Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (2): 21303   https://doi.org/10.1007/s11467-022-1240-8
  本期目录
Rare-earth quantum memories: The experimental status quo
Mucheng Guo1,2, Shuping Liu1,2,3, Weiye Sun1,2, Miaomiao Ren1,2, Fudong Wang1,2,3(), Manjin Zhong1,2,3()
1. Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2. International Quantum Academy, Shenzhen 518048, China
3. Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
 全文: PDF(6619 KB)   HTML
Abstract

Rare-earth doped crystals carry great prospect in developing ensemble-based solid state quantum memories for remote quantum communication and fast quantum processing applications. In recent years, with this system, remarkable quantum storage performances have been realized, and more exciting applications have been exploited, while the technical challenges are also significant. In this paper, we outlined the status quo in the development of rare-earth-based quantum memories from the point of view of different storage protocols, with a focus on the experimental demonstrations. We also analyzed the challenges and provided feasible solutions.

Key wordssolid-state quantum memory    rare-earth crystals    quantum network    quantum communication
收稿日期: 2022-11-10      出版日期: 2023-01-16
Corresponding Author(s): Fudong Wang,Manjin Zhong   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(2): 21303.
Mucheng Guo, Shuping Liu, Weiye Sun, Miaomiao Ren, Fudong Wang, Manjin Zhong. Rare-earth quantum memories: The experimental status quo. Front. Phys. , 2023, 18(2): 21303.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1240-8
https://academic.hep.com.cn/fop/CN/Y2023/V18/I2/21303
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 A. N. L. Chuang M., Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2010
2 Vogel M.. Quantum computation and quantum information, by M. A. Nielsen and I. L. Chuang. Contemp. Phys., 2011, 52(6): 604
https://doi.org/10.1080/00107514.2011.587535
3 Zoller P., Beth T., Binosi D., Blatt R., Briegel H., Bruss D., Calarco T., I. Cirac J., Deutsch D., Eisert J., Ekert A., Fabre C., Gisin N., Grangiere P., Grassl M., Haroche S., Imamoglu A., Karlson A., Kempe J., Kouwenhoven L., Kröll S., Leuchs G., Lewenstein M., Loss D., Lütkenhaus N., Massar S., E. Mooij J., B. Plenio M., Polzik E., Popescu S., Rempe G., Sergienko A., Suter D., Twamley J., Wendin G., Werner R., Winter A., Wrachtrup J., Zeilinger A.. Quantum information processing and communication. Europ. Phys. J. D, 2005, 36: 203
https://doi.org/10.1140/epjd/e2005-00251-1
4 Gisin N., Ribordy G., Tittel W., Zbinden H.. Quantum cryptography. Rev. Mod. Phys., 2002, 74(1): 145
https://doi.org/10.1103/RevModPhys.74.145
5 L. Degen C., Reinhard F., Cappellaro P.. Quantum sensing. Rev. Mod. Phys., 2017, 89(3): 035002
https://doi.org/10.1103/RevModPhys.89.035002
6 M. Georgescu I., Ashhab S., Nori F.. Quantum simulation. Rev. Mod. Phys., 2014, 86(1): 153
https://doi.org/10.1103/RevModPhys.86.153
7 Wehner S., Elkouss D., Hanson R.. Quantum internet: A vision for the road ahead. Science, 2018, 362(6412): eaam9288
https://doi.org/10.1126/science.aam9288
8 J. Kimble H.. The quantum internet. Nature, 2008, 453(7198): 1023
https://doi.org/10.1038/nature07127
9 H. Wei S., Jing B., Y. Zhang X., Y. Liao J., Z. Yuan C., Y. Fan B., Lyu C., L. Zhou D., Wang Y., W. Deng G., Z. Song H., Oblak D., C. Guo G., Zhou Q.. Towards real-world quantum networks: A review. Laser Photonics Rev., 2022, 16(3): 2100219
https://doi.org/10.1002/lpor.202100219
10 H. Bennett C.Brassard G., Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science 560, 7–11 (2014),
11 Xu F., Ma X., Zhang Q., K. Lo H., W. Pan J.. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 2020, 92(2): 025002
https://doi.org/10.1103/RevModPhys.92.025002
12 Boaron A., Boso G., Rusca D., Vulliez C., Autebert C., Caloz M., Perrenoud M., Gras G., Bussières F., J. Li M., Nolan D., Martin A., Zbinden H.. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett., 2018, 121(19): 190502
https://doi.org/10.1103/PhysRevLett.121.190502
13 P. Chen J., Zhang C., Liu Y., Jiang C., Zhang W., L. Hu X., Y. Guan J., W. Yu Z., Xu H., Lin J., J. Li M., Chen H., Li H., You L., Wang Z., B. Wang X., Zhang Q., W. Pan J.. Sending-or-not-sending with independent lasers: Secure twin field quantum key distribution over 509 km. Phys. Rev. Lett., 2020, 124(7): 070501
https://doi.org/10.1103/PhysRevLett.124.070501
14 K. Wootters W., H. Zurek W.. A single quantum cannot be cloned. Nature, 1982, 299(5886): 802
https://doi.org/10.1038/299802a0
15 J. Briegel H., Dür W., I. Cirac J., Zoller P.. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett., 1998, 81(26): 5932
https://doi.org/10.1103/PhysRevLett.81.5932
16 Sangouard N., Simon C., de Riedmatten H., Gisin N.. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 2011, 83(1): 33
https://doi.org/10.1103/RevModPhys.83.33
17 Muralidharan S., Li L., Kim J., Lütkenhaus N., D. Lukin M., Jiang L.. Optimal architectures for long distance quantum communication. Sci. Rep., 2016, 6(1): 20463
https://doi.org/10.1038/srep20463
18 S. Yuan Z., H. Bao X., Y. Lu C., Zhang J., Z. Peng C., W. Pan J.. Entangled photons and quantum communication. Phys. Rep., 2010, 497(1): 1
https://doi.org/10.1016/j.physrep.2010.07.004
19 Hammerer K., S. Sørensen A., S. Polzik E.. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 2010, 82(2): 1041
https://doi.org/10.1103/RevModPhys.82.1041
20 Gouzien E., Sangouard N.. Factoring 2048-bit RSA integers in 177 days with 13436 qubits and a multimode memory. Phys. Rev. Lett., 2021, 127(14): 140503
https://doi.org/10.1103/PhysRevLett.127.140503
21 L. Xiang Z., Ashhab S., Q. You J., Nori F.. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 2013, 85(2): 623
https://doi.org/10.1103/RevModPhys.85.623
22 Kok P., J. Munro W., Nemoto K., C. Ralph T., P. Dowling J., J. Milburn G.. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 2007, 79(1): 135
https://doi.org/10.1103/RevModPhys.79.135
23 M. Duan L., D. Lukin M., I. Cirac J., Zoller P.. Long distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414(6862): 413
https://doi.org/10.1038/35106500
24 Hofmann J., Krug M., Ortegel N., Gérard L., Weber M., Rosenfeld W., Weinfurter H.. Heralded entanglement between widely separated atoms. Science, 2012, 337(6090): 72
https://doi.org/10.1126/science.1221856
25 Hensen B., Bernien H., E. Dréau A., Reiserer A., Kalb N., S. Blok M., Ruitenberg J., F. L. Vermeulen R., N. Schouten R., Abellán C., Amaya W., Pruneri V., W. Mitchell M., Markham M., J. Twitchen D., Elkouss D., Wehner S., H. Taminiau T., Hanson R.. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015, 526(7575): 682
https://doi.org/10.1038/nature15759
26 Delteil A., Sun Z., Gao W., Togan E., Faelt S., Imamoğlu A.. Generation of heralded entanglement between distant hole spins. Nat. Phys., 2016, 12(3): 218
https://doi.org/10.1038/nphys3605
27 Riedinger R., Hong S., A. Norte R., A. Slater J., Shang J., G. Krause A., Anant V., Aspelmeyer M., Gröblacher S.. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature, 2016, 530(7590): 313
https://doi.org/10.1038/nature16536
28 Li C., Zhang S., K. Wu Y., Jiang N., F. Pu Y., M. Duan L.. Multicell atomic quantum memory as a hardware-efficient quantum repeater node. PRX Quantum, 2021, 2(4): 040307
https://doi.org/10.1103/PRXQuantum.2.040307
29 Yu Y., Ma F., Y. Luo X., Jing B., F. Sun P., Z. Fang R., W. Yang C., Liu H., Y. Zheng M., P. Xie X., J. Zhang W., X. You L., Wang Z., Y. Chen T., Zhang Q., H. Bao X., W. Pan J.. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 2020, 578(7794): 240
https://doi.org/10.1038/s41586-020-1976-7
30 Minder M., Pittaluga M., L. Roberts G., Lucamarini M., F. Dynes J., L. Yuan Z., J. Shields A.. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics, 2019, 13(5): 334
https://doi.org/10.1038/s41566-019-0377-7
31 K. Bhaskar M., Riedinger R., Machielse B., S. Levonian D., T. Nguyen C., N. Knall E., Park H., Englund D., Lončar M., D. Sukachev D., D. Lukin M.. Experimental demonstration of memory-enhanced quantum communication. Nature, 2020, 580(7801): 60
https://doi.org/10.1038/s41586-020-2103-5
32 F. Pu Y., Zhang S., K. Wu Y., Jiang N., Chang W., Li C., M. Duan L.. Experimental demonstration of memory-enhanced scaling for entanglement connection of quantum repeater segments. Nat. Photonics, 2021, 15(5): 374
https://doi.org/10.1038/s41566-021-00764-4
33 Jiang N., F. Pu Y., Chang W., Li C., Zhang S., M. Duan L.. Experimental realization of 105-qubit random access quantum memory. npj Quantum Inform., 2019, 5: 28
https://doi.org/10.1038/s41534-019-0144-0
34 Buser G., Mottola R., Cotting B., Wolters J., Treutlein P.. Single-photon storage in a ground-state vapor cell quantum memory. PRX Quantum, 2022, 3(2): 020349
https://doi.org/10.1103/PRXQuantum.3.020349
35 B. Dideriksen K., Schmieg R., Zugenmaier M., S. Polzik E.. Room-temperature single-photon source with near-millisecond built-in memory. Nat. Commun., 2021, 12(1): 3699
https://doi.org/10.1038/s41467-021-24033-8
36 Katz O., Firstenberg O.. Light storage for one second in room-temperature alkali vapor. Nat. Commun., 2018, 9(1): 2074
https://doi.org/10.1038/s41467-018-04458-4
37 Yan Z., Wu L., Jia X., Liu Y., Deng R., Li S., Wang H., Xie C., Peng K.. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles. Nat. Commun., 2017, 8(1): 718
https://doi.org/10.1038/s41467-017-00809-9
38 Jing B., J. Wang X., Yu Y., F. Sun P., Jiang Y., J. Yang S., H. Jiang W., Y. Luo X., Zhang J., Jiang X., H. Bao X., W. Pan J.. Entanglement of three quantum memories via interference of three single photons. Nat. Photonics, 2019, 13(3): 210
https://doi.org/10.1038/s41566-018-0342-x
39 Y. Luo X., Yu Y., L. Liu J., Y. Zheng M., Y. Wang C., Wang B., Li J., Jiang X., P. Xie X., Zhang Q., H. Bao X., W. Pan J.. Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett., 2022, 129(5): 050503
https://doi.org/10.1103/PhysRevLett.129.050503
40 F. Pu Y., Jiang N., Chang W., X. Yang H., Li C., M. Duan L.. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nat. Commun., 2017, 8(1): 15359
https://doi.org/10.1038/ncomms15359
41 Heller L., Farrera P., Heinze G., de Riedmatten H.. Cold atom temporally multiplexed quantum memory with cavity enhanced noise suppression. Phys. Rev. Lett., 2020, 124(21): 210504
https://doi.org/10.1103/PhysRevLett.124.210504
42 F. Askarani M., Das A., H. Davidson J., C. Amaral G., Sinclair N., A. Slater J., Marzban S., W. Thiel C., L. Cone R., Oblak D., Tittel W.. Long-lived solid-state optical memory for high-rate quantum repeaters. Phys. Rev. Lett., 2021, 127(22): 220502
https://doi.org/10.1103/PhysRevLett.127.220502
43 Q. Zhou Z., L. Chen D., Jin M., Zheng L., Z. Ma Y., Tu T., Ferrier A., Goldner P., F. Li C., C. Guo G.. A transportable long-lived coherent memory for light pulses. Sci. Bull. (Beijing), 2022,
https://doi.org/10.1016/j.scib.2022.11.007
44 Zhong M., P. Hedges M., L. Ahlefeldt R., G. Bartholomew J., E. Beavan S., M. Wittig S., J. Longdell J., J. Sellars M.. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature, 2015, 517(7533): 177
https://doi.org/10.1038/nature14025
45 Wolfowicz G., J. Heremans F., P. Anderson C., Kanai S., Seo H., Gali A., Galli G., D. Awschalom D.. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater., 2021, 6(10): 906
https://doi.org/10.1038/s41578-021-00306-y
46 D. Awschalom D., Hanson R., Wrachtrup J., B. Zhou B.. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics, 2018, 12(9): 516
https://doi.org/10.1038/s41566-018-0232-2
47 Thiel C., Böttger T., Cone R.. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin., 2011, 131: 353
https://doi.org/10.1016/j.jlumin.2010.12.015
48 M. Macfarlane R.. High-resolution laser spectroscopy of rareearth doped insulators: a personal perspective. J. Lumin., 2002, 100(1−4): 1
https://doi.org/10.1016/S0022-2313(02)00450-7
49 Macfarlane R.Shelby R., Chapter 3 - Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids, in: Spectroscopy of Solids Containing Rare Earth Ions, Modern Problems in Condensed Matter Sciences, Vol. 21, edited by A. Kaplyanskii and R. Macfarlane, Elsevier, 1987, pp 51–184
50 J. Freeman A., E. Watson R.. Theoretical investigation of some magnetic and spectroscopic properties of rare-earth ions. Phys. Rev., 1962, 127(6): 2058
https://doi.org/10.1103/PhysRev.127.2058
51 J. Cerf N., Ipe A., Rottenberg X.. Cloning of continuous quantum variables. Phys. Rev. Lett., 2000, 85(8): 1754
https://doi.org/10.1103/PhysRevLett.85.1754
52 Massar S., Popescu S.. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett., 1995, 74(8): 1259
https://doi.org/10.1103/PhysRevLett.74.1259
53 Simon C., de Riedmatten H., Afzelius M., Sangouard N., Zbinden H., Gisin N.. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett., 2007, 98(19): 190503
https://doi.org/10.1103/PhysRevLett.98.190503
54 A. Collins O., D. Jenkins S., Kuzmich A., A. B. Kennedy T.. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett., 2007, 98(6): 060502
https://doi.org/10.1103/PhysRevLett.98.060502
55 F. Reim K., Nunn J., O. Lorenz V., J. Sussman B., C. Lee K., K. Langford N., Jaksch D., A. Walmsley I.. Towards highspeed optical quantum memories. Nat. Photonics, 2010, 4(4): 218
https://doi.org/10.1038/nphoton.2010.30
56 Chanelière T.Hétet G.Sangouard N., Quantum Optical Memory Protocols in Atomic Ensembles, Academic Press, 2018, Chapter 2, pp 77–150
57 F. Reim K., Michelberger P., C. Lee K., Nunn J., K. Langford N., A. Walmsley I.. Single-photon-level quantum memory at room temperature. Phys. Rev. Lett., 2011, 107(5): 053603
https://doi.org/10.1103/PhysRevLett.107.053603
58 Nunn J., A. Walmsley I., G. Raymer M., Surmacz K., C. Waldermann F., Wang Z., Jaksch D.. Mapping broadband single-photon wave packets into an atomic memory. Phys. Rev. A, 2007, 75(1): 011401
https://doi.org/10.1103/PhysRevA.75.011401
59 E. Harris S., E. Field J., Imamoğlu A.. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 1990, 64(10): 1107
https://doi.org/10.1103/PhysRevLett.64.1107
60 Fleischhauer M., Imamoglu A., P. Marangos J.. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 2005, 77(2): 633
https://doi.org/10.1103/RevModPhys.77.633
61 O. Scully M.S. Zubairy M., Quantum Optics, Cambridge University Press, 1997
62 Kuznetsova E., Kocharovskaya O., Hemmer P., O. Scully M.. Atomic interference phenomena in solids with a longlived spin coherence. Phys. Rev. A, 2002, 66(6): 063802
https://doi.org/10.1103/PhysRevA.66.063802
63 Ham B., Hemmer P., Shahriar M.. Efficient electromagnetically induced transparency in a rare-earth doped crystal. Opt. Commun., 1997, 144(4-6): 227
https://doi.org/10.1016/S0030-4018(97)00423-9
64 A. Turukhin, V. Sudarshanam, M. Shahriar, J. Musser, and P. Hemmer, First observation of ultraslow group velocity of light in a solid, in: Technical Digest, Summaries of papers presented at the Quantum Electronics and Laser Science Conference, Postconference Technical Digest, IEEE Cat. No. 01CH37172, 2001, pp 6–7
65 V. Turukhin A., S. Sudarshanam V., S. Shahriar M., A. Musser J., S. Ham B., R. Hemmer P.. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett., 2001, 88(2): 023602
https://doi.org/10.1103/PhysRevLett.88.023602
66 J. Longdell J., Fraval E., J. Sellars M., B. Manson N.. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett., 2005, 95(6): 063601
https://doi.org/10.1103/PhysRevLett.95.063601
67 L. McCall S., L. Hahn E.. Self-induced transparency. Phys. Rev., 1969, 183(2): 457
https://doi.org/10.1103/PhysRev.183.457
68 V. Gorshkov A., André A., D. Lukin M., S. Sørensen A.. Photon storage in Λ-type optically dense atomic media (ii): Freespace model. Phys. Rev. A, 2007, 76(3): 033805
https://doi.org/10.1103/PhysRevA.76.033805
69 Schraft D., Hain M., Lorenz N., Halfmann T.. Stopped light at high storage efficiency in a Pr3+: Y2SiO5 crystal. Phys. Rev. Lett., 2016, 116(7): 073602
https://doi.org/10.1103/PhysRevLett.116.073602
70 Hain M., Stabel M., Halfmann T.. Few-photon storage on a second timescale by electromagnetically induced transparency in a doped solid. New J. Phys., 2022, 24(2): 023012
https://doi.org/10.1088/1367-2630/ac4ef4
71 Heinze G., Hubrich C., Halfmann T.. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett., 2013, 111(3): 033601
https://doi.org/10.1103/PhysRevLett.111.033601
72 Hainn M., EIT light storage of weak coherent pulses in a doped solid, Ph.D. thesis, Technischen Universität Darmstadt, 2021
73 F. Hsiao Y., S. Chen H., J. Tsai P., C. Chen Y.. Cold atomic media with ultrahigh optical depths. Phys. Rev. A, 2014, 90(5): 055401
https://doi.org/10.1103/PhysRevA.90.055401
74 W. Lin Y., C. Chou H., P. Dwivedi P., C. Chen Y., A. Yu I.. Using a pair of rectangular coils in the mot for the production of cold atom clouds with large optical density. Opt. Express, 2008, 16(6): 3753
https://doi.org/10.1364/OE.16.003753
75 F. Hsiao Y., J. Tsai P., S. Chen H., X. Lin S., C. Hung C., H. Lee C., H. Chen Y., F. Chen Y., A. Yu I., C. Chen Y.. Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett., 2018, 120(18): 183602
https://doi.org/10.1103/PhysRevLett.120.183602
76 Wang Y., Li J., Zhang S., Su K., Zhou Y., Liao K., Du S., Yan H., L. Zhu S.. Efficient quantum memory for singlephoton polarization qubits. Nat. Photonics, 2019, 13(5): 346
https://doi.org/10.1038/s41566-019-0368-8
77 Schraft D., Composite and adiabatic techniques for efficient EIT light storage in Pr3+:Y2SiO5, Ph.D. thesis, Technische Universität Darmstadt, 2016
78 Heinze G., Coherent optical data storage by EIT in a Pr3+:Y2SiO5 crystal, Ph. D. thesis, Technische Universität Darmstadt, 2013
79 Novikova I., V. Gorshkov A., F. Phillips D., S. Sørensen A., D. Lukin M., L. Walsworth R.. Optimal control of light pulse storage and retrieval. Phys. Rev. Lett., 2007, 98(24): 243602
https://doi.org/10.1103/PhysRevLett.98.243602
80 Novikova I., B. Phillips N., V. Gorshkov A.. Optimal light storage with full pulse-shape control. Phys. Rev. A, 2008, 78(2): 021802
https://doi.org/10.1103/PhysRevA.78.021802
81 T. Turnbull M., G. Petrov P., S. Embrey C., M. Marino A., Boyer V.. Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light. Phys. Rev. A, 2013, 88(3): 033845
https://doi.org/10.1103/PhysRevA.88.033845
82 Boyer V., F. McCormick C., Arimondo E., D. Lett P.. Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor. Phys. Rev. Lett., 2007, 99(14): 143601
https://doi.org/10.1103/PhysRevLett.99.143601
83 D. Lukin M., R. Hemmer P., Löffler M., O. Scully M.. Resonant enhancement of parametric processes via radiative interference and induced coherence. Phys. Rev. Lett., 1998, 81(13): 2675
https://doi.org/10.1103/PhysRevLett.81.2675
84 Shuker M., Firstenberg O., Pugatch R., Ron A., Davidson N.. Storing images in warm atomic vapor. Phys. Rev. Lett., 2008, 100(22): 223601
https://doi.org/10.1103/PhysRevLett.100.223601
85 K. Vudyasetu P., M. Camacho R., C. Howell J.. Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Phys. Rev. Lett., 2008, 100(12): 123903
https://doi.org/10.1103/PhysRevLett.100.123903
86 Heinze G., Rudolf A., Beil F., Halfmann T.. Storage of images in atomic coherences in a rare-earth-ion-doped solid. Phys. Rev. A, 2010, 81(1): 011401
https://doi.org/10.1103/PhysRevA.81.011401
87 Heinze G., Rentzsch N., Halfmann T.. Multiplexed image storage by electromagnetically induced transparency in a solid. Phys. Rev. A, 2012, 86(5): 053837
https://doi.org/10.1103/PhysRevA.86.053837
88 Ma L., Lei X., Yan J., Li R., Chai T., Yan Z., Jia X., Xie C., Peng K.. High-performance cavity-enhanced quantum memory with warm atomic cell. Nat. Commun., 2022, 13(1): 2368
https://doi.org/10.1038/s41467-022-30077-1
89 A. Moiseev S., Kröll S.. Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition. Phys. Rev. Lett., 2001, 87(17): 173601
https://doi.org/10.1103/PhysRevLett.87.173601
90 W. Mossberg T.. Time-domain frequency-selective optical data storage. Opt. Lett., 1982, 7(2): 77
https://doi.org/10.1364/OL.7.000077
91 D. Abella I., A. Kurnit N., R. Hartmann S.. Photon echoes. Phys. Rev., 1966, 141(1): 391
https://doi.org/10.1103/PhysRev.141.391
92 L. Hahn E.. Spin echoes. Phys. Rev., 1950, 80(4): 580
https://doi.org/10.1103/PhysRev.80.580
93 Wang T., Greiner C., R. Bochinski J., W. Mossberg T.. Experimental study of photon-echo size in optically thick media. Phys. Rev. A, 1999, 60(2): R757
https://doi.org/10.1103/PhysRevA.60.R757
94 S. Cornish C., R. Babbitt W., Tsang L.. Demonstration of highly efficient photon echoes. Opt. Lett., 2000, 25(17): 1276
https://doi.org/10.1364/OL.25.001276
95 Azadeh M., Sjaarda Cornish C., R. Babbitt W., Tsang L.. Efficient photon echoes in optically thick media. Phys. Rev. A, 1998, 57(6): 4662
https://doi.org/10.1103/PhysRevA.57.4662
96 Ruggiero J., L. Le Gouët J., Simon C., Chanelière T.. Why the two-pulse photon echo is not a good quantum memory protocol. Phys. Rev. A, 2009, 79(5): 053851
https://doi.org/10.1103/PhysRevA.79.053851
97 L. Alexander A., J. Longdell J., J. Sellars M., B. Manson N.. Photon echoes produced by switching electric fields. Phys. Rev. Lett., 2006, 96(4): 043602
https://doi.org/10.1103/PhysRevLett.96.043602
98 de Riedmatten H., Afzelius M., U. Staudt M., Simon C., Gisin N.. A solid-state light–matter interface at the singlephoton level. Nature, 2008, 456(7223): 773
https://doi.org/10.1038/nature07607
99 Hétet G., J. Longdell J., J. Sellars M., K. Lam P., C. Buchler B.. Multimodal properties and dynamics of gradient echo quantum memory. Phys. Rev. Lett., 2008, 101(20): 203601
https://doi.org/10.1103/PhysRevLett.101.203601
100 A. Moiseev S., F. Tarasov V., S. Ham B.. Quantum memory photon echo-like techniques in solids. J. Opt. B Quantum Semiclassical Opt., 2003, 5(4): S497
https://doi.org/10.1088/1464-4266/5/4/356
101 Nilsson M., Kröll S.. Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles. Opt. Commun., 2005, 247(4−6): 393
https://doi.org/10.1016/j.optcom.2004.11.077
102 Sangouard N., Simon C., Afzelius M., Gisin N.. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening. Phys. Rev. A, 2007, 75(3): 032327
https://doi.org/10.1103/PhysRevA.75.032327
103 Hétet G., J. Longdell J., L. Alexander A., K. Lam P., J. Sellars M.. Electro-optic quantum memory for light using two-level atoms. Phys. Rev. Lett., 2008, 100(2): 023601
https://doi.org/10.1103/PhysRevLett.100.023601
104 Alexander A.Longdell J.Sellars M.Manson N., Coherent information storage with photon echoes produced by switching electric fields, J. Lumin. 127(1), 94 (2007)
105 Lauritzen B., Minář J., de Riedmatten H., Afzelius M., Sangouard N., Simon C., Gisin N.. Telecommunicationwavelength solid-state memory at the single photon level. Phys. Rev. Lett., 2010, 104(8): 080502
https://doi.org/10.1103/PhysRevLett.104.080502
106 P. Hedges M., High performance solid state quantum memory, Ph.D. thesis, The Australian National University, 2011
107 Lauritzen B., R. Hastings-Simon S., de Riedmatten H., Afzelius M., Gisin N.. State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing. Phys. Rev. A, 2008, 78(4): 043402
https://doi.org/10.1103/PhysRevA.78.043402
108 P. Hedges M., J. Longdell J., Li Y., J. Sellars M.. Efficient quantum memory for light. Nature, 2010, 465(7301): 1052
https://doi.org/10.1038/nature09081
109 Grosshans F., Grangier P.. Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A, 2001, 64(1): 010301
https://doi.org/10.1103/PhysRevA.64.010301
110 M. Sparkes B., Bernu J., Hosseini M., Geng J., Glorieux Q., A. Altin P., K. Lam P., P. Robins N., C. Buchler B.. Gradient echo memory in an ultra-high optical depth cold atomic ensemble. New J. Phys., 2013, 15(8): 085027
https://doi.org/10.1088/1367-2630/15/8/085027
111 W. Cho Y., T. Campbell G., L. Everett J., Bernu J., B. Higginbottom D., T. Cao M., Geng J., P. Robins N., K. Lam P., C. Buchler B.. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica, 2016, 3(1): 100
https://doi.org/10.1364/OPTICA.3.000100
112 Hosseini M., M. Sparkes B., Campbell G., K. Lam P., C. Buchler B.. High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun., 2011, 2(1): 174
https://doi.org/10.1038/ncomms1175
113 Hosseini M., Campbell G., M. Sparkes B., K. Lam P., C. Buchler B.. Unconditional room-temperature quantum memory. Nat. Phys., 2011, 7(10): 794
https://doi.org/10.1038/nphys2021
114 Hosseini M., M. Sparkes B., T. Campbell G., K. Lam P., C. Buchler B.. Storage and manipulation of light using a Raman gradient-echo process. J. Phys. At. Mol. Opt. Phys., 2012, 45(12): 124004
https://doi.org/10.1088/0953-4075/45/12/124004
115 Hétet G., Hosseini M., M. Sparkes B., Oblak D., K. Lam P., C. Buchler B.. Photon echoes generated by reversing magnetic field gradients in a rubidium vapor. Opt. Lett., 2008, 33(20): 2323
https://doi.org/10.1364/OL.33.002323
116 L. Ahlefeldt R., D. Hutchison W., B. Manson N., J. Sellars M.. Method for assigning satellite lines to crystallographic sites in rare-earth crystals. Phys. Rev. B, 2013, 88(18): 184424
https://doi.org/10.1103/PhysRevB.88.184424
117 L. Ahlefeldt R., L. McAuslan D., J. Longdell J., B. Manson N., J. Sellars M.. Precision measurement of electronic ion-ion interactions between neighboring Eu3+ optical centers. Phys. Rev. Lett., 2013, 111(24): 240501
https://doi.org/10.1103/PhysRevLett.111.240501
118 L. Ahlefeldt R., R. Hush M., J. Sellars M.. Ultranarrow optical inhomogeneous linewidth in a stoichiometric rare-earth crystal. Phys. Rev. Lett., 2016, 117(25): 250504
https://doi.org/10.1103/PhysRevLett.117.250504
119 Ortu A., V. Rakonjac J., Holzäpfel A., Seri A., Grandi S., Mazzera M., de Riedmatten H., Afzelius M.. Multimode capacity of atomic-frequency comb quantum memories. Quantum Sci. Technol., 2022, 7(3): 035024
https://doi.org/10.1088/2058-9565/ac73b0
120 R. Hush M., D. B. Bentley C., L. Ahlefeldt R., R. James M., J. Sellars M., Ugrinovskii V.. Quantum state transfer through time reversal of an optical channel. Phys. Rev. A, 2016, 94(6): 062302
https://doi.org/10.1103/PhysRevA.94.062302
121 I. Cirac J., Zoller P., J. Kimble H., Mabuchi H.. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett., 1997, 78(16): 3221
https://doi.org/10.1103/PhysRevLett.78.3221
122 Afzelius M., Simon C., de Riedmatten H., Gisin N.. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A, 2009, 79(5): 052329
https://doi.org/10.1103/PhysRevA.79.052329
123 Nunn J., Reim K., C. Lee K., O. Lorenz V., J. Sussman B., A. Walmsley I., Jaksch D.. Multimode memories in atomic ensembles. Phys. Rev. Lett., 2008, 101(26): 260502
https://doi.org/10.1103/PhysRevLett.101.260502
124 Usmani I., Afzelius M., de Riedmatten H., Gisin N.. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat. Commun., 2010, 1(1): 12
https://doi.org/10.1038/ncomms1010
125 Sinclair N., Saglamyurek E., Mallahzadeh H., A. Slater J., George M., Ricken R., P. Hedges M., Oblak D., Simon C., Sohler W., Tittel W.. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett., 2014, 113(5): 053603
https://doi.org/10.1103/PhysRevLett.113.053603
126 Q. Zhou Z., L. Hua Y., Liu X., Chen G., S. Xu J., J. Han Y., F. Li C., C. Guo G.. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal. Phys. Rev. Lett., 2015, 115(7): 070502
https://doi.org/10.1103/PhysRevLett.115.070502
127 Lauritzen B., Minář J., de Riedmatten H., Afzelius M., Gisin N.. Approaches for a quantum memory at telecommunication wavelengths. Phys. Rev. A, 2011, 83(1): 012318
https://doi.org/10.1103/PhysRevA.83.012318
128 Gündoğan M., M. Ledingham P., Almasi A., Cristiani M., de Riedmatten H.. Quantum storage of a photonic polarization qubit in a solid. Phys. Rev. Lett., 2012, 108(19): 190504
https://doi.org/10.1103/PhysRevLett.108.190504
129 Q. Zhou Z., B. Lin W., Yang M., F. Li C., C. Guo G.. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett., 2012, 108(19): 190505
https://doi.org/10.1103/PhysRevLett.108.190505
130 Clausen C., Bussières F., Afzelius M., Gisin N.. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials. Phys. Rev. Lett., 2012, 108(19): 190503
https://doi.org/10.1103/PhysRevLett.108.190503
131 Laplane C., Jobez P., Etesse J., Timoney N., Gisin N., Afzelius M.. Multiplexed on-demand storage of polarization qubits in a crystal. New J. Phys., 2015, 18(1): 013006
https://doi.org/10.1088/1367-2630/18/1/013006
132 Tiranov A., C. Strassmann P., Lavoie J., Brunner N., Huber M., B. Verma V., W. Nam S., P. Mirin R., E. Lita A., Marsili F., Afzelius M., Bussières F., Gisin N.. Temporal multimode storage of entangled photon pairs. Phys. Rev. Lett., 2016, 117(24): 240506
https://doi.org/10.1103/PhysRevLett.117.240506
133 Jin J., Saglamyurek E., G. Puigibert M., Verma V., Marsili F., W. Nam S., Oblak D., Tittel W.. Telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits. Phys. Rev. Lett., 2015, 115(14): 140501
https://doi.org/10.1103/PhysRevLett.115.140501
134 Clausen C., Usmani I., Bussières F., Sangouard N., Afzelius M., de Riedmatten H., Gisin N.. Quantum storage of photonic entanglement in a crystal. Nature, 2011, 469(7331): 508
https://doi.org/10.1038/nature09662
135 Saglamyurek E., Sinclair N., Jin J., Slater J., Oblak D., Bussières F., George M., Ricken R., Sohler W., Tittel W.. Broadband waveguide quantum memory for entangled photons. Nature, 2011, 469(7331): 512
https://doi.org/10.1038/nature09719
136 Usmani I., Clausen C., Bussières F., Sangouard N., Afzelius M., Gisin N.. Heralded quantum entanglement between two crystals. Nat. Photonics, 2011, 6: 234
https://doi.org/10.1038/NPHOTON.2012.34
137 Rakonjac J., Corrielli G., Lago-Rivera D., Seri A., Mazzera M., Grandi S., Osellame R., de Riedmatten H.. Storage and analysis of light−matter entanglement in a fiber-integrated system. Sci. Adv., 2022, 8(27): eabn3919
https://doi.org/10.1126/sciadv.abn3919
138 Saglamyurek E., Jin J., Verma V., Shaw M., Marsili F., Nam S., Oblak D., Tittel W.. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photonics, 2015, 9(2): 83
https://doi.org/10.1038/nphoton.2014.311
139 Lago-Rivera D., Grandi S., Rakonjac J., Seri A., de Riedmatten H.. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature, 2021, 594(7861): 37
https://doi.org/10.1038/s41586-021-03481-8
140 Seri A., Lenhard A., Rieländer D., Gündoğan M., M. Ledingham P., Mazzera M., de Riedmatten H.. Quantum correlations between single telecom photons and a multimode ondemand solid-state quantum memory. Phys. Rev. X, 2017, 7(2): 021028
https://doi.org/10.1103/PhysRevX.7.021028
141 Liu X., Hu J., F. Li Z., Li X., Y. Li P., J. Liang P., Q. Zhou Z., F. Li C., C. Guo G.. Heralded entanglement distribution between two absorptive quantum memories. Nature, 2021, 594(7861): 41
https://doi.org/10.1038/s41586-021-03505-3
142 Lago-Rivera D.Rakonjac J.Grandi S. Riedmatten H., Long-distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit, arXiv: 2209.00802 (2022)
143 S. Tang J., Q. Zhou Z., T. Wang Y., L. Li Y., Liu X., L. Hua Y., Zou Y., Wang S., Y. He D., Chen G., N. Sun Y., Yu Y., F. Li M., W. Zha G., Q. Ni H., C. Niu Z., F. Li C., C. Guo G.. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat. Commun., 2015, 6(1): 8652
https://doi.org/10.1038/ncomms9652
144 Gisin N., Thew R.. Quantum communication. Nat. Photonics, 2007, 1(3): 165
https://doi.org/10.1038/nphoton.2007.22
145 Bussières F., Clausen C., Tiranov A., Korzh B., B. Verma V., W. Nam S., Marsili F., Ferrier A., Goldner P., Herrmann H., Silberhorn C., Sohler W., Afzelius M., Gisin N.. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photonics, 2014, 8(10): 775
https://doi.org/10.1038/nphoton.2014.215
146 Gündoğan M., M. Ledingham P., Kutluer K., Mazzera M., de Riedmatten H.. Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett., 2015, 114(23): 230501
https://doi.org/10.1103/PhysRevLett.114.230501
147 Jobez P., Timoney N., Laplane C., Etesse J., Ferrier A., Goldner P., Gisin N., Afzelius M.. Towards highly multimode optical quantum memory for quantum repeaters. Phys. Rev. A, 2016, 93(3): 032327
https://doi.org/10.1103/PhysRevA.93.032327
148 Welinski S., Ferrier A., Afzelius M., Goldner P.. Highresolution optical spectroscopy and magnetic properties of Yb3+ in Y2SiO5. Phys. Rev. B, 2016, 94(15): 155116
https://doi.org/10.1103/PhysRevB.94.155116
149 Ortu A., Tiranov A., Welinski S., Fröwis F., Gisin N., Ferrier A., Goldner P., Afzelius M.. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater., 2018, 17(8): 671
https://doi.org/10.1038/s41563-018-0138-x
150 Böttger T., W. Thiel C., Sun Y., L. Cone R.. Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration. Phys. Rev. B, 2006, 73(7): 075101
https://doi.org/10.1103/PhysRevB.73.075101
151 Businger M., Nicolas L., S. Mejia T., Ferrier A., Goldner P., Afzelius M.. Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5. Nat. Commun., 2022, 13(1): 6438
https://doi.org/10.1038/s41467-022-33929-y
152 Saglamyurek E., Grimau Puigibert M., Zhou Q., Giner L., Marsili F., B. Verma V., Woo Nam S., Oesterling L., Nippa D., Oblak D., Tittel W.. A multiplexed light-matter interface for fibre-based quantum networks. Nat. Commun., 2016, 7(1): 11202
https://doi.org/10.1038/ncomms11202
153 Seri A., Lago-Rivera D., Lenhard A., Corrielli G., Osellame R., Mazzera M., de Riedmatten H.. Quantum storage of frequency-multiplexed heralded single photons. Phys. Rev. Lett., 2019, 123(8): 080502
https://doi.org/10.1103/PhysRevLett.123.080502
154 H. Wei S.Jing B.Y. Zhang X.Y. Liao J.Li H. X. You L.Wang Z.Wang Y.W. Deng G.Z. Song H. Oblak D.C. Guo G.Zhou Q., Storage of 1650 modes of single photons at telecom wavelength, arXiv: 2209.00802 (2022)
155 Sabooni M., Li Q., Kröll S., Rippe L.. Efficient quantum memory using a weakly absorbing sample. Phys. Rev. Lett., 2013, 110(13): 133604
https://doi.org/10.1103/PhysRevLett.110.133604
156 Ma Y., Z. Ma Y., Q. Zhou Z., F. Li C., C. Guo G.. One hour coherent optical storage in an atomic frequency comb memory. Nat. Commun., 2021, 12(1): 2381
https://doi.org/10.1038/s41467-021-22706-y
157 Ortu A., Holzäpfel A., Etesse J., Afzelius M.. Storage of photonic time-bin qubits for up to 20 ms in a rare-earth doped crystal. npj Quantum Inform., 2022, 8: 29
https://doi.org/10.1038/s41534-022-00541-3
158 Kraus B., Tittel W., Gisin N., Nilsson M., Kröll S., I. Cirac J.. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening. Phys. Rev. A, 2006, 73(2): 020302
https://doi.org/10.1103/PhysRevA.73.020302
159 A. Moiseev S., N. Andrianov S., F. Gubaidullin F.. Efficient multimode quantum memory based on photon echo in an optimal QED cavity. Phys. Rev. A, 2010, 82(2): 022311
https://doi.org/10.1103/PhysRevA.82.022311
160 Afzelius M., Simon C.. Impedance-matched cavity quantum memory. Phys. Rev. A, 2010, 82(2): 022310
https://doi.org/10.1103/PhysRevA.82.022310
161 Jobez P., Usmani I., Timoney N., Laplane C., Gisin N., Afzelius M.. Cavity-enhanced storage in an optical spin-wave memory. New J. Phys., 2014, 16(8): 083005
https://doi.org/10.1088/1367-2630/16/8/083005
162 H. Davidson J., Lefebvre P., Zhang J., Oblak D., Tittel W.. Improved light-matter interaction for storage of quantum states of light in a thulium-doped crystal cavity. Phys. Rev. A, 2020, 101(4): 042333
https://doi.org/10.1103/PhysRevA.101.042333
163 Duranti S., Highly efficient qubit storage in an atomic frequency comb based quantum memory, in: Rare Earth Ions for Quantum Information Workshop, 2022
164 Afzelius M., Usmani I., Amari A., Lauritzen B., Walther A., Simon C., Sangouard N., Minář J., de Riedmatten H., Gisin N., Kröll S.. Demonstration of atomic frequency comb memory for light with spin-wave storage. Phys. Rev. Lett., 2010, 104(4): 040503
https://doi.org/10.1103/PhysRevLett.104.040503
165 Rippe L., Nilsson M., Kröll S., Klieber R., Suter D.. Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal. Phys. Rev. A, 2005, 71(6): 062328
https://doi.org/10.1103/PhysRevA.71.062328
166 S. Silver M., I. Joseph R., I. Hoult D.. Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation. Phys. Rev. A, 1985, 31(4): 2753
https://doi.org/10.1103/PhysRevA.31.2753
167 Tian M., Chang T., D. Merkel K., Randall W.. Reconfiguration of spectral absorption features using a frequency-chirped laser pulse. Appl. Opt., 2011, 50(36): 6548
https://doi.org/10.1364/AO.50.006548
168 Businger M., Tiranov A., T. Kaczmarek K., Welinski S., Zhang Z., Ferrier A., Goldner P., Afzelius M.. Optical spin-wave storage in a solid-state hybridized electron-nuclear spin ensemble. Phys. Rev. Lett., 2020, 124(5): 053606
https://doi.org/10.1103/PhysRevLett.124.053606
169 E. Beavan S., M. Ledingham P., J. Longdell J., J. Sellars M.. Photon echo without a free induction decay in a double-λ system. Opt. Lett., 2011, 36(7): 1272
https://doi.org/10.1364/OL.36.001272
170 Z. Ma Y., Jin M., L. Chen D., Q. Zhou Z., F. Li C., C. Guo G.. Elimination of noise in optically rephased photon echoes. Nat. Commun., 2021, 12(1): 4378
https://doi.org/10.1038/s41467-021-24679-4
171 V. Rakonjac J., H. Chen Y., P. Horvath S., J. Longdell J.. Long spin coherence times in the ground state and in an optically excited state of 167Er3+: Y2SiO5 at zero magnetic field. Phys. Rev. B, 2020, 101(18): 184430
https://doi.org/10.1103/PhysRevB.101.184430
172 Rančić M., P. Hedges M., L. Ahlefeldt R., J. Sellars M.. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys., 2018, 14(1): 50
https://doi.org/10.1038/nphys4254
173 Zhong M., Development of persistent quantum memories, Ph. D. thesis, The Australian National University, 2017
174 Damon V., Bonarota M., Louchet-Chauvet A., Chanelière T., L. L. Gouët J.. Revival of silenced echo and quantum memory for light. New J. Phys., 2011, 13(9): 093031
https://doi.org/10.1088/1367-2630/13/9/093031
175 Bonarota M., Dajczgewand J., Louchet-Chauvet A., L. L. Gouët J., Chanelière T.. Photon echo with a few photons in two-level atoms. Laser Phys., 2014, 24(9): 094003
https://doi.org/10.1088/1054-660X/24/9/094003
176 Liu C., Q. Zhou Z., X. Zhu T., Zheng L., Jin M., Liu X., Y. Li P., Y. Huang J., Ma Y., Tu T., S. Yang T., F. Li C., C. Guo G.. Reliable coherent optical memory based on a laser-written waveguide. Optica, 2020, 7(2): 192
https://doi.org/10.1364/OPTICA.379166
177 Dajczgewand J., L. L. Gouët J., Louchet-Chauvet A., Chanelière T.. Large efficiency at telecom wavelength for optical quantum memories. Opt. Lett., 2014, 39(9): 2711
https://doi.org/10.1364/OL.39.002711
178 Jin M., Z. Ma Y., Q. Zhou Z., F. Li C., C. Guo G.. A faithful solid-state spin-wave quantum memory for polarization qubits. Sci. Bull. (Beijing), 2022, 67(7): 676
https://doi.org/10.1016/j.scib.2022.01.019
179 Q. Zhou Z., A spin-wave integrated quantum memory, in: Rare Earth Ions for Quantum Information Workshop, 2022
180 P. Horvath S., K. Alqedra M., Kinos A., Walther A., M. Dahlström J., Kröll S., Rippe L.. Noise-free on-demand atomic frequency comb quantum memory. Phys. Rev. Res., 2021, 3(2): 023099
https://doi.org/10.1103/PhysRevResearch.3.023099
181 X. Zhu T., Liu C., Jin M., X. Su M., P. Liu Y., J. Li W., Ye Y., Q. Zhou Z., F. Li C., C. Guo G.. On-demand integrated quantum memory for polarization qubits. Phys. Rev. Lett., 2022, 128(18): 180501
https://doi.org/10.1103/PhysRevLett.128.180501
182 Liu C., X. Zhu T., X. Su M., Z. Ma Y., Q. Zhou Z., F. Li C., C. Guo G.. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys. Rev. Lett., 2020, 125(26): 260504
https://doi.org/10.1103/PhysRevLett.125.260504
183 Craiciu I., Lei M., Rochman J., G. Bartholomew J., Faraon A.. Multifunctional on-chip storage at telecommunication wavelength for quantum networks. Optica, 2021, 8(1): 114
https://doi.org/10.1364/OPTICA.412211
184 Tiranov A., Lavoie J., Ferrier A., Goldner P., B. Verma V., W. Nam S., P. Mirin R., E. Lita A., Marsili F., Herrmann H., Silberhorn C., Gisin N., Afzelius M., Bussières F.. Storage of hyperentanglement in a solid-state quantum memory. Optica, 2015, 2(4): 279
https://doi.org/10.1364/OPTICA.2.000279
185 Simon C., W. Pan J.. Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett., 2002, 89(25): 257901
https://doi.org/10.1103/PhysRevLett.89.257901
186 Ecker S., Bouchard F., Bulla L., Brandt F., Kohout O., Steinlechner F., Fickler R., Malik M., Guryanova Y., Ursin R., Huber M.. Overcoming noise in entanglement distribution. Phys. Rev. X, 2019, 9(4): 041042
https://doi.org/10.1103/PhysRevX.9.041042
187 Sheridan L., Scarani V.. Security proof for quantum key distribution using qudit systems. Phys. Rev. A, 2010, 82(3): 030301
https://doi.org/10.1103/PhysRevA.82.030301
188 R. Ferguson K., Generation and storage of optical entanglement in a solid state spin-wave quantum memory, Ph. D. thesis, The Australian National University, 2016
189 E. Beavan S., Photon-echo rephasing of spontaneous emission from an ensemble of rare-earth ions, Ph. D. thesis, The Australian National University, 2012
190 M. Ledingham P., R. Naylor W., J. Longdell J., E. Beavan S., J. Sellars M.. Nonclassical photon streams using rephased amplified spontaneous emission. Phys. Rev. A, 2010, 81(1): 012301
https://doi.org/10.1103/PhysRevA.81.012301
191 M. Ledingham P., R. Naylor W., J. Longdell J.. Experimental realization of light with time-separated correlations by rephasing amplified spontaneous emission. Phys. Rev. Lett., 2012, 109(9): 093602
https://doi.org/10.1103/PhysRevLett.109.093602
192 E. Beavan S., P. Hedges M., J. Sellars M.. Demonstration of photon-echo rephasing of spontaneous emission. Phys. Rev. Lett., 2012, 109(9): 093603
https://doi.org/10.1103/PhysRevLett.109.093603
193 R. Ferguson K., E. Beavan S., J. Longdell J., J. Sellars M.. Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory. Phys. Rev. Lett., 2016, 117(2): 020501
https://doi.org/10.1103/PhysRevLett.117.020501
194 Laplane C., Jobez P., Etesse J., Gisin N., Afzelius M.. Multimode and long-lived quantum correlations between photons and spins in a crystal. Phys. Rev. Lett., 2017, 118(21): 210501
https://doi.org/10.1103/PhysRevLett.118.210501
195 Kutluer K., Mazzera M., de Riedmatten H.. Solid-state source of nonclassical photon pairs with embedded multimode quantum memory. Phys. Rev. Lett., 2017, 118(21): 210502
https://doi.org/10.1103/PhysRevLett.118.210502
196 Kutluer K., Distante E., Casabone B., Duranti S., Mazzera M., de Riedmatten H.. Time entanglement between a photon and a spin wave in a multimode solid-state quantum memory. Phys. Rev. Lett., 2019, 123(3): 030501
https://doi.org/10.1103/PhysRevLett.123.030501
197 Sekatski P., Sangouard N., Gisin N., de Riedmatten H., Afzelius M.. Photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth-metal-doped solids. Phys. Rev. A, 2011, 83(5): 053840
https://doi.org/10.1103/PhysRevA.83.053840
198 Ottaviani C., Simon C., de Riedmatten H., Afzelius M., Lauritzen B., Sangouard N., Gisin N.. Creating single collective atomic excitations via spontaneous Raman emission in inhomogeneously broadened systems: Beyond the adiabatic approximation. Phys. Rev. A, 2009, 79(6): 063828
https://doi.org/10.1103/PhysRevA.79.063828
199 Béguin L., P. Jahn J., Wolters J., Reindl M., Huo Y., Trotta R., Rastelli A., Ding F., G. Schmidt O., Treutlein P., J. Warburton R.. On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets. Phys. Rev. B, 2018, 97(20): 205304
https://doi.org/10.1103/PhysRevB.97.205304
200 J. Bennett A., P. Lee J., J. P. Ellis D., Meany T., Murray E., F. Floether F., P. Griffths J., Farrer I., A. Ritchie D., J. Shields A.. Cavity-enhanced coherent light scattering from a quantum dot. Sci. Adv., 2016, 2(4): e1501256
https://doi.org/10.1126/sciadv.1501256
201 M. Sweeney T., G. Carter S., S. Bracker A., Kim M., S. Kim C., Yang L., M. Vora P., G. Brereton P., R. Cleveland E., Gammon D.. Cavity-stimulated Raman emission from a single quantum dot spin. Nat. Photonics, 2014, 8(6): 442
https://doi.org/10.1038/nphoton.2014.84
202 Y. Zhang X.Jing B.Zhang B.Li H.H. Wei S. Li C.Y. Liao J. W. Deng G.Wang Y.Z. Song H.X. You L.Chen F. C. Guo G.Zhou Q., Storage of 147 temporal modes of telecom-band single photon with fiber-pigtailed Er3+: Linbo3 waveguide, in: Conference on Lasers and Electro-Optics, Optica Publishing Group, 2022, p. JTh6A. 9
203 Craiciu I., Lei M., Rochman J., M. Kindem J., G. Bartholomew J., Miyazono E., Zhong T., Sinclair N., Faraon A.. Nanophotonic quantum storage at telecommunication wavelength. Phys. Rev. Appl., 2019, 12(2): 024062
https://doi.org/10.1103/PhysRevApplied.12.024062
204 Zhong T., M. Kindem J., G. Bartholomew J., Rochman J., Craiciu I., Miyazono E., Bettinelli M., Cavalli E., Verma V., W. Nam S., Marsili F., D. Shaw M., D. Beyer A., Faraon A.. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science, 2017, 357(6358): 1392
https://doi.org/10.1126/science.aan5959
205 Zhong T., Goldner P.. Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics, 2019, 8(11): 2003
https://doi.org/10.1515/nanoph-2019-0185
206 Fossati A., Liu S., Karlsson J., Ikesue A., Tallaire A., Ferrier A., Serrano D., Goldner P.. A frequency-multiplexed coherent electro-optic memory in rare earth doped nanoparticles. Nano Lett., 2020, 20: 7087
https://doi.org/10.1021/acs.nanolett.0c02200
207 F. Askarani M., G. Puigibert M., Lutz T., B. Verma V., D. Shaw M., W. Nam S., Sinclair N., Oblak D., Tittel W.. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide. Phys. Rev. Appl., 2019, 11(5): 054056
https://doi.org/10.1103/PhysRevApplied.11.054056
208 Valivarthi R., I. Davis S., Peña C., Xie S., Lauk N., Narváez L., P. Allmaras J., D. Beyer A., Gim Y., Hussein M., Iskander G., L. Kim H., Korzh B., Mueller A., Rominsky M., Shaw M., Tang D., E. Wollman E., Simon C., Spentzouris P., Oblak D., Sinclair N., Spiropulu M.. Teleportation systems toward a quantum internet. PRX Quantum, 2020, 1(2): 020317
https://doi.org/10.1103/PRXQuantum.1.020317
209 Miyazono E., Zhong T., Craiciu I., M. Kindem J., Faraon A.. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories. Appl. Phys. Lett., 2016, 108(1): 011111
https://doi.org/10.1063/1.4939651
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed