Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (2): 23302   https://doi.org/10.1007/s11467-022-1228-4
  本期目录
Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials
Xudong Zhu1,2, Yuqian Chen1,2, Zheng Liu1,2(), Yulei Han3(), Zhenhua Qiao1,2()
1. ICQD, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
2. CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
3. Department of Physics, Fuzhou University, Fuzhou 350108, China
 全文: PDF(5871 KB)   HTML
Abstract

We numerically study the general valley polarization and anomalous Hall effect in van der Waals (vdW) heterostructures based on monolayer jacutingaite family materials Pt2AX3 (A = Hg, Cd, Zn; X = S, Se, Te). We perform a systematic study on the atomic, electronic, and topological properties of vdW heterostructures composed of monolayer Pt2AX3 and two-dimensional ferromagnetic insulators. We show that four kinds of vdW heterostructures exhibit valley-polarized quantum anomalous Hall phase, i.e., Pt2HgS3/NiBr2, Pt2HgSe3/CoBr2, Pt2HgSe3/NiBr2, and Pt2ZnS3/CoBr2, with a maximum valley splitting of 134.2 meV in Pt2HgSe3/NiBr2 and sizable global band gap of 58.8 meV in Pt2HgS3/NiBr2. Our findings demonstrate an ideal platform to implement applications on topological valleytronics.

Key wordsquantum anomalous Hall effect    valley polarization    topological valleytronics    transition metal dichalcogenides    jacutingaite family materials    first-principles calculations    van der Waals heterostructure
收稿日期: 2022-09-25      出版日期: 2022-12-12
Corresponding Author(s): Zheng Liu,Yulei Han,Zhenhua Qiao   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(2): 23302.
Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys. , 2023, 18(2): 23302.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1228-4
https://academic.hep.com.cn/fop/CN/Y2023/V18/I2/23302
Fig.1  
Fig.2  
vdW Heterostructures Pt2HgS 3/ CoBr2 Pt2HgSe 3/ CoBr2 Pt2HgTe 3/ CoBr2 Pt2ZnS 3/ CoBr2 Pt2HgS 3/ NiBr2 Pt2HgSe 3/ NiBr2 Pt2CdS 3/ NiBr2 Pt2ZnSe 3/ NiBr2
ΔQ (e) −0.17 −0.20 −0.09 −0.32 −0.03 −0.11 −0.18 −0.17
d (Å) 2.51 2.74 2.90 2.70 2.28 2.46 2.18 2.51
Mjac (μ B ) 0.330 0.061 0.068 0.050 0.219 0.204 0.276 0.167
Mtot (μ B ) 11.525 11.530 11.490 11.503 7.453 7.446 7.392 7.420
MA1 (μ B ) 0.005 −0.009 −0.005 −0.014 −0.016 −0.021 −0.020 0.009
MA2 (μ B ) 0.056 0.016 0.007 0.024 0.067 0.045 0.104 0.027
Tab.1  
Fig.3  
Fig.4  
Nontrivial vdW heterostructrues Δ (meV) Eg (meV) Δ K (meV) Δ K (meV) C
Pt2HgSe 3/NiBr2 134.2 6.3 182.8 73.5 −1
Pt2ZnS 3/CoBr2 36.3 7.8 185.9 59.9 −1
Pt2HgS 3/NiBr2 15.4 58.8 74.2 78.8 1
Pt2HgSe 3/CoBr2 3.5 19.3 22.8 124.0 1
Tab.2  
Fig.5  
Fig.6  
1 K. Geim A., S. Novoselov K.. The rise of graphene. Nat. Mater., 2007, 6(3): 183
https://doi.org/10.1038/nmat1849
2 Wang K., Hou T., Ren Y., Qiao Z.. Enhanced robustness of zero-line modes in graphene via magnetic field. Front. Phys., 2019, 14(2): 23501
https://doi.org/10.1007/s11467-018-0869-9
3 Zeng J., Xue R., Hou T., Han Y., Qiao Z.. Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems. Front. Phys., 2022, 17(6): 63503
https://doi.org/10.1007/s11467-022-1185-y
4 Yang H., Zeng J., You S., Han Y., Qiao Z.. Equipartition of current in metallic armchair nanoribbon of graphene-based device. Front. Phys., 2022, 17(6): 63508
https://doi.org/10.1007/s11467-022-1201-2
5 H. Wang Q., Kalantar-Zadeh K., Kis A., N. Coleman J., S. Strano M.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
6 Luo G., Z. Zhang Z., O. Li H., X. Song X., W. Deng G., Cao G., Xiao M., P. Guo G.. Quantum dot behavior in transition metal dichalcogenides nanostructures. Front. Phys., 2017, 12(4): 128502
https://doi.org/10.1007/s11467-017-0652-3
7 Cheng M., Yang J., Li X., Li H., Du R., Shi J., He J.. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
https://doi.org/10.1007/s11467-022-1190-1
8 J. Ibberson D., Bourdet L., C. Abadillo-Uriel J., Ahmed I., Barraud S., J. Calderón M., Niquet Y.M., F. Gonzalez-Zalba M.. Electric-field tuning of the valley splitting in silicon corner dots. Appl. Phys. Lett., 2018, 113(5): 053104
https://doi.org/10.1063/1.5040474
9 Tahir M., Manchon A., Sabeeh K., Schwingenschlögl U.. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene. Appl. Phys. Lett., 2013, 102(16): 162412
https://doi.org/10.1063/1.4803084
10 J. Tabert C., J. Nicol E.. AC/DC spin and valley Hall effects in silicene and germanene. Phys. Rev. B, 2013, 87(23): 235426
https://doi.org/10.1103/PhysRevB.87.235426
11 Li Y., Ludwig J., Low T., Chernikov A., Cui X., Arefe G., D. Kim Y., M. van der Zande A., Rigosi A., M. Hill H., H. Kim S., Hone J., Li Z., Smirnov D., F. Heinz T.. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett., 2014, 113(26): 266804
https://doi.org/10.1103/PhysRevLett.113.266804
12 Zhao C., Norden T., Zhang P., Zhao P., Cheng Y., Sun F., P. Parry J., Taheri P., Wang J., Yang Y., Scrace T., Kang K., Yang S., X. Miao G., Sabirianov R., Kioseoglou G., Huang W., Petrou A., Zeng H.. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol., 2017, 12(8): 757
https://doi.org/10.1038/nnano.2017.68
13 Y. Li S., Su Y., N. Ren Y., He L.. Valley polarization and inversion in strained graphene via pseudo-Landau levels, valley splitting of real Landau levels, and confined states. Phys. Rev. Lett., 2020, 124(10): 106802
https://doi.org/10.1103/PhysRevLett.124.106802
14 Yao W., Xiao D., Niu Q.. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 2008, 77(23): 235406
https://doi.org/10.1103/PhysRevB.77.235406
15 L. Seyler K., Zhong D., Huang B., Linpeng X., P. Wilson N., Taniguchi T., Watanabe K., Yao W., Xiao D., A. McGuire M., M. C. Fu K., Xu X.. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett., 2018, 18(6): 3823
https://doi.org/10.1021/acs.nanolett.8b01105
16 S. Mrudul M., Jiménez-Galán Á., Ivanov M., Dixit G.. Light-induced valleytronics in pristine graphene. Optica, 2021, 8(3): 422
https://doi.org/10.1364/OPTICA.418152
17 R. Schaibley J., Yu H., Clark G., Rivera P., S. Ross J., L. Seyler K., Yao W., Xu X.. Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
https://doi.org/10.1038/natrevmats.2016.55
18 Xiao D., B. Liu G., Feng W., Xu X., Yao W.. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802
https://doi.org/10.1103/PhysRevLett.108.196802
19 Behnia K.. Polarized light boosts valleytronics. Nat. Nanotechnol., 2012, 7(8): 488
https://doi.org/10.1038/nnano.2012.117
20 A. Wolf S., D. Awschalom D., A. Buhrman R., M. Daughton J., Von Molnár S., L. Roukes M., Y. Chtchelkanova A., M. Treger D.. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488
