Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (2): 23301   https://doi.org/10.1007/s11467-022-1224-8
  本期目录
Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure
Qingyun Zhou, Yusheng Hou(), Tianshu Lai()
School of Physics, State Key Lab. of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
 全文: PDF(5925 KB)   HTML
Abstract

InP solar cell is promising for space application due to its strong space radiation resistance and high power conversion efficient (PCE). Graphene/InP heterostructure solar cell is expected to have a higher PCE because strong near-infrared light can also be absorbed and converted additionally by graphene in this heterostructure. However, a low PCE was reported experimentally for Graphene/InP heterostructures. In this paper, electronic properties of graphene/InP heterostructures are calculated using density functional theory to understand the origin of the low PCE and propose possible improving ways. Our calculation results reveal that graphene contact with InP form a p-type Schottky heterostructure with a low Schottky barrier height (SBH). It is the low SBH that leads to the low PCE of graphene/InP heterostructure solar cells. A new heterostructure, graphene/insulating layer/InP solar cells, is proposed to raise SBH and PCE. Moreover, we also find that the opened bandgap of graphene and SBH in graphene/InP heterostructures can be tuned by exerting an electric field, which is useful for photodetector of graphene/InP heterostructures.

Key wordsgraphene    InP(111)    heterostructure    density functional theory
收稿日期: 2022-06-13      出版日期: 2022-12-27
Corresponding Author(s): Yusheng Hou,Tianshu Lai   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(2): 23301.
Qingyun Zhou, Yusheng Hou, Tianshu Lai. Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure. Front. Phys. , 2023, 18(2): 23301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1224-8
https://academic.hep.com.cn/fop/CN/Y2023/V18/I2/23301
Fig.1  
Graphene/InPd0 (?)Eb (meV/?2)Eg (meV)W (eV)Фp (meV)Фn (eV)
ConfigurationA3.16?61.873.14.23 (graphene)22.20.850
B3.24?59.7170.94.31 (InP slab)85.50.729
C3.19?61.681.3?41.10.882
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 K. Geim A. . Graphene: Status and prospects. Science, 2009, 324(5934): 1530
https://doi.org/10.1126/science.1158877
2 Chen K. , N. Yogeesh M. , Huang Y. , Q. Zhang S. , He F. , H. Meng X. , Y. Fang S. , Sheehan N. , H. Tao T. , R. Bank S. , F. Lin J. , Akinwande D. , Sutter P. , S. Lai T. , G. Wang Y. . Non-destructive measurement of photoexcited carrier transport in graphene with ultrafast grating imaging technique. Carbon, 2016, 107: 233
https://doi.org/10.1016/j.carbon.2016.05.075
3 Bae S. , Kim H. , Lee Y. , Xu X. , S. Park J. , Zheng Y. , Balakrishnan J. , Lei T. , Ri Kim H. , I. Song Y. , J. Kim Y. , S. Kim K. , Özyilmaz B. , H. Ahn J. , H. Hong B. , Iijima S. . Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol., 2010, 5(8): 574
https://doi.org/10.1038/nnano.2010.132
4 A. Balandin A. , Ghosh S. , Z. Bao W. , Calizo I. , Teweldebrhan D. , Miao F. , N. Lau C. . Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902
https://doi.org/10.1021/nl0731872
5 K. Geim A. , S. Novoselov K. . The rise of graphene. Nat. Mater., 2007, 6(3): 183
https://doi.org/10.1038/nmat1849
6 Gui G. , Li J. , Zhong J. . Band structure engineering of graphene by strain: First-principles calculations. Phys. Rev. B, 2008, 78(7): 075435
https://doi.org/10.1103/PhysRevB.78.075435
7 B. Oostinga J. , B. Heersche H. , L. Liu X. , F. Morpurgo A. , M. K. Vandersypen L. . Gate-induced insulating state in bilayer graphene devices. Nat. Mater., 2008, 7(2): 151
https://doi.org/10.1038/nmat2082
8 B. Zhang D. , Hu Y. , X. Zhong H. , J. Yuan S. , Liu C. . Effects of out-of-plane strains and electric fields on the electronic structures of graphene/MTe (M = Al, B) heterostructures. Nanoscale, 2019, 11(29): 13800
https://doi.org/10.1039/C9NR04287C
9 Singh S. , Espejo C. , H. Romero A. . Structural, electronic, vibrational, and elastic properties of graphene/MoS2 bilayer heterostructures. Phys. Rev. B, 2018, 98(15): 155309
https://doi.org/10.1103/PhysRevB.98.155309
10 Zollner K. , Gmitra M. , Fabian J. . Heterostructures of graphene and hBN: Electronic, spin−orbit, and spin relaxation properties from first principles. Phys. Rev. B, 2019, 99(12): 125151
https://doi.org/10.1103/PhysRevB.99.125151
11 Gmitra M. , Kochan D. , Högl P. , Fabian J. . Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B, 2016, 93(15): 155104
https://doi.org/10.1103/PhysRevB.93.155104
12 Hu X.-R. , Zheng J.-M. , Ren Z.-Y. . Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Front. Phys., 2018, 13: 137302
https://doi.org/10.1007/s11467-017-0736-0
13 Zhang L. , Fan L. , Li Z. , Shi E. , M. Li X. , B. Li H. , Y. Ji C. , Jia Y. , Q. Wei J. , L. Wang K. , W. Zhu H. , H. Wu D. , Y. Cao A. . Graphene-CdSe nanobelt solar cells with tunable configurations. Nano Res., 2011, 4(9): 891
https://doi.org/10.1007/s12274-011-0145-6
14 J. Jie W. , G. Zheng F. , H. Hao J. . Graphene/gallium arsenide-based Schottky junction solar cells. Appl. Phys. Lett., 2013, 103(23): 233111
https://doi.org/10.1063/1.4839515
15 Y. Lan C. , Li C. , Wang S. , Y. He T. , F. Zhou Z. , P. Wei D. , Y. Guo H. , Yang H. , Liu Y. . Highly responsive and broadband photodetectors based on WS2−graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C, 2017, 5(6): 1494
https://doi.org/10.1039/C6TC05037A
16 Pierucci D. , Henck H. , Avila J. , Balan A. , H. Naylor C. , Patriarche G. , J. Dappe Y. , G. Silly M. , Sirotti F. , T. C. Johnson A. , C. Asensio M. , Ouerghi A. . Band alignment and minigaps in monolayer MoS2−graphene van der Waals heterostructures. Nano Lett., 2016, 16(7): 4054
https://doi.org/10.1021/acs.nanolett.6b00609
17 A. Miwa J. , Dendzik M. , S. Gronborg S. , Bianchi M. , V. Lauritsen J. , Hofmann P. , Ulstrup S. . Van der Waals epitaxy of two-dimensional MoS2-graphene heterostructures in ultrahigh vacuum. ACS Nano, 2015, 9(6): 6502
https://doi.org/10.1021/acsnano.5b02345
18 Büch H. , Rossi A. , Forti S. , Convertino D. , Tozzini V. , Coletti C. . Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res., 2018, 11(11): 5946
https://doi.org/10.1007/s12274-018-2108-7
19 L. Sun M. , P. Chou J. , Q. Ren Q. , M. Zhao Y. , Yu J. , C. Tang W. . Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN. Appl. Phys. Lett., 2017, 110(17): 173105
https://doi.org/10.1063/1.4982690
20 Tongay S. , Lemaitre M. , Schumann T. , Berke K. , R. Appleton B. , Gila B. , F. Hebard A. . Graphene/GaN Schottky diodes: Stability at elevated temperatures. Appl. Phys. Lett., 2011, 99(10): 102102
https://doi.org/10.1063/1.3628315
21 P. Andrade D. , H. Miwa R. , P. Srivastava G. . Graphene and graphene nanoribbons on InAs(110) and Au/InAs(110) surfaces: An ab initio study. Phys. Rev. B, 2011, 84(16): 165322
https://doi.org/10.1103/PhysRevB.84.165322
22 J. Hong Y. , W. Yang J. , H. Lee W. , S. Ruoff R. , S. Kim K. , Fukui T. . Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs. Adv. Mater., 2013, 25(47): 6847
https://doi.org/10.1002/adma.201302312
23 Vurgaftman I. , R. Meyer J. , R. Ram-Mohan L. . Band parameters for III−V compound semiconductors and their alloys. J. Appl. Phys., 2001, 89(11): 5815
https://doi.org/10.1063/1.1368156
24 J. Loferski J. . Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys., 1956, 27(7): 777
https://doi.org/10.1063/1.1722483
25 M. Li X. , W. Zhu H. , L. Wang K. , Y. Cao A. , Q. Wei J. , Y. Li C. , Jia Y. , Li Z. , Li X. , H. Wu D. . Graphene-on-silicon Schottky junction solar cells. Adv. Mater., 2010, 22(25): 2743
https://doi.org/10.1002/adma.200904383
26 Miao X. , Tongay S. , K. Petterson M. , Berke K. , G. Rinzler A. , R. Appleton B. , F. Hebard A. . High efficiency graphene solar cells by chemical doping. Nano Lett., 2012, 12(6): 2745
https://doi.org/10.1021/nl204414u
27 Q. Li X.C. Chen W.J. Zhang S.Q. Wu Z.Wang P.J. Xu Z.S. Chen H.Y. Yin W.K. Zhong H.S. Lin S., 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell, Nano Energy 16, 310 (2015)
28 Yamamoto A. , Yamaguchi M. , Uemura C. . High conversion efficiency and high radiation resistance InP homojunction solar cells. Appl. Phys. Lett., 1984, 44(6): 611
https://doi.org/10.1063/1.94851
29 Wang P. , Q. Li X. , J. Xu Z. , Q. Wu Z. , J. Zhang S. , L. Xu W. , K. Zhong H. , S. Chen H. , P. Li E. , K. Luo J. , K. Yu Q. , S. Lin S. . Tunable graphene/indium phosphide heterostructure solar cells. Nano Energy, 2015, 13: 509
https://doi.org/10.1016/j.nanoen.2015.03.023
30 F. Lu X. , X. Li L. , Guo X. , Q. Ren J. , T. Xue H. , L. Tang F. . Effects of vertical strain and electric field on the electronic properties and interface contact of graphene/InP vdW heterostructure. Comput. Mater. Sci., 2021, 198: 110677
https://doi.org/10.1016/j.commatsci.2021.110677
31 Zhang T. , Chen J. . Graphene/InP Schottky junction near-infrared photodetectors. Appl. Phys. A, 2020, 126(11): 832
https://doi.org/10.1007/s00339-020-04009-z
32 E. Blöchl P. . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
33 Kresse G. , Furthmuller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
34 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
35 Grimme S. . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
https://doi.org/10.1002/jcc.20495
36 Ortmann F. , Bechstedt F. , G. Schmidt W. . Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B, 2006, 73(20): 205101
https://doi.org/10.1103/PhysRevB.73.205101
37 Kalvoda S. , Paulus B. , Fulde P. , Stoll H. . Influence of electron correlations on ground-state properties of III-V semiconductors. Phys. Rev. B, 1997, 55(7): 4027
https://doi.org/10.1103/PhysRevB.55.4027
38 L. Bekenev V. , M. Zubkova S. . Electronic structure of the CdTe(111) A-(2 × 2) surface. Phys. Solid State, 2015, 57(9): 1878
https://doi.org/10.1134/S1063783415090048
39 Shiraishi K., A new slab model approach for electronic structure calculation of polar semiconductors surface, J. Phys. Soc. Jpn. 59(10), 3455 (1990)
40 W. Tasker P. . The stability of ionic crystal surfaces. J. Phys. C, 1979, 12(22): 4977
https://doi.org/10.1088/0022-3719/12/22/036
41 Horio Y. , Yuhara J. , Takakuwa Y. . Structural analysis of an InP(111) A surface using reflection high-energy electron diffraction rocking curves. Jpn. J. Appl. Phys., 2019, 58: SIIA14
https://doi.org/10.7567/1347-4065/ab106e
42 Akiyama T.Kondo T.Tatematsu H.Nakamura K.Ito T., Ab initio approach to reconstructions of the InP(111)A surface: Role of hydrogen atoms passivating surface dangling bonds, Phys. Rev. B 78(20), 205318 (2008)
43 D. Pashley M. . Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001). Phys. Rev. B, 1989, 40(15): 10481
https://doi.org/10.1103/PhysRevB.40.10481
44 Farjam M. , Rafii-Tabar H. . Energy gap opening in submonolayer lithium on graphene: Local density functional and tight-binding calculations. Phys. Rev. B, 2009, 79: 045417
https://doi.org/10.1103/PhysRevB.79.045417
45 T. T. Nguyen H. , M. Obeid M. , Bafekry A. , Idrees M. , V. Vu T. , V. Phuc H. , N. Hieu N. , Hoa L. , Amin B. , V. Nguyen C. , characteristics Interfacial . Schottky contact, and optical performance of a graphene/Ga2SSe van der Waals heterostructure: Strain engineering and electric field tunability. Phys. Rev. B, 2020, 102(7): 075414
https://doi.org/10.1103/PhysRevB.102.075414
46 Bardeen J. . Surface states and rectification at a metal semi-conductor contact. Phys. Rev., 1947, 71(10): 717
https://doi.org/10.1103/PhysRev.71.717
47 Liu Q. , J. Li J. , Wu D. , Q. Deng X. , H. Zhang Z. , Q. Fan Z. , Q. Chen K. . Gate-controlled reversible rectifying behavior investigated in a two-dimensional MoS2 diode. Phys. Rev. B, 2021, 104(4): 045412
https://doi.org/10.1103/PhysRevB.104.045412
48 E. Ci̇mi̇lli̇ Çatir F. . Properties of a facile growth of spray pyrolysis-based rGO films and device performance for Au/rGO/n-InP Schottky diodes. J. Mater. Sci-Mater. Electron., 2021, 32: 611
https://doi.org/10.1007/s10854-020-04843-0
49 A. Rehman M. , Akhtar I. , Choi W. , Akbar K. , Farooq A. , Hussain S. , A. Shehzad M. , H. Chun S. , Jung J. , Seo Y. . Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell. Carbon, 2018, 132: 157
https://doi.org/10.1016/j.carbon.2018.02.042
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed