Mo, W) multilayer van der Waals heterostructures for photoelectric applications. Phys. Rev. B, 2022, 106(12): 125306 https://doi.org/10.1103/PhysRevB.106.125306
14
Wijethunge D., Zhang L., Tang C., Du A.. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504 https://doi.org/10.1007/s11467-020-0987-z
15
Ghosh S., Varghese A., Jawa H., Yin Y., V. Medhekar N., Lodha S.. Polarity-tunable photocurrent through band alignment engineering in a high-speed WSe2/SnSe2 diode with large negative responsivity. ACS Nano, 2022, 16(3): 4578 https://doi.org/10.1021/acsnano.1c11110
16
Zhu Y., Zhang D., Ye H., Bai D., Li M., P. Zhang G., Zhang J., Wang J.. Magnetic and electronic properties of AlN/VSe2 van der Waals heterostructures from combined first-principles and Schrödinger−Poisson simulations. Phys. Rev. Appl., 2022, 18(2): 024012 https://doi.org/10.1103/PhysRevApplied.18.024012
17
L. Hong Y., Liu Z., Wang L., Zhou T., Ma W., Xu C., Feng S., Chen L., L. Chen M., M. Sun D., Q. Chen X., M. Cheng H., Ren W.. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369(6504): 670 https://doi.org/10.1126/science.abb7023
18
Islam R., Ghosh B., Autieri C., Chowdhury S., Bansil A., Agarwal A., Singh B.. Tunable spin polarization and electronic structure of bottom-up synthesized MoSi2N4 materials. Phys. Rev. B, 2021, 104(20): L201112 https://doi.org/10.1103/PhysRevB.104.L201112
19
Bafekry A., Faraji M., M. Fadlallah M., Bagheri Khatibani A., abdolahzadeh Ziabari A., Ghergherehchi M., Nedaei S., F. Shayesteh S., Gogova D.. Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping. Appl. Surf. Sci., 2021, 559: 149862 https://doi.org/10.1016/j.apsusc.2021.149862
20
Wu Q., Cao L., S. Ang Y., K. Ang L.. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field. Appl. Phys. Lett., 2021, 118(11): 113102 https://doi.org/10.1063/5.0044431
21
Zhong H., Xiong W., Lv P., Yu J., Yuan S., Strain-induced semiconductor to metal transition in MA2Z4 bilayers (M=Ti . Mo; A=Si; Z=N, P). Phys. Rev. B, 2021, 103(8): 085124 https://doi.org/10.1103/PhysRevB.103.085124
22
Li S., Wu W., Feng X., Guan S., Feng W., Yao Y., A. Yang S., Valley-dependent properties of monolayer MoSi2N4 . WSi2N4, and MoSi2As4. Phys. Rev. B, 2020, 102(23): 235435 https://doi.org/10.1103/PhysRevB.102.235435
23
Zhong T., Ren Y., Zhang Z., Gao J., Wu M.. Sliding ferroelectricity in two-dimensional MoA2N4 (A = Si or Ge) bilayers: High polarizations and Moiré potentials. J. Mater. Chem. A, 2021, 9(35): 19659 https://doi.org/10.1039/D1TA02645C
24
Wang L., Shi Y., Liu M., Zhang A., L. Hong Y., Li R., Gao Q., Chen M., Ren W., M. Cheng H., Li Y., Q. Chen X.. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat. Commun., 2021, 12(1): 2361 https://doi.org/10.1038/s41467-021-22324-8
25
Wu Q., K. Ang L.. Giant tunneling magnetoresistance in atomically thin VSi2N4/MoSi2N4/VSi2N4 magnetic tunnel junction. Appl. Phys. Lett., 2022, 120(2): 022401 https://doi.org/10.1063/5.0075046
26
Zang Y., Wu Q., Du W., Dai Y., Huang B., Ma Y.. Activating electrocatalytic hydrogen evolution performance of two-dimensional MSi2N4(M=Mo, W): A theoretical prediction. Phys. Rev. Mater., 2021, 5(4): 045801 https://doi.org/10.1103/PhysRevMaterials.5.045801
27
Yuan J., Wei Q., Sun M., Yan X., Cai Y., Shen L., Schwingenschlögl U.. Protected valley states and generation of valley- and spin-polarized current in monolayer MA2Z4. Phys. Rev. B, 2022, 105(19): 195151 https://doi.org/10.1103/PhysRevB.105.195151
28
Mortazavi B., Javvaji B., Shojaei F., Rabczuk T., V. Shapeev A., Y. Zhuang X.. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy, 2021, 82: 105716 https://doi.org/10.1016/j.nanoen.2020.105716
29
Yin Y., Yi M., Guo W.. High and anomalous thermal conductivity in monolayer MSi2Z4 semiconductors. ACS Appl. Mater. Interfaces, 2021, 13(38): 45907 https://doi.org/10.1021/acsami.1c14205
30
C. Jian C., C. Ma X., Q. Zhang J., Yong X.. Strained MoSi2N4 monolayers with excellent solar energy absorption and carrier transport properties. J. Phys. Chem. C, 2021, 125(28): 15185 https://doi.org/10.1021/acs.jpcc.1c03585
31
Bafekry A., Stampfl C., Naseri M., M. Fadlallah M., Faraji M., Ghergherehchi M., Gogova D., A. H. Feghhi S.. Effect of electric field and vertical strain on the electro−optical properties of the MoSi2N4 bilayer: A first-principles calculation. J. Appl. Phys., 2021, 129(15): 155103 https://doi.org/10.1063/5.0044976
32
Cao L., Zhou G., Wang Q., K. Ang L., S. Ang Y.. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl. Phys. Lett., 2021, 118(1): 013106 https://doi.org/10.1063/5.0033241
33
Zhao J., H. Jin X., Zeng H., Yao C., Yan G.. Spin-valley coupling and valley splitting in the MoSi2N4/CrCl3 van der Waals heterostructure. Appl. Phys. Lett., 2021, 119(21): 213101 https://doi.org/10.1063/5.0072266
34
Ding Y., Wang Y.. First-principles study of two-dimensional MoN2X2Y2 (X = B~In, Y = N~Te) nanosheets: The III–VI analogues of MoSi2N4 with peculiar electronic and magnetic properties. Appl. Surf. Sci., 2022, 593: 153317 https://doi.org/10.1016/j.apsusc.2022.153317
35
Nguyen C., V. Hoang N., V. Phuc H., Y. Sin A., V. Nguyen C.. Two-dimensional boron phosphide/MoGe2N4 van der Waals heterostructure: A promising tunable optoelectronic material. J. Phys. Chem. Lett., 2021, 12(21): 5076 https://doi.org/10.1021/acs.jpclett.1c01284
36
Guo Y., Dong Y., Cai X., Liu L., Jia Y.. Controllable Schottky barriers and contact types of BN intercalation layers in graphene/MoSi2As4 vdW heterostructures via applying an external electrical field. Phys. Chem. Chem. Phys., 2022, 24(30): 18331 https://doi.org/10.1039/D2CP02011D
37
Zhang Z., Chen G., Song A., Cai X., Yu W., Jia X., Jia Y.. Optoelectronic properties of bilayer van der Waals WSe2/MoSi2N4 heterostructure: A first-principles study. Physica E, 2022, 144: 115429 https://doi.org/10.1016/j.physe.2022.115429
38
Q. Nguyen C., S. Ang Y., T. Nguyen S., V. Hoang N., M. Hung N., V. Nguyen C.. Tunable type-II band alignment and electronic structure of C3N4/MoSi2N4 heterostructure: Interlayer coupling and electric field. Phys. Rev. B, 2022, 105(4): 045303 https://doi.org/10.1103/PhysRevB.105.045303
39
T. Ren Y., Hu L., T. Chen Y., J. Hu Y., L. Wang J., L. Gong P., Zhang H., Huang L., Q. Shi X.. Two-dimensional MSi2N4 monolayers and van der Waals heterostructures: Promising spintronic properties and band alignments. Phys. Rev. Mater., 2022, 6(6): 064006 https://doi.org/10.1103/PhysRevMaterials.6.064006
40
Zhang X.CaiZhu Z.Lin Y.Yu L.Wang W. Yang Q.Jia X.Jia X.Y., A two-dimensional MoSe2/MoSi2N4 van der Waals heterostructure with high carrier mobility and diversified regulation of its electronic properties, J. Mater. Chem. C 9(31), 10073 (2021)
41
Bafekry A.Faraji M.Abdollahzadeh Ziabari A.M. Fadlallah M.V. Nguyen C.Ghergherehchi M.A. H. Feghhi S., A van der Waals heterostructure of MoS2/MoSi2N4: a first-principles study, New J. Chem. 45(18), 8291 (2021)
42
Q. Ng J., Wu Q., K. Ang L., S. Ang Y.. Tunable electronic properties and band alignments of MoSi2N4/GaN and MoSi2N4/ZnO van der Waals heterostructures. Appl. Phys. Lett., 2022, 120(10): 103101 https://doi.org/10.1063/5.0083736
43
Sozen Y., Yagmurcukardes M., Sahin H.. Vibrational and optical identification of GeO2 and GeO single layers: A first-principles study. Phys. Chem. Chem. Phys., 2021, 23(37): 21307 https://doi.org/10.1039/D1CP02299G
44
Chuang S., Battaglia C., Azcatl A., McDonnell S., S. Kang J., Yin X., Tosun M., Kapadia R., Fang H., M. Wallace R., Javey A.. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett., 2014, 14(3): 1337 https://doi.org/10.1021/nl4043505
45
Kim H., J. Choi H.. Thickness dependence of work function, ionization energy, and electron affinity of Mo and W dichalcogenides from DFT and GW calculations. Phys. Rev. B, 2021, 103(8): 085404 https://doi.org/10.1103/PhysRevB.103.085404
46
Y. Zhang B., Xu K., Yao Q., Jannat A., Ren G., R. Field M., Wen X., Zhou C., Zavabeti A., Z. Ou J.. Hexagonal metal oxide monolayers derived from the metal-gas interface. Nat. Mater., 2021, 20(8): 1073 https://doi.org/10.1038/s41563-020-00899-9
47
Kresse G., Furthmuller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169 https://doi.org/10.1103/PhysRevB.54.11169
Heyd J., E. Scuseria G., Ernzerhof M.. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207 https://doi.org/10.1063/1.1564060
50
Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758 https://doi.org/10.1103/PhysRevB.59.1758
51
Mogulkoc Y., Caglayan R., O. Ciftci Y.. Band alignment in monolayer boron phosphide with Janus MoSSe heterobilayers under strain and electric field. Phys. Rev. Appl., 2021, 16(2): 024001 https://doi.org/10.1103/PhysRevApplied.16.024001
52
L. Liu Y., Shi Y., Yin H., L. Yang C.. Two-dimensional BP/β-AsP van der Waals heterostructures as promising photocatalyst for water splitting. Appl. Phys. Lett., 2020, 117(6): 063901 https://doi.org/10.1063/5.0014867
53
Patel S., Dey U., P. Adhikari N., Taraphder A.. Electric field and strain-induced band-gap engineering and manipulation of the Rashba spin splitting in Janus van der Waals heterostructures. Phys. Rev. B, 2022, 106(3): 035125 https://doi.org/10.1103/PhysRevB.106.035125
54
Yagmurcukardes M., Torun E., T. Senger R., M. Peeters F., Sahin H.. Mg(OH)2−WS2 van der Waals heterobilayer: Electric field tunable band-gap crossover. Phys. Rev. B, 2016, 94(19): 195403 https://doi.org/10.1103/PhysRevB.94.195403
55
Iordanidou K., Wiktor J.. Two-dimensional MoTe2/SnSe2 van der Waals heterostructures for tunnel-FET applications. Phys. Rev. Mater., 2022, 6(8): 084001 https://doi.org/10.1103/PhysRevMaterials.6.084001
56
Liang K., Huang T., Yang K., Si Y., Y. Wu H., C. Lian J., Q. Huang W., Y. Hu W., F. Huang G.. Dipole engineering of two-dimensional van der Waals heterostructures for enhanced power-conversion efficiency: The case of Janus Ga2SeTe/InS. Phys. Rev. Appl., 2021, 16(5): 054043 https://doi.org/10.1103/PhysRevApplied.16.054043