https://doi.org/10.1126/science.1065389
21 Rycerz A., Tworzydło J., Beenakker C.. Valley filter and valley valve in graphene. Nat. Phys., 2007, 3(3): 172
https://doi.org/10.1038/nphys547
22 Pesin D., H. MacDonald A.. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater., 2012, 11(5): 409
https://doi.org/10.1038/nmat3305
23 San-Jose P., Prada E., McCann E., Schomerus H.. Pseudospin valve in bilayer graphene: Towards graphene-based pseudospintronics. Phys. Rev. Lett., 2009, 102(24): 247204
https://doi.org/10.1103/PhysRevLett.102.247204
24 S. Ang Y., A. Yang S., Zhang C., Ma Z., K. Ang L.. Valleytronics in merging Dirac cones: All-electric-controlled valley filter, valve, and universal reversible logic gate. Phys. Rev. B, 2017, 96(24): 245410
https://doi.org/10.1103/PhysRevB.96.245410
25 Li J., Zhang R.X., Yin Z., Zhang J., Watanabe K., Taniguchi T., Liu C., Zhu J.. A valley valve and electron beam splitter. Science, 2018, 362(6419): 1149
https://doi.org/10.1126/science.aao5989
26 D. M. Haldane F.. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 1988, 61(18): 2015
https://doi.org/10.1103/PhysRevLett.61.2015
27 Ren Y., Qiao Z., Niu Q.. Topological phases in two-dimensional materials: A review. Rep. Prog. Phys., 2016, 79(6): 066501
https://doi.org/10.1088/0034-4885/79/6/066501
28 Z. Chang C., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., Wang L., Ji Z., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., C. Zhang S., He K., Wang Y., Lu L., C. Ma X., K. Xue Q.. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
https://doi.org/10.1126/science.1234414
29 Deng Y., Yu Y., Z. Shi M., Guo Z., Xu Z., Wang J., H. Chen X., Zhang Y.. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 2020, 367(6480): 895
https://doi.org/10.1126/science.aax8156
30 Qiao Z., A. Yang S., Feng W., K. Tse W., Ding J., Yao Y., Wang J., Niu Q.. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys. Rev. B, 2010, 82(16): 161414
https://doi.org/10.1103/PhysRevB.82.161414
31 Qiao Z., Ren W., Chen H., Bellaiche L., Zhang Z., H. MacDonald A., Niu Q.. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett., 2014, 112(11): 116404
https://doi.org/10.1103/PhysRevLett.112.116404
32 Yu R., Zhang W., J. Zhang H., C. Zhang S., Dai X., Fang Z.. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
https://doi.org/10.1126/science.1187485
33 Zhang J., Zhao B., Zhou T., Xue Y., Ma C., Yang Z.. Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures. Phys. Rev. B, 2018, 97(8): 085401
https://doi.org/10.1103/PhysRevB.97.085401
34 Kim J., Hong X., Jin C., F. Shi S., Y. S. Chang C., H. Chiu M., J. Li L., Wang F.. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science, 2014, 346(6214): 1205
https://doi.org/10.1126/science.1258122
35 Srivastava A., Sidler M., V. Allain A., S. Lembke D., Kis A., Imamoglu A.. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141
https://doi.org/10.1038/nphys3203
36 Rostami H., Asgari R.. Valley Zeeman effect and spin-valley polarized conductance in monolayer MoS2 in a perpendicular magnetic field. Phys. Rev. B, 2015, 91(7): 075433
https://doi.org/10.1103/PhysRevB.91.075433
37 Li Y., Ludwig J., Low T., Chernikov A., Cui X., Arefe G., D. Kim Y., M. van der Zande A., Rigosi A., M. Hill H., H. Kim S., Hone J., Li Z., Smirnov D., F. Heinz T.. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett., 2014, 113(26): 266804
https://doi.org/10.1103/PhysRevLett.113.266804
38 Liu Z., Han Y., Ren Y., Niu Q., Qiao Z.. .Van der Waals heterostructure Pt2HgSe3/CrI3 for topological valleytronics. Phys. Rev. B, 2021, 104(12): L121403
https://doi.org/10.1103/PhysRevB.104.L121403
39 Bora M., K. Behera S., Samal P., Deb P.. Magnetic proximity induced valley-contrasting quantum anomalous Hall effect in a graphene-CrBr3 van der Waals heterostructure. Phys. Rev. B, 2022, 105(23): 235422
https://doi.org/10.1103/PhysRevB.105.235422
40 Zhang H., Yang W., Ning Y., Xu X.. Abundant valley-polarized states in two-dimensional ferromagnetic van der Waals heterostructures. Phys. Rev. B, 2020, 101(20): 205404
https://doi.org/10.1103/PhysRevB.101.205404
41 Vila M., H. Garcia J., Roche S.. Valley-polarized quantum anomalous Hall phase in bilayer graphene with layer-dependent proximity effects. Phys. Rev. B, 2021, 104(16): L161113
https://doi.org/10.1103/PhysRevB.104.L161113
42 U. Rehman M., Qiao Z., Wang J.. Valley-symmetry-broken magnetic topological responses in (Pt/Pd)2HgSe3/CrGeTe3 and Pd2HgSe3/CrI3 through interfacial coupling. Phys. Rev. B, 2022, 105(16): 165417
https://doi.org/10.1103/PhysRevB.105.165417
43 U. Rehman M., Kiani M., Wang J.. Jacutingaite family: An efficient platform for coexistence of spin valley Hall effects. valley spin-valve realization.and layer spin crossover. Phys. Rev. B, 2022, 105(19): 195439
https://doi.org/10.1103/PhysRevB.105.195439
44 Pan H., Li Z., C. Liu C., Zhu G., Qiao Z., Yao Y.. Valley-polarized quantum anomalous Hall effect in silicene. Phys. Rev. Lett., 2014, 112(10): 106802
https://doi.org/10.1103/PhysRevLett.112.106802
45 Zhou J., Sun Q., Jena P.. Valley-polarized quantum anomalous Hall effect in ferrimagnetic honeycomb lattices. Phys. Rev. Lett., 2017, 119(4): 046403
https://doi.org/10.1103/PhysRevLett.119.046403
46 Liu Z.Ren Y.Han Y.Niu Q.Qiao Z., Second-order topological insulator in van der Waals heterostructures of CoBr2/Pt2HgSe3/CoBr2, arXiv: 2202.00221 (2022)
47 Zhan F., Ning Z., Gan L.Y., Zheng B., Fan J., Wang R.. Floquet valley-polarized quantum anomalous Hall state in nonmagnetic heterobilayers. Phys. Rev. B, 2022, 105(8): L081115
https://doi.org/10.1103/PhysRevB.105.L081115
48 Cucchi I., Marrazzo A., Cappelli E., Ricco S., Y. Bruno F., Lisi S., Hoesch M., K. Kim T., Cacho C., Besnard C., Giannini E., Marzari N., Gibertini M., Baumberger F., Tamai A.. Bulk and surface electronic structure of the dual-topology semimetal Pt2HgSe3. Phys. Rev. Lett., 2020, 124(10): 106402
https://doi.org/10.1103/PhysRevLett.124.106402
49 Kandrai K., Vancsó P., Kukucska G., Koltai J., Baranka G., Hoffmann Á., Pekker Á., Kamarás K., E. Horváth Z., Vymazalová A., Tapasztó L., Nemes-Incze P.. Signature of large-gap quantum spin Hall state in the layered mineral jacutingaite. Nano Lett., 2020, 20(7): 5207
https://doi.org/10.1021/acs.nanolett.0c01499
50 Marrazzo A., Gibertini M., Campi D., Mounet N., Marzari N.. Prediction of a large-gap and switchable Kane−Mele quantum spin Hall insulator. Phys. Rev. Lett., 2018, 120(11): 117701
https://doi.org/10.1103/PhysRevLett.120.117701
51 Marrazzo A., Gibertini M., Campi D., Mounet N., Marzari N.. Relative abundance of Z2 topological order in exfoliable two-dimensional insulators. Nano Lett., 2019, 19(12): 8431
https://doi.org/10.1021/acs.nanolett.9b02689
52 L. Kane C., J. Mele E.. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett., 2005, 95(14): 146802
https://doi.org/10.1103/PhysRevLett.95.146802
53 C. de Lima F., H. Miwa R., Fazzio A.. Jacutingaite-family: A class of topological materials. Phys. Rev. B, 2020, 102(23): 235153
https://doi.org/10.1103/PhysRevB.102.235153
54 Ma C., Forster H., Grundmann G.. Tilkerodeite, Pd2HgSe3, a new platinum-group mineral from Tilkerode, Harz Mountains, Germany. Crystals (Basel), 2020, 10(8): 687
https://doi.org/10.3390/cryst10080687
55 Marrazzo A., Marzari N., Gibertini M.. Emergent dual topology in the three-dimensional Kane−Mele Pt2HgSe3. Phys. Rev. Res., 2020, 2(1): 012063
https://doi.org/10.1103/PhysRevResearch.2.012063
56 A. McGuire M.. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals (Basel), 2017, 7(5): 121
https://doi.org/10.3390/cryst7050121
57 V. Kulish V., Huang W.. Single-layer metal halides MX2 (X = Cl, Br, I): Stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C, 2017, 5(34): 8734
https://doi.org/10.1039/C7TC02664A
58 Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
59 M. Otrokov M., P. Rusinov I., Blanco-Rey M., Hoffmann M., Yu. Vyazovskaya A., V. Eremeev S., Ernst A., M. Echenique P., Arnau A., V. Chulkov E.. Unique thickness-dependent properties of the van der waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
https://doi.org/10.1103/PhysRevLett.122.107202
60 Tian S., F. Zhang J., Li C., Ying T., Li S., Zhang X., Liu K., Lei H.. Ferromagnetic van der Waals crystal VI3. J. Am. Chem. Soc., 2019, 141(13): 5326
https://doi.org/10.1021/jacs.8b13584
61 Y. Lv H., J. Lu W., Luo X., B. Zhu X., P. Sun Y.. Strain- and carrier-tunable magnetic properties of a two-dimensional intrinsically ferromagnetic semiconductor: CoBr2 monolayer. Phys. Rev. B, 2019, 99(13): 134416
https://doi.org/10.1103/PhysRevB.99.134416
62 S. Botana A., R. Norman M.. Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer. Phys. Rev. Mater., 2019, 3(4): 044001
https://doi.org/10.1103/PhysRevMaterials.3.044001
63 M. Otrokov M., P. Rusinov I., Blanco-Rey M., Hoffmann M., Yu. Vyazovskaya A., V. Eremeev S., Ernst A., M. Echenique P., Arnau A., V. Chulkov E.. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
https://doi.org/10.1103/PhysRevLett.122.107202
64 Li X., Zhang Z., Zhang H.. High throughput study on magnetic ground states with Hubbard U corrections in transition metal dihalide monolayers. Nanoscale Adv., 2020, 2(1): 495
https://doi.org/10.1039/C9NA00588A
65 Lu M., Yao Q., Xiao C., Huang C., Kan E.. Mechanical, electronic, and magnetic properties of NiX2 (X = Cl, Br, I) layers. ACS Omega, 2019, 4(3): 5714
https://doi.org/10.1021/acsomega.9b00056
66 Zhong D., L. Seyler K., Linpeng X., Cheng R., Sivadas N., Huang B., Schmidgall E., Taniguchi T., Watanabe K., A. McGuire M., Yao W., Xiao D., M. C. Fu K., Xu X.. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv., 2017, 3(5): e1603113
https://doi.org/10.1126/sciadv.1603113
67 Webster L., A. Yan J.. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B, 2018, 98(14): 144411
https://doi.org/10.1103/PhysRevB.98.144411
68 Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., Zhang X.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
69 Jiang S., Shan J., F. Mak K.. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater., 2018, 17(5): 406
https://doi.org/10.1038/s41563-018-0040-6
70 F. Mak K., Shan J., C. Ralph D.. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys., 2019, 1(11): 646
https://doi.org/10.1038/s42254-019-0110-y
71 Zhuo W., Lei B., Wu S., Yu F., Zhu C., Cui J., Sun Z., Ma D., Shi M., Wang H., Wang W., Wu T., Ying J., Wu S., Wang Z., Chen X.. Manipulating ferromagnetism in few‐layered Cr2Ge2Te6. Adv. Mater., 2021, 33(31): 2008586
https://doi.org/10.1002/adma.202008586
72 See Supplemental Materials for more information about calculation details, ferromagnetic substrates, vdW heterostructue configurations, orbital projections, molecular dynamic simulations, more band structures, manipulated band gaps, charge density differences and the planar-averaged electrostatic potentials of other well-matched systems.
73 E. Blöchl P.. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
74 Kresse G., Furthmuller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
75 Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
76 P. Perdew J., A. Chevary J., H. Vosko S., A. Jackson K., R. Pederson M., J. Singh D., Fiolhais C.. and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46(11): 6671
https://doi.org/10.1103/PhysRevB.46.6671
77 Grimme S., Antony J., Ehrlich S., Krieg H.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15): 154104
https://doi.org/10.1063/1.3382344
78 J. Kulik H., Cococcioni M., A. Scherlis D., Marzari N.. Density functional theory in transition-metal chemistry: A self-consistent Hubbard U approach. Phys. Rev. Lett., 2006, 97(10): 103001
https://doi.org/10.1103/PhysRevLett.97.103001
79 A. Mostofi A., R. Yates J., S. Lee Y., Souza I., Vanderbilt D., Marzari N.. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun., 2008, 178(9): 685
https://doi.org/10.1016/j.cpc.2007.11.016
80 Pizzi G., Vitale V., Arita R., Blugel S., Freimuth F., Geranton G., Gibertini M., Gresch D., Johnson C., Koretsune T., Ibañez-Azpiroz J., Lee H., Lihm J.M., Marchand D., Marrazzo A., Mokrousov Y., I. Mustafa J., Nohara Y., Nomura Y., Paulatto L., Poncé S., Ponweiser T., Qiao J., Thöle F., S. Tsirkin S., Wierzbowska M., Marzari N., Vanderbilt D., Souza I., A. Mostofi A., R. Yates J.. Wannier90 as a community code: new features and applications. J. Phys.: Condens. Matter, 2020, 32(16): 165902
https://doi.org/10.1088/1361-648X/ab51ff
81 S. Wu Q., N. Zhang S., F. Song H., Troyer M., A. Soluyanov A.. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun., 2018, 224: 405
https://doi.org/10.1016/j.cpc.2017.09.033
82 Wang V., Xu N., C. Liu J., Tang G., T. Geng W.. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun., 2021, 267: 108033
https://doi.org/10.1016/j.cpc.2021.108033
83 Herath U., Tavadze P., He X., Bousquet E., Singh S., Munoz F., H. Romero A.. PyProcar: A Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 1070, 80(2020):
https://doi.org/10.1016/j.cpc.2019.107080
84 Momma K., Izumi F.. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst., 2011, 44(6): 1272
https://doi.org/10.1107/S0021889811038970
85 H. Chiu M., Zhang C., W. Shiu H., P. Chuu C., H. Chen C., Y. S. Chang C., H. Chen C., Y. Chou M., K. Shih C., J. Li L.. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun., 2015, 6(1): 7666
https://doi.org/10.1038/ncomms8666
86 O. Özçelik V., G. Azadani J., Yang C., J. Koester S., Low T.. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B, 2016, 94(3): 035125
https://doi.org/10.1103/PhysRevB.94.035125
87 Xia C., Du J., Li M., Li X., Zhao X., Wang T., Li J.. Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys. Rev. Appl., 2018, 10(5): 054064
https://doi.org/10.1103/PhysRevApplied.10.054064
88 Lei C., Ma Y., Xu X., Zhang T., Huang B., Dai Y.. Broken-gap type-III band alignment in WTe2/HfS2 van der Waals heterostructure. J. Phys. Chem. C, 2019, 123(37): 23089
https://doi.org/10.1021/acs.jpcc.9b07862
89 R. Hu X., M. Zheng J., Y. Ren Z.. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Front. Phys., 2018, 13(2): 137302
https://doi.org/10.1007/s11467-017-0736-0
90 Z. Yan Z., H. Jiang Z., P. Lu J., H. Ni Z.. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13(4): 138115
https://doi.org/10.1007/s11467-018-0785-z
91 Y. Wang Y., P. Li F., Wei W., B. Huang B., Dai Y.. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
https://doi.org/10.1007/s11467-020-0991-3
92 Zhao C., Norden T., Zhang P., Zhao P., Cheng Y., Sun F., P. Parry J., Taheri P., Wang J., Yang Y., Scrace T., Kang K., Yang S., Miao G., Sabirianov R., Kioseoglou G., Huang W., Petrou A., Zeng H.. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol., 2017, 12(8): 757
https://doi.org/10.1038/nnano.2017.68
93 Norden T., Zhao C., Zhang P., Sabirianov R., Petrou A., Zeng H.. Giant valley splitting in monolayer WS2 by magnetic proximity effect. Nat. Commun., 2019, 10(1): 4163
https://doi.org/10.1038/s41467-019-11966-4
94 Deng X., Yang H., Qi S., Xu X., Qiao Z.. Quantum anomalous Hall effect and giant Rashba spin−orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms. Front. Phys., 2018, 13(5): 137308
https://doi.org/10.1007/s11467-018-0806-y
95 Han Y., Sun S., Qi S., Xu X., Qiao Z.. Interlayer ferromagnetism and high-temperature quantum anomalous Hall effect in p-doped MnBi2Te4 multilayers. Phys. Rev. B, 2021, 103(24): 245403
https://doi.org/10.1103/PhysRevB.103.245403
96 Qi S., Gao R., Chang M., Han Y., Qiao Z.. Pursuing the high-temperature quantum anomalous Hall effect in MnBi2Te4/Sb2Te3 heterostructures. Phys. Rev. B, 2020, 101(1): 014423
https://doi.org/10.1103/PhysRevB.101.014423
97 Qi S., Qiao Z., Deng X., D. Cubuk E., Chen H., Zhu W., Kaxiras E., B. Zhang S., Xu X., Zhang Z.. High-temperature quantum anomalous Hall effect in n−p codoped topological insulators. Phys. Rev. Lett., 2016, 117(5): 056804
https://doi.org/10.1103/PhysRevLett.117.056804
98 Li Z., Han Y., Qiao Z.. Chern number tunable quantum anomalous Hall effect in monolayer transitional metal oxides via manipulating magnetization orientation. Phys. Rev. Lett., 2022, 129(3): 036801
https://doi.org/10.1103/PhysRevLett.129.036801
99 Han Y.Yan Z.Li Z.Xu X.Zhang Z. Niu Q.Qiao Z., Large Rashba spin−orbit coupling and high-temperature quantum anomalous Hall effect in Re-intercalated graphene/CrI3 heterostructure, arXiv: 2203.16429 (2022)
[1] fop-21228-OF-zhuxudong_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed