Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (2): 23303   https://doi.org/10.1007/s11467-022-1227-5
  本期目录
Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa
Yu-Long Hai, He-Jin Yan, Yong-Qing Cai()
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, China
 全文: PDF(3909 KB)   HTML
Abstract

In our study, we constructed a series of inorganic nonmetallic ternary hydrides PSH6 by first-principles structural screening under pressure of 200 GPa. The structural stability under lower pressure are examined. Focusing on the structural stability, electronic and phonon properties, as well as the possible superconducting properties within the framework of Bardeen−Cooper−Schrieffer (BCS) theory, we show that PSH6 with space group \textcolor[RGB]12,108,100Pm3¯m possesses a superconducting transition temperature of 146 K at 130 GPa. In the pressure range of 100−200 GPa, our work suggests that the ternary phosphorus-sulfur-hydrogen would act as a promising compositional and elemental space for achieving high-temperature superconductivity.

Key wordsphosphoruses    sulfur, hydrides    high-temperature    superconductivity    low-pressure    structural screening
收稿日期: 2022-06-24      出版日期: 2022-12-27
Corresponding Author(s): Yong-Qing Cai   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(2): 23303.
Yu-Long Hai, He-Jin Yan, Yong-Qing Cai. Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa. Front. Phys. , 2023, 18(2): 23303.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1227-5
https://academic.hep.com.cn/fop/CN/Y2023/V18/I2/23303
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 W. Ashcroft N. . Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 2004, 92(18): 187002
https://doi.org/10.1103/PhysRevLett.92.187002
2 Wang H. , S. Tse J. , Tanaka K. , Iitaka T. , Ma Y. . Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. USA, 2012, 109(17): 6463
https://doi.org/10.1073/pnas.1118168109
3 Duan D. , Liu Y. , Tian F. , Li D. , Huang X. , Zhao Z. , Yu H. , Liu B. , Tian W. , Cui T. . Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 2015, 4(1): 6968
https://doi.org/10.1038/srep06968
4 P. Durajski A. , Szczesniak R. . Structural, electronic, vibrational, and superconducting properties of hydrogenated chlorine. J. Chem. Phys., 2018, 149(7): 074101
https://doi.org/10.1063/1.5031202
5 Liu H. , I. Naumov I. , Hoffmann R. , W. Ashcroft N. , J. Hemley R. . Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA, 2017, 114(27): 6990
https://doi.org/10.1073/pnas.1704505114
6 L. Hai Y. , Lu N. , L. Tian H. , J. Jiang M. , Yang W. , J. Li W. , W. Yan X. , Zhang C. , J. Chen X. , H. Zhong G. . Cage structure and near room-temperature superconductivity in TbHn (n = 1–12). J. Phys. Chem. C, 2021, 125(6): 3640
https://doi.org/10.1021/acs.jpcc.1c00645
7 V. Semenok D. , G. Kvashnin A. , A. Kruglov I. , R. Oganov A. . Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors. J. Phys. Chem. Lett., 2018, 9(8): 1920
https://doi.org/10.1021/acs.jpclett.8b00615
8 V. Semenok D. , A. Troyan I. , G. Ivanova A. , G. Kvashnin A. , A. Kruglov I. , Hanfland M. , V. Sadakov A. , A. Sobolevskiy O. , S. Pervakov K. , S. Lyubutin I. , V. Glazyrin K. , Giordano N. , N. Karimov D. , L. Vasiliev A. , Akashi R. , M. Pudalov V. , R. Oganov A. . Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today, 2021, 48: 18
https://doi.org/10.1016/j.mattod.2021.03.025
9 Ge Y.Zhang F.J. Hemley R., Room-temperature superconductivity in boron-nitrogen doped lanthanum superhydride, arXiv: 2012.13398 (2020)
10 Gao M. , W. Yan X. , Y. Lu Z. , Xiang T. . Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa. Phys. Rev. B, 2021, 104(10): L100504
https://doi.org/10.1103/PhysRevB.104.L100504
11 Di Cataldo S. , Heil C. , von der Linden W. , Boeri L. . LaBH8: Towards high-Tc low-pressure superconductivity in ternary superhydrides. Phys. Rev. B, 2021, 104(2): L020511
https://doi.org/10.1103/PhysRevB.104.L020511
12 W. Liang X.Bergara A.D. Wei X.Y. Wang L.X. Sun R.Y. Liu H.J. Hemley R.Wang L.Y. Gao G.J. Tian Y., Prediction of high-Tc superconductivity in ternary lanthanum borohydrides, arXiv: 2107.02553 (2021)
13 Feng X. , Zhang J. , Gao G. , Liu H. , Wang H. . Compressed sodalite-like MgH6 as a potential high-temperature superconductor. RSC Advances, 2015, 5(73): 59292
https://doi.org/10.1039/C5RA11459D
14 Song P.Hou Z.Castro P.Nakano K.Hongo K.Takano Y.Maezono R., High- Tc ternary metal hydrides, YKH12 and LaKH12, discovered by machine learning, arXiv: 2103.00193 (2021)
15 W. Liang X. , Bergara A. , Y. Wang L. , Wen B. , S. Zhao Z. , F. Zhou X. , L. He J. , Y. Gao G. , J. Tian Y. . Potential high-Tc superconductivity in CaYH12 under pressure. Phys. Rev. B, 2019, 99: 100505(R)
https://doi.org/10.1103/PhysRevB.99.100505
16 Sukmas W. , Tsuppayakorn-aek P. , Pinsook U. , Bovorn-ratanaraks T. . Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure. J. Alloys Compd., 2020, 849: 156434
https://doi.org/10.1016/j.jallcom.2020.156434
17 Heil C. , Boeri L. . Influence of bonding on superconductivity in high-pressure hydrides. Phys. Rev. B, 2015, 92: 060508(R)
https://doi.org/10.1103/PhysRevB.92.060508
18 A. Papaconstantopoulos D. . Possible high-temperature superconductivity in hygrogenated fluorine. Nov. Supercond. Mater., 2017, 3(1): 29
https://doi.org/10.1515/nsm-2017-0005
19 P. Drozdov A.I. Eremets M.A. Troyan I., Superconductivity above 100 K in PH3 at high pressures, arXiv: 1508.06224 (2015)
20 P. Durajski A. , Szczesniak R. . Structural, electronic, vibrational, and superconducting properties of hydrogenated chlorine. J. Chem. Phys., 2018, 149(7): 074101
https://doi.org/10.1063/1.5031202
21 Liu B. , Cui W. , Shi J. , Zhu L. , Chen J. , Lin S. , Su R. , Ma J. , Yang K. , Xu M. , Hao J. , P. Durajski A. , Qi J. , Li Y. , Li Y. . Effect of covalent bonding on the superconducting critical temperature of the H-S-Se system. Phys. Rev. B, 2018, 98(17): 174101
https://doi.org/10.1103/PhysRevB.98.174101
22 Y. Wang X.G. Bi T.P. Hilleke K.Lamichhane A.J. Hemley R.Zurek E., A little bit of carbon can do a lot for superconductivity in H3S, arXiv: 2109.09898 (2021)
23 F. Ge Y. , Zhang F. , P. Dias R. , J. Hemley R. , G. Yao Y. . Hole-doped room-temperature superconductivity in H3S1−xZ (Z = C, Si). Mater. Today Phys., 2020, 15: 100330
https://doi.org/10.1016/j.mtphys.2020.100330
24 Ge Y. , Zhang F. , Yao Y. . First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution. Phys. Rev. B, 2016, 93(22): 224513
https://doi.org/10.1103/PhysRevB.93.224513
25 Nakanishi A. , Ishikawa T. , Shimizu K. . First-principles study on superconductivity of P- and Cl-doped H3S. J. Phys. Soc. Jpn., 2018, 87(12): 124711
https://doi.org/10.7566/JPSJ.87.124711
26 J. Shao Z. , Song H. , Y. Yu H. , F. Duan D. . Ab initio investigation on the doped H3S by V, VI, and VII group elements under high pressure. J. Supercond. Nov. Magn., 2022, 35(4): 979
https://doi.org/10.1007/s10948-021-06061-z
27 Snider E. , Dasenbrock-Gammon N. , McBride R. , Debessai M. , Vindana H. , Vencatasamy K. , V. Lawler K. , Salamat A. , P. Dias R. . Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 2020, 586: 373
https://doi.org/10.1038/s41586-020-2801-z
28 L. Hai Y. , L. Tian H. , J. Jiang M. , B. Ding H. , J. Feng Y. , H. Zhong G. , L. Yang C. , J. Chen X. , Q. Lin H. . Prediction of high-Tc superconductivity in H6SX (X = Cl, Br) at pressures below one megabar. Phys. Rev. B, 2022, 105(18): L180508
https://doi.org/10.1103/PhysRevB.105.L180508
29 Bardeen J. , Cooper L. , Schrieffer J. . Theory of superconductivity. Phys. Rev., 1957, 108(5): 1175
https://doi.org/10.1103/PhysRev.108.1175
30 Muramatsu T. , K. Wanene W. , Somayazulu M. , Vinitsky E. , Chandra D. , A. Strobel T. , V. Struzhkin V. , J. Hemley R. . Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9. J. Phys. Chem. C, 2015, 119(32): 18007
https://doi.org/10.1021/acs.jpcc.5b03709
31 B. Tian F. , Li D. , F. Duan D. , J. Sha X. , X. Liu Y. , Yang T. , B. Liu B. , Cui T. . Predicted structures and superconductivity of hypothetical Mg-CH4 compounds under high pressures. Mater. Res. Express, 2015, 2(4): 046001
https://doi.org/10.1088/2053-1591/2/4/046001
32 Z. Meng D. , Sakata M. , Shimizu K. , Iijima Y. , Saitoh H. , Sato T. , Takagi S. , Orimo S. . Superconductivity of the hydrogen-rich metal hydride Li5MoH11 under high pressure. Phys. Rev. B, 2019, 99(2): 024508
https://doi.org/10.1103/PhysRevB.99.024508
33 Zheng J. , G. Sun W. , L. Dou X. , J. Mao A. , Lu C. . pressure-driven structural phase transitions and superconductivity of ternary hydride MgVH6. J. Phys. Chem. C, 2021, 125(5): 3150
https://doi.org/10.1021/acs.jpcc.0c09447
34 K. Wei Y. , Q. Jia L. , Y. Fang Y. , J. Wang L. , X. Qian Z. , N. Yuan J. , Selvaraj G. , F. Ji G. , Q. Wei D. . Formation and superconducting properties of predicted ternary hydride ScYH6 under pressures. Int. J. Quantum Chem., 2020, 121(4): e26459
https://doi.org/10.1002/qua.26459
35 J. Shao Z. , F. Duan D. , B. Ma Y. , Y. Yu H. , Song H. , Xie H. , Li D. , B. Tian F. , B. Liu B. , Cui T. . Ternary superconducting cophosphorus hydrides stabilized via lithium. npj Comput. Mater., 2019, 5: 104
https://doi.org/10.1038/s41524-019-0244-6
36 Li X. , Xie Y. , Sun Y. , H. Huang P. , Y. Liu H. , F. Chen C. , M. Ma Y. . Chemically tuning stability and superconductivity of P–H compounds. J. Phys. Chem. Lett., 2020, 11(3): 935
https://doi.org/10.1021/acs.jpclett.9b03856
37 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
38 Kohn W. , J. Sham L. . Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
https://doi.org/10.1103/PhysRev.140.A1133
39 Kresse G. , Joubert D. . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
40 Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
41 J. Chadi D. . Special points for Brillouin-zone integrations. Phys. Rev. B, 1977, 16(4): 1746
https://doi.org/10.1103/PhysRevB.16.1746
42 Car R. , Parrinello M. . Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 1985, 55(22): 2471
https://doi.org/10.1103/PhysRevLett.55.2471
43 G. Hoover W. . Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 1985, 31(3): 1695
https://doi.org/10.1103/PhysRevA.31.1695
44 Giannozzi P. , Baroni S. , Bonini N. , Calandra M. , Car R. . et al.. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 2009, 21(39): 395502
https://doi.org/10.1088/0953-8984/21/39/395502
45 Giannozzi P. , Andreussi O. , Brumme T. , Bunau O. , B. Nardelli M. . et al.. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys.: Condens. Matter, 2017, 29(46): 465901
https://doi.org/10.1088/1361-648X/aa8f79
46 Vanderbilt D. . Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41(11): 7892
https://doi.org/10.1103/PhysRevB.41.7892
47 C. Dynes R. . McMillan’s equation and the Tc of superconductors. Solid State Commun., 1972, 10(7): 615
https://doi.org/10.1016/0038-1098(72)90603-5
48 B. Allen P. , C. Dynes R. . Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B, 1975, 12(3): 905
https://doi.org/10.1103/PhysRevB.12.905
49 Methfessel M. , T. Paxton A. . High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B, 1989, 40(6): 3616
https://doi.org/10.1103/PhysRevB.40.3616
50 Wang Y. , Lv J. , Zhu L. , Ma Y. . CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun., 2012, 183(10): 2063
https://doi.org/10.1016/j.cpc.2012.05.008
51 Gao B. , Gao P. , Lu S. , Lv J. , Wang Y. , Ma Y. . Interface structure prediction via CALYPSO method. Sci. Bull. (Beijing), 2019, 301: 64
https://doi.org/10.1016/J.SCIB.2019.02.009
52 Y. Gao P. , Gao B. , H. Lu S. , Y. Liu H. , Lv J. , C. Wang Y. , M. Ma Y. . Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys., 2022, 17(2): 23203
https://doi.org/10.1007/s11467-021-1109-2
[1] FOP-21227-OF-YuLongHai_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed