Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (1): 13307   https://doi.org/10.1007/s11467-022-1220-z
  本期目录
Moiré flat bands of twisted few-layer graphite
Zhen Ma1, Shuai Li1, Meng-Meng Xiao1, Ya-Wen Zheng1, Ming Lu3,2, Haiwen Liu5, Jin-Hua Gao1(), X. C. Xie2,4
1. School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
2. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
3. Beijing Academy of Quantum Information Sciences, Beijing 100193, China
4. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
5. Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
 全文: PDF(4735 KB)   HTML
Abstract

We report that the twisted few layer graphite (tFL-graphite) is a new family of moiré heterostructures (MHSs), which has richer and highly tunable moiré flat band structures entirely distinct from all the known MHSs. A tFL-graphite is composed of two few-layer graphite (Bernal stacked multilayer graphene), which are stacked on each other with a small twisted angle. The moiré band structure of the tFL-graphite strongly depends on the layer number of its composed two van der Waals layers. Near the magic angle, a tFL-graphite always has two nearly flat bands coexisting with a few pairs of narrowed dispersive (parabolic or linear) bands at the Fermi level, thus, enhances the DOS at EF . This coexistence property may also enhance the possible superconductivity as been demonstrated in other multiband superconductivity systems. Therefore, we expect strong multiband correlation effects in tFL-graphite. Meanwhile, a proper perpendicular electric field can induce several isolated nearly flat bands with nonzero valley Chern number in some simple tFL-graphites, indicating that tFL-graphite is also a novel topological flat band system.

Key wordsfew-layer graphite    flat band    moiré heterostructures
收稿日期: 2022-08-16      出版日期: 2022-11-15
Corresponding Author(s): Jin-Hua Gao   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(1): 13307.
Zhen Ma, Shuai Li, Meng-Meng Xiao, Ya-Wen Zheng, Ming Lu, Haiwen Liu, Jin-Hua Gao, X. C. Xie. Moiré flat bands of twisted few-layer graphite. Front. Phys. , 2023, 18(1): 13307.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1220-z
https://academic.hep.com.cn/fop/CN/Y2023/V18/I1/13307
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Cao Y., Fatemi V., Demir A., Fang S., L. Tomarken S., Y. Luo J., D. Sanchez-Yamagishi J., Watanabe K., Taniguchi T., Kaxiras E., C. Ashoori R., Jarillo-Herrero P.. Correlated insulator behavior at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
https://doi.org/10.1038/nature26154
2 Cao Y., Fatemi V., Fang S., Watanabe K., Taniguchi T., Kaxiras E., Jarillo-Herrero P.. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
3 Yankowitz M., Chen S., Polshyn H., Zhang Y., Watanabe K., Taniguchi T., Graf D., F. Young A., R. Dean C.. Tuning superconductivity in twisted bilayer graphene. Science, 2019, 363(6431): 1059
https://doi.org/10.1126/science.aav1910
4 Lu X., Stepanov P., Yang W., Xie M., Aamir M., Das I., Urgell C., Watanabe K., Taniguchi T., Zhang G., Bachtold A., MacDonald A., Efetov D.. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 2019, 574(7780): 653
https://doi.org/10.1038/s41586-019-1695-0
5 Sharpe A., Fox E., Barnard A., Finney J., Watanabe K., Taniguchi T., Kastner M., Goldhaber-Gordon D.. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 2019, 365(6453): 605
https://doi.org/10.1126/science.aaw3780
6 Codecido E., Wang Q., Koester R., Che S., Tian H., Lv R., Tran S., Watanabe K., Taniguchi T., Zhang F., Bockrath M., Lau C.. Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv., 2019, 5(9): eaaw9770
https://doi.org/10.1126/sciadv.aaw9770
7 Jiang Y., Lai X., Watanabe K., Taniguchi T., Haule K., Mao J., Andrei E.. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature, 2019, 573(7772): 91
https://doi.org/10.1038/s41586-019-1460-4
8 Tong Q., Yu H., Zhu Q., Wang Y., Xu X., Yao W.. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
https://doi.org/10.1038/nphys3968
9 M. B. Lopes dos Santos J., M. R. Peres N., H. Castro Neto A.. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett., 2007, 99(25): 256802
https://doi.org/10.1103/PhysRevLett.99.256802
10 Bistritzer R., H. MacDonald A.. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12233
https://doi.org/10.1073/pnas.1108174108
11 M. B. Lopes dos Santos J., M. R. Peres N., H. Castro Neto A.. Continuum model of the twisted graphene bilayer. Phys. Rev. B, 2012, 86(15): 155449
https://doi.org/10.1103/PhysRevB.86.155449
12 Moon P., Koshino M.. Optical absorption in twisted bilayer graphene. Phys. Rev. B, 2013, 87(20): 205404
https://doi.org/10.1103/PhysRevB.87.205404
13 Koshino M., F. Q. Yuan N., Koretsune T., Ochi M., Kuroki K., Fu L.. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X, 2018, 8(3): 031087
https://doi.org/10.1103/PhysRevX.8.031087
14 Kang J., Vafek O.. Symmetry, maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X, 2018, 8(3): 031088
https://doi.org/10.1103/PhysRevX.8.031088
15 A. Gonzalez-Arraga L., L. Lado J., Guinea F., San-Jose P.. Electrically controllable magnetism in twisted bilayer graphene. Phys. Rev. Lett., 2017, 119(10): 107201
https://doi.org/10.1103/PhysRevLett.119.107201
16 Xu C., Balents L.. Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett., 2018, 121(8): 087001
https://doi.org/10.1103/PhysRevLett.121.087001
17 C. Po H., Zou L., Vishwanath A., Senthil T.. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X, 2018, 8(3): 031089
https://doi.org/10.1103/PhysRevX.8.031089
18 Isobe H., F. Q. Yuan N., Fu L.. Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X, 2018, 8(4): 041041
https://doi.org/10.1103/PhysRevX.8.041041
19 Padhi B., Setty C., Phillips P.. Doped twisted bilayer graphene near magic angles: Proximity to Wigner crystallization, not Mott insulation. Nano Lett., 2018, 18(10): 6175
https://doi.org/10.1021/acs.nanolett.8b02033
20 Guinea F., Walet N.. Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proc. Natl. Acad. Sci. USA, 2018, 115(52): 13174
https://doi.org/10.1073/pnas.1810947115
21 C. Liu C., D. Zhang L., Q. Chen W., Yang F.. Chiral spin density wave and d+id superconductivity in the magic-angle-twisted bilayer graphene. Phys. Rev. Lett., 2018, 121(21): 217001
https://doi.org/10.1103/PhysRevLett.121.217001
22 Guo H., Zhu X., Feng S., T. Scalettar R.. Pairing symmetry of interacting fermions on a twisted bilayer graphene superlattice. Phys. Rev. B, 2018, 97(23): 235453
https://doi.org/10.1103/PhysRevB.97.235453
23 P. Lin Y., M. Nandkishore R.. Kohn−Luttinger superconductivity on two orbital honeycomb lattice. Phys. Rev. B, 2018, 98(21): 214521
https://doi.org/10.1103/PhysRevB.98.214521
24 Wu F., H. MacDonald A., Martin I.. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett., 2018, 121(25): 257001
https://doi.org/10.1103/PhysRevLett.121.257001
25 Lian B., Wang Z., A. Bernevig B.. Twisted bilayer graphene: A phonon-driven superconductor. Phys. Rev. Lett., 2019, 122(25): 257002
https://doi.org/10.1103/PhysRevLett.122.257002
26 J. Peltonen T., Ojajärvi R., T. Heikkilä T.. Mean-field theory for superconductivity in twisted bilayer graphene. Phys. Rev. B, 2018, 98(22): 220504
https://doi.org/10.1103/PhysRevB.98.220504
27 M. Kennes D., Lischner J., Karrasch C.. Strong correlations and d+id superconductivity in twisted bilayer graphene. Phys. Rev. B, 2018, 98(24): 241407
https://doi.org/10.1103/PhysRevB.98.241407
28 Z. You Y., Vishwanath A.. Superconductivity from valley fluctuations and approximate SO(4) symmetry in a weak coupling theory of twisted bilayer graphene. npj Quantum Mater., 2019, 4(1): 16
https://doi.org/10.1038/s41535-019-0153-4
29 Liu X., Hao Z., Khalaf E., Y. Lee J., Ronen Y., Yoo H., Haei Najafabadi D., Watanabe K., Taniguchi T., Vishwanath A., Kim P.. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 2020, 583(7815): 221
https://doi.org/10.1038/s41586-020-2458-7
30 Shen C., Chu Y., Wu Q., Li N., Wang S., Zhao Y., Tang J., Liu J., Tian J., Watanabe K., Taniguchi T., Yang R., Y. Meng Z., Shi D., V. Yazyev O., Zhang G.. Correlated states in twisted double bilayer graphene. Nat. Phys., 2020, 16(5): 520
https://doi.org/10.1038/s41567-020-0825-9
31 Cao Y., Rodan-Legrain D., Rubies-Bigorda O., M. Park J., Watanabe K., Taniguchi T., Jarillo-Herrero P.. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature, 2020, 583(7815): 215
https://doi.org/10.1038/s41586-020-2260-6
32 W. Burg G., Zhu J., Taniguchi T., Watanabe K., H. MacDonald A., Tutuc E.. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett., 2019, 123(19): 197702
https://doi.org/10.1103/PhysRevLett.123.197702
33 H. Zhang Y., Mao D., Cao Y., Jarillo-Herrero P., Senthil T.. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B, 2019, 99(7): 075127
https://doi.org/10.1103/PhysRevB.99.075127
34 Koshino M.. Band structure and topological properties of twisted double bilayer graphene. Phys. Rev. B, 2019, 99(23): 235406
https://doi.org/10.1103/PhysRevB.99.235406
35 R. Chebrolu N., L. Chittari B., Jung J.. Flat bands in twisted double bilayer graphene. Phys. Rev. B, 2019, 99(23): 235417
https://doi.org/10.1103/PhysRevB.99.235417
36 Y. Lee J., Khalaf E., Liu S., Liu X., Hao Z., Kim P., Vishwanath A.. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer grapheme. Nat. Commun., 2019, 10: 5333
https://doi.org/10.1038/s41467-019-12981-1
37 Haddadi F., Wu Q., J. Kruchkov A., V. Yazyev O.. Moiré flat bands in twisted double bilayer graphene. Nano Lett., 2020, 20(4): 2410
https://doi.org/10.1021/acs.nanolett.9b05117
38 Wu F., Das Sarma S.. Ferromagnetism and superconductivity in twisted double bilayer graphene. Phys. Rev. B, 2020, 101(15): 155149
https://doi.org/10.1103/PhysRevB.101.155149
39 J. Culchac F.B. Capaz R.Chico L. Suarez Morell E., Flat bands and gaps in twisted double bilayer grapheme, arXiv: 1911.01347 (2019)
40 Ma Z.Li S. W. Zheng Y.M. Xiao M.Jiang H.H. Gao J.C. Xie X., Topological flat bands in twisted trilayer grapheme, arXiv: 1905.00622 (2019)
41 J. Zuo W., B. Qiao J., L. Ma D., J. Yin L., Sun G., Y. Zhang J., Y. Guan L., He L.. Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene. Phys. Rev. B, 2018, 97(3): 035440
https://doi.org/10.1103/PhysRevB.97.035440
42 Suárez Morell E., Pacheco M., Chico L., Brey L.. Electronic properties of twisted trilayer graphene. Phys. Rev. B, 2013, 87(12): 125414
https://doi.org/10.1103/PhysRevB.87.125414
43 Li X.Wu F. H. MacDonald A., Electronic structure of single-twist trilayer graphene, arXiv: 1907.12338 (2019)
44 Carr S., Li C., Zhu Z., Kaxiras E., Sachdev S., Kruchkov A.. Ultraheavy and ultrarelativistic Dirac quasiparticles in sandwiched graphenes. Nano Lett., 2020, 20(5): 3030
https://doi.org/10.1021/acs.nanolett.9b04979
45 Xu S., M. Al Ezzi M., Balakrishnan N., Garcia-Ruiz A., Tsim B., Mullan C., Barrier J., Xin N., A. Piot B., Taniguchi T., Watanabe K., Carvalho A., Mishchenko A., K. Geim A., I. Fal’ko V., Adam S., H. C. Neto A., S. Novoselov K., Shi Y.. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nat. Phys., 2021, 17(5): 619
https://doi.org/10.1038/s41567-021-01172-9
46 Chen S., He M., H. Zhang Y., Hsieh V., Fei Z., Watanabe K., Taniguchi T., H. Cobden D., Xu X., R. Dean C., Yankowitz M.. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys., 2021, 17(3): 374
https://doi.org/10.1038/s41567-020-01062-6
47 Polshyn H., Zhu J., A. Kumar M., Zhang Y., Yang F., L. Tschirhart C., Serlin M., Watanabe K., Taniguchi T., H. MacDonald A., F. Young A.. Electrical switching of magnetic order in an orbital Chern insulator. Nature, 2020, 588(7836): 66
https://doi.org/10.1038/s41586-020-2963-8
48 Liu J., Ma Z., Gao J., Dai X.. Quantum valley Hall effect, orbital magnetism, and anomalous Hall effect in twisted multilayer graphene systems. Phys. Rev. X, 2019, 9(3): 031021
https://doi.org/10.1103/PhysRevX.9.031021
49 L. Chittari B., Chen G., Zhang Y., Wang F., Jung J.. Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices. Phys. Rev. Lett., 2019, 122(1): 016401
https://doi.org/10.1103/PhysRevLett.122.016401
50 Chen G., Jiang L., Wu S., Lyu B., Li H., L. Chittari B., Watanabe K., Taniguchi T., Shi Z., Jung J., Zhang Y., Wang F.. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237
https://doi.org/10.1038/s41567-018-0387-2
51 Chen G., Sharpe A., Gallagher P., Rosen I., Fox E., Jiang L., Lyu B., Li H., Watanabe K., Taniguchi T., Jung J., Shi Z., Goldhaber-Gordon D., Zhang Y., Wang F.. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572(7768): 215
https://doi.org/10.1038/s41586-019-1393-y
52 Wu F., Lovorn T., Tutuc E., H. MacDonald A.. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett., 2018, 121(2): 026402
https://doi.org/10.1103/PhysRevLett.121.026402
53 H. Naik M., Jain M.. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett., 2018, 121(26): 266401
https://doi.org/10.1103/PhysRevLett.121.266401
54 Pan Y., Fölsch S., Nie Y., Waters D., C. Lin Y., Jariwala B., Zhang K., Cho K., Robinson J., Feenstra R.. Quantum-confined electronic states arising from the moiré pattern of MoS2–WSe2 heterobilayers. Nano Lett., 2018, 18(3): 1849
https://doi.org/10.1021/acs.nanolett.7b05125
55 Wu F., Lovorn T., Tutuc E., Martin I., H. Mac-Donald A.. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett., 2019, 122(8): 086402
https://doi.org/10.1103/PhysRevLett.122.086402
56 Conte F., Ninno D., Cantele G.. Electronic properties and interlayer coupling of twisted MoS2/NbSe2 heterobilayers. Phys. Rev. B, 2019, 99(15): 155429
https://doi.org/10.1103/PhysRevB.99.155429
57 Javvaji S., H. Sun J., Jung J.. Topological flat bands without magic angles in massive twisted bilayer graphenes. Phys. Rev. B, 2020, 101(12): 125411
https://doi.org/10.1103/PhysRevB.101.125411
58 M. Park J., Cao Y., Watanabe K., Taniguchi T., Jarillo-Herrero P.. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 2021, 590(7845): 249
https://doi.org/10.1038/s41586-021-03192-0
59 Hao Z., M. Zimmerman A., Ledwith P., Khalaf E., H. Najafabadi D., Watanabe K., Taniguchi T., Vishwanath A., Kim P.. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371(6534): 1133
https://doi.org/10.1126/science.abg0399
60 Liang M., M. Xiao M., Ma Z., H. Gao J.. Moiré band structures of the double twisted few-layer graphene. Phys. Rev. B, 2022, 105(19): 195422
https://doi.org/10.1103/PhysRevB.105.195422
61 See the Supplemental Material for more details.
62 Guinea F., H. Castro Neto A., M. R. Peres N.. Electronic states and Landau levels in graphene stacks. Phys. Rev. B, 2006, 73(24): 245426
https://doi.org/10.1103/PhysRevB.73.245426
63 Koshino M., Ando T.. Orbital diamagnetism in multilayer graphenes: Systematic study with the effective mass approximation. Phys. Rev. B, 2007, 76(8): 085425
https://doi.org/10.1103/PhysRevB.76.085425
64 Min H., H. MacDonald A.. Chiral decomposition in the electronic structure of graphene multilayers. Phys. Rev. B, 2008, 77(15): 155416
https://doi.org/10.1103/PhysRevB.77.155416
65 Simon A.. Superconductivity and chemistry. Angew. Chem. Int. Ed. Engl., 1997, 36(17): 1788
https://doi.org/10.1002/anie.199717881
66 Bussmann-Holder A., Keller H., Simon A., Bianconi A.. Multi-band superconductivity and the steep band/flat band scenario. Condens. Matter, 2019, 4(4): 91
https://doi.org/10.3390/condmat4040091
67 B. Wu J., Zhang X., Ijäs M., P. Han W., F. Qiao X., L. Li X., S. Jiang D., C. Ferrari A., H. Tan P.. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun., 2014, 5(1): 5309
https://doi.org/10.1038/ncomms6309
68 Zhang F., Sahu B., Min H., H. MacDonald A.. Band structure of ABC-stacked graphene trilayers. Phys. Rev. B, 2010, 82(3): 035409
https://doi.org/10.1103/PhysRevB.82.035409
69 Khalaf E., J. Kruchkov A., Tarnopolsky G., Vishwanath A.. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B, 2019, 100(8): 085109
https://doi.org/10.1103/PhysRevB.100.085109
70 Peng H., B. M. Schröter N., Yin J., Wang H., F. Chung T., Yang H., Ekahana S., Liu Z., Jiang J., Yang L., Zhang T., Chen C., Ni H., Barinov A., P. Chen Y., Liu Z., Peng H., Chen Y.. Substrate doping effect and unusually large angle van Hove singularity evolution in twisted bi- and multilayer graphene. Adv. Mater., 2017, 29(27): 1606741
https://doi.org/10.1002/adma.201606741
71 I. B. Utama M., J. Koch R., Lee K., Leconte N., Li H., Zhao S., Jiang L., Zhu J., Watanabe K., Taniguchi T.. et al.. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys., 2021, 17: 184
https://doi.org/10.1038/s41567-020-0974-x
72 J. P. Thompson J., Pei D., Peng H., Wang H., Channa N., L. Peng H., Barinov A., B. M. Schröter N., Chen Y., Mucha-Kruczy’nski M.. Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy. Nat. Commun., 2020, 11(1): 3582
https://doi.org/10.1038/s41467-020-17412-0
73 Lisi S., Lu X., Benschop T., A. de Jong T., Stepanov P., R. Duran J., Margot F., Cucchi I., Cappelli E., Hunter A., Tamai A., Kandyba V., Giampietri A., Barinov A., Jobst J., Stalman V., Leeuwenhoek M., Watanabe K., Taniguchi T., Rademaker L., J. van der Molen S., P. Allan M., K. Efetov D., Baumberger F.. Observation of flat bands in twisted bilayer grapheme. Nat. Phys., 2021, 17: 189
https://doi.org/10.1038/s41567-020-01041-x
74 Vela A., V. O. Moutinho M., J. Culchac F., Venezuela P., B. Capaz R.. Electronic structure and optical properties of twisted multilayer graphene. Phys. Rev. B, 2018, 98(15): 155135
https://doi.org/10.1103/PhysRevB.98.155135
75 Cea T., Walet N., Guinea F.. Twists and the electronic structure of graphitic materials. Nano Lett., 2019, 19(12): 8683
https://doi.org/10.1021/acs.nanolett.9b03335
76 Grushina A., K. Ki D., Koshino M., Nicolet A., Faugeras C., McCann E., Potemski M., Morpurgo A.. Insulating state in tetralayers reveals an even–odd interaction effect in multilayer graphene. Nat. Commun., 2015, 6(1): 6419
https://doi.org/10.1038/ncomms7419
77 Nam Y., K. Ki D., Soler-Delgado D., Morpurgo A.. A family of finite-temperature electronic phase transitions in graphene multilayers. Science, 2018, 362(6412): 324
https://doi.org/10.1126/science.aar6855
78 Wang J., Liu Z.. Hierarchy of ideal flatbands in chiral twisted multilayer graphene models. Phys. Rev. Lett., 2022, 128(17): 176403
https://doi.org/10.1103/PhysRevLett.128.176403
79 A. H. Goodwin Z., Klebl L., Vitale V., Liang X., Gogtay V., van Gorp X., M. Kennes D., A. Mostofi A., Lischner J.. Flat bands, electron interactions, and magnetic order in magic-angle mono-trilayer graphene. Phys. Rev. Mater., 2021, 5(8): 084008
https://doi.org/10.1103/PhysRevMaterials.5.084008
80 Zhang S.Xie B.Wu Q.Liu J.V. Yazyev O., Chiral decomposition of twisted graphene multilayers with arbitrary stacking, arXiv: 2012.11964 (2020)
81 Lin X., Zhu H., Ni J.. Emergence of intrinsically isolated flat bands and their topology in fully relaxed twisted multilayer graphene. Phys. Rev. B, 2021, 104(12): 125421
https://doi.org/10.1103/PhysRevB.104.125421
[1] fop-21220-OF-mazhen_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed