Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (4): 44601   https://doi.org/10.1007/s11467-022-1247-1
  本期目录
Heavy flavour physics and CP violation at LHCb: A ten-year review
Shanzhen Chen1, Yiming Li1(), Wenbin Qian2, Zhihong Shen3, Yuehong Xie4, Zhenwei Yang3, Liming Zhang5, Yanxi Zhang3
1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. State Key Laboratory of Nuclear Physics and Technology & School of Physics, Peking University, Beijing 100871, China
4. Key Laboratory of Quark and Lepton Physics of Ministry of Education & Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
5. Department of Engineering Physics & Center for High Energy Physics, Tsinghua University, Beijing 100084, China
 全文: PDF(25848 KB)   HTML
Abstract

Heavy flavour physics provides excellent opportunities to indirectly search for new physics at very high energy scales and to study hadron properties for deep understanding of the strong interaction. The LHCb experiment has been playing a leading role in the study of heavy flavour physics since the start of the LHC operations about ten years ago, and made a range of high-precision measurements and unexpected discoveries, which may have far-reaching implications on the field of particle physics. This review highlights a selection of the most influential physics results on CP violation, rare decays, and heavy flavour production and spectroscopy obtained by LHCb using the data collected during the first two operation periods of the LHC. The upgrade plan of LHCb and the physics prospects are also briefly discussed.

Key wordsLHCb    flavour physics    CP vioation
收稿日期: 2022-11-07      出版日期: 2023-03-27
Corresponding Author(s): Yiming Li   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(4): 44601.
Shanzhen Chen, Yiming Li, Wenbin Qian, Zhihong Shen, Yuehong Xie, Zhenwei Yang, Liming Zhang, Yanxi Zhang. Heavy flavour physics and CP violation at LHCb: A ten-year review. Front. Phys. , 2023, 18(4): 44601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1247-1
https://academic.hep.com.cn/fop/CN/Y2023/V18/I4/44601
Fig.1  
System s(NN) [TeV]
5 (2.76) 7 8(8.16) 13
pp J /ψ [84], Υ [88], D [100] ηc [91], J/ψ [7], χc1(3872 ) [78], χc /J /ψ [77], χ c2/χc1 [76, 86], ψ( 2S) [81, 111], Υ [79, 97], χb2/χb1 [92, 93], D, Λ c+ [9], B [80, 85, 105, 117], Λ b0 [89, 96], Ξb [109], Bc+ [83], J/ψJ/ψ [75], ΥD [98], J/ψD,DD ,D D¯0 [82] ηc [91], J/ψ [95], χb2/χb1 [92, 93], χc1 (3872)/ψ( 2S) [116], χc1(3872 ) [119], Υ [95, 97], Bs0/B0 [117], Λ b0 [96], Ξb [109], ΥD [98], Bc+ [94] ηc [112], J/ψ [10, 102], χc1(3872) [119], ψ(2 S) [111], Υ [106], D [11], Ξcc ++ [114], B+ [105], Ξb [109], Bc+ [113], Bs0/B0 [117], J/ψJ/ψ [101]
pPb J /ψ [87], ψ( 2S) [99], Υ [90], D0 [104], Λ c+ [107] J /ψ [103], Υ [108], D0 [74], B+, B0, Λb0 [110], χ c2/χc1 [118], DD,DD ¯0 [115]
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Contribution Significance [×σ] M0 [MeV] Γ0 [MeV] FF [%]
X(2)
X(4150) 4.8 (8.7) 4146 ±18±33 135 ±28 30+ 59 2.0 ±0.5 1.0+ 0.8
X(1)
X(4630) 5.5 (5.7) 4626 ±16 110+ 018 174 ±27 073 +134 2.6 ±0.5 1.5+ 2.9
All X(0+ ) 20 ±5 07 +14
X(4500) 20 (20) 4474 ±3±3 77 ±6 08 +10 5.6 ±0.7 0.6+ 2.4
X(4700) 17 (18) 4694 ±4 03 +16 87 ±8 06 +16 8.9 ±1.2 1.4+ 4.9
All X(1+ ) 26 ±3 10+ 08
X(4140) 13 (16) 4118 ±11 36+ 19 162 ±21 49+ 24 17 ±3 6+ 19
X(4274) 18 (18) 4294 ±4 6+ 3 53 ±5±5 2.8 ±0.5 0.4+ 0.8
X(4685) 15 (15) 4684 ±7 16+ 13 126 ±15 41+ 37 7.2 ±1.0 2.0+ 4.0
All Tψs(1 +) 25 ±5 12+ 11
Tψs(4000) 15 (16) 4003 ±6 14+ 04 131 ±15±26 9.4 ±2.1±3.4
Tψs(4220) 5.9 (8.4) 4216 ±24 30+ 43 233 ±52 73+ 97 10 ±4 07 +10
Tab.2  
Fig.9  
Fig.10  
Fig.11  
State Decays Significance [σ] Mass [MeV/c 2] Width [MeV]
Pψ N (4312)+ J /ψ p 7.3 σ 4311.9 ±0.70.6 +6.8 0 9.8±2.70 4.5+ 03.7
Pψ N (4440)+ J /ψ p 5.4 σ 4440.3 ±1.34.7 +4.1 20.6 ±4.910.1 +0 8.7
Pψ N (4457)+ J /ψ p 5.4 σ 4457.3 ±0.61.7 +4.1 0.53 ±2.00 1.9+ 05.7
Pψ N (4337)+ J /ψ p 3.1 σ 0 4337 0 04+ 070±2 0 29 0 012+ 026±14
Pψs Λ(4459 )0 J /ψ Λ 3.1 σ 4458.8 ±2.91.1 +4.7 17.3 ±6.50 5.7+ 08.0
Pψs Λ(4338 )0 J /ψ Λ >15σ 4338.2 ±0.7±0.4 7.0 ±1.2±1.3
Tab.3  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
Fig.29  
Fig.30  
Data sample no CPV CPV allowed
x2 (×103) y (× 10 3) x2 (×103) y (× 10 3)
1.0 fb−1, D tag [863] 0.09±0.13 7.2 ±2.4
3.0 fb−1, D tag [865] 0.055 ±0.049 2.8 ±1.0 D0: 00.049± 0.070 5.1 ±1.4
D¯0: 0 0.060±0.068 4.5 ±1.4
3.0 fb−1, B tag [866] 0.028 ±0.310 4.6 ±3.7 D0: 0.019± 0.447 5.81 ±5.26
D¯0: 0 0.079±0.433 3.32 ±5.23
5.0 fb−1, D tag [867] 0.039 ±0.027 5.28 ±0.52 D0: 00.061± 0.037 5.01 ±0.74
D¯0: 0 0.016±0.039 5.54 ±0.74
Tab.4  
Fig.31  
Data sample CP-averaged parameters
x (×103) y (×103)
1.0 fb−1, D tag [868] 8.6±5.3± 1.7 0.3 ±4.6±1.3
3.0 fb−1, B tag [869] 2.7 ±1.6±0.4 7.4 ±3.6±1.1
5.4 fb−1, D tag [870] 3.97 ±0.46±0.29 4.59 ±1.20±0.85
CP-violating parameters
Data sample Δx (× 10 3) Δy (× 10 3)
3.0 fb−1, B tag [869] 0.53±0.70± 0.22 0.6 ±1.6±0.3
5.4 fb−1, D tag [870] 0.27±0.18± 0.01 0.20 ±0.36±0.13
Tab.5  
Fig.32  
Data sample ΔACP (×103)
0.62 fb−1, D tag [879] 8.2±4.1± 0.6
1.0 fb−1, B tag [880] 4.9 ±3.0±1.4
3.0 fb−1, B tag [871] 1.4 ±1.6±0.8
3.0 fb−1, D tag [872] 1.0±0.8± 0.3
5.9 fb−1, B or D tag [790] 1.54±0.29
Tab.6  
Fig.33  
Decay channel Data sample Method
D+ K K+π+ [892] 35 pb 1 binned χ2
D0KK+ππ+ [893] 1.0 fb−1, D tag binned χ2
D0ππ+ππ+ [893] 1.0 fb−1, D tag binned χ2
D+ π π+ π + [894] 1.0 fb−1 binned χ2
D0KK+ππ+ [895] 3.0 fb−1, B tag binned χ2
D0ππ+π 0 [897] 2.0 fb−1, D tag energy test
D0ππ+ππ+ [898] 3.0 fb−1, D tag energy test
Λc+phh+ [901] 3.0 fb−1 ΔACP
D0KK+ππ+ [891] 3.0 fb−1, B tag amplitude analysis
Ξc+pKπ+ [896] 3.0 fb−1 binned χ2
Tab.7  
Fig.34  
Data sample Final state(s) yC P [%] AΓ (×103)
29 pb−1, D tag [902] K+K 0.55 ±0.63±0.41 5.9±5.9± 2.1
1.0 fb−1, D tag [903] π+π 0.33 ±1.06±0.14
1.0 fb−1, D tag [903] K+K 0.35±0.62± 0.12
3.0 fb−1, B tag [874] π+π 0.92±2.6 0.33+0.25
3.0 fb−1, B tag [874] K+K 1.34±0.77 0.34+0.26
3.0 fb−1, B tag [874] π+π & K+K 1.25±0.73
3.0 fb−1, B tag [873] π+π & K+K 0.57 ±0.13±0.09
3.0 fb−1, D tag [875] π+π 0.46 ±0,58±0.12
3.0 fb−1, D tag [875] K+K 0.30±0.32± 0.10
3.0 fb−1, D tag [875] π+π & K+K 0.13±2.0± 0.7
5.4 fb−1, B tag [876] π+π 0.22 ±0.70±0.08
5.4 fb−1, B tag [876] K+K 0.43±0.36± 0.05
6 fb−1, D tag [877] π+π 0.4 ±0.28±0.04
6 fb−1, D tag [877] K+K 0.23 ±0.15±0.03
8.4 fb−1, D or B tag [877] π+π 0.36 ±0.24±0.04
8.4 fb−1, D or B tag [877] K+K 0.03 ±0.13±0.03
8.4 fb−1, D or B tag [877] π+π & K+K 0.10 ±0.11±0.03
6 fb−1, D tag [904] π+π 0.657 ±0.053±0.016 1)
6 fb−1, D tag [904] K+K 0.708 ±0.030±0.014 2)
6 fb−1, D tag [904] π+π & K+K 0.696 ±0.026±0.013 3)
Tab.8  
Fig.35  
Fig.36  
Observable LHCb LHCb LHCb Belle II ATLAS
current (23 fb-1) (300 fb-1) (50 ab 1) & CMS
CKM tests
γ (all modes) 4 [784, 931] 1.5 0.35 1.5
γ (Bs0Ds+K) ( 22+ 17) 4 1
sin ?2β 0.04 [932] 0.011 0.003 0.005
ϕs (Bs0 J/ ψϕ) 49 mrad [933] 14 mrad 4 mrad 22 mrad [934]
5−6 mrad [935]
ϕs (Bs0 Ds+ Ds) 170 mrad [825] 35 mrad 9 mrad
ϕsss¯s (Bs0ϕϕ) 154 mrad [936] 39 mrad 11 mrad feasible [937]
asls 33 ×104 [938] 10 ×104 3 ×104
| Vub|/|V cb| 6% [847] 3% 1% 1%
Charm
ΔA CP 2.9 ×104 [790] 1.7 ×104 3.0 ×105 5.4 ×104
AΓ 1.3 ×104 [877] 4.2 ×105 1.0 ×105 3.5 ×104
B( s) 0 μ +μ
B(B0 μ+μ)B(Bs0 μ+μ ) 71% [661, 662] 34% 10% 21% [939, 940]
τB s0 μ +μ 14% [661, 662] 8% 2%
EW penguins
RK (B+K+ + ) 0.044 [703] 0.025 0.007 0.036
RK (B0 K0 + ) 0.10 [709] 0.031 0.008 0.032
LFU tests
RD (B0D +ν) 0.026 [941, 942] 0.007 0.002 0.005
RJ/ψ (Bc+J /ψ +ν) 0.24 [943] 0.07 0.02
Tab.9  
Fig.37  
Fig.38  
1 S. Brüning O., et al.., LHC Design Report, CERN Yellow Reports: Monographs, CERN, Geneva, 2004
2 G. Aad,. ATLAS Collaboration, et al.., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214
3 S. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235
4 Webpage:
5 A. A. Alves Jr.,. LHCb Collaboration. et al.. The LHCb detector at the LHC. J. Instrument., 2008, 3: S08005
https://doi.org/10.1088/1748-0221/3/08/S08005
6 R. LHCb Collaboration, Measurement of σ(ppbX) at s = 7 TeV in the forward region, Phys. Lett. B 694 (2010) 209, arXiv: 1009.2731
7 R. LHCb Collaboration, Measurement of J/ψ production in pp collisions at s = 7 TeV, Eur. Phys. J. C 71 (2011) 1645, arXiv: 1103.0423
8 R. LHCb Collaboration, Production of J/ψ and ϒ mesons in pp collisions at s = 8 TeV, J. High Energy Phys. 06, 064 (2013), arXiv: 1304.6977
9 R. LHCb Collaboration, Prompt charm production in pp collisions at s = 7 TeV, Nucl. Phys. B 871 (2013) 1, arXiv: 1302.2864
10 R. Aaij,. LHCb Collaboration, et al.., Measurement of forward J/ψ production cross-sections in pp collisions at s = 13 TeV, J. High Energy Phys. 10, 172 (2015), Erratum: J. High Energy Phys. 05, 172 (2015), arXiv: 1509.00771
11 R. LHCb Collaboration, Measurements of prompt charm production cross-sections in pp collisions at s = 13 TeV, J. High Energy Phys. 03, 159 (2016), Erratum: J. High Energy Phys. 09, 159 (2016), Erratum: J. High Energy Phys. 05, 159 (2016), arXiv: 1510.01707
12 R. Aaij,. LHCb Collaboration, et al.., Measurement of the b-quark production cross-section in 7 and 13 TeV pp collisions, Phys. Rev. Lett. 118, 052002 (2017), Erratum: Phys. Rev. Lett. 119, 052002 (2017), arXiv: 1612.05140
13 Cacciari M., et al.., Theoretical predictions for charm and bottom production at the LHC, J. High Energy Phys. 10, 137(2012), arXiv: 1205.6344
14 Andronic A., et al.., Heavy-avour and quarkonium production in the LHC era: From proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107, arXiv: 1506.03981
15 Zhang X.-H.Liu F.-H.K. Olimov K., A systematic analysis of transverse momentum spectra of J/ψ mesons in high energy collisions, Int. J. Mod. Phys. E 30, 2150051 (2021), arXiv: 2105.14700
16 Chen C.-H., et al.., A study on the exotic state Pc(4312), Pc(4440), Pc(4457) in pp collisions at s = 7, 13 GeV, arXiv: 2111.03241 (2021)
17 Chen A.-P.Ma Y.-Q.Zhang H., A short theoretical review of charmonium production, arXiv: 2109.04028 (2021)
18 Wang Q.Liu F.-H., Excitation function of initial temperature of heavy avor quarkonium emission source in high energy collisions, Adv. High Energy Phys. 2020, 5031494 (2020), arXiv: 2005.04940
19 Chen Y.-H., Ma Y.-G., Ma G.-L., Chen J.-H.. Transverse momentum spectra of J/ψ produced in collisions over an energy range from 17.4 GeV to 13 TeV. J. Phys. G, 2020, 47: 045111
https://doi.org/10.1088/1361-6471/ab67e6
20 Yang Y.Cai S.Cai Y.Xiang W., Inclusive diffractive heavy quarkonium photoproduction in pp, pA and AA collisions, Nucl. Phys. A 990, 17 (2019), arXiv: 1907.09036
21 He Z.-G.A. Kniehl B.A. Nefedov M.A. Saleev V., Double prompt J/ψ hadroproduction in the parton Reggeization approach with high-energy resummation, Phys. Rev. Lett. 123, 162002 (2019), arXiv: 1906.08979
22 Butenschoen M.A. Kniehl B., World data of J/ψ production consolidate NRQCD factorization at NLO, Phys. Rev. D 84, 051501 (2011), arXiv: 1105.0820
23 Lansberg J.-P.Shao H.-S., Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton−nucleus collisions, Eur. Phys. J. C 77, 1 (2017), arXiv: 1610.05382
24 Zhang H.-F.Sun Z.Sang W.-L.Li R., Impact of ηc hadroproduction data on charmonium production and polarization within NRQCD framework, Phys. Rev. Lett. 114, 092006 (2015), arXiv: 1412.0508
25 P. Ma J.X. Wang J.Zhao S., Transverse momentum dependent factorization for quarkonium production at low transverse momentum, Phys. Rev. D 88, 014027 (2013), arXiv: 1211.7144
26 Feng Y.Gong B.Chang C.-H.Wang J.-X., Remaining parts of the long-standing J/ψ polarization puzzle, Phys. Rev. D 99, 014044(2019), arXiv: 1810.08989
27 Wang J.-X.Zhang H.-F., hc production at hadron colliders, J. Phys. G 42, 025004 (2015), arXiv: 1403.5944
28 Tang Z.Xu N.Zhou K.Zhuang P., Charmonium transverse momentum distribution in high energy nuclear collisions, J. Phys. G 41, 124006 (2014), arXiv: 1409.5559
29 Sun Q.-F.Jia Y.Liu X.Zhu R., Inclusive hc production and energy spectrum from e+e− annihilation at a super B factory, Phys. Rev. D 98, 014039 (2018), arXiv: 1801.10137
30 Li B.-C.Bai T.Guo Y.-Y.Liu F.-H., On J/ψ and ϒ transverse momentum distributions in high energy collisions, Adv. High Energy Phys. 2017, 9383540 (2017), arXiv: 1701.04689
31 Han H., et al.., ηc production at LHC and indications on the understanding of J/ψ production, Phys. Rev. Lett. 114, 092005(2015), arXiv: 1411.7350
32 Han H., et al.., ϒ(nS) and χb(nP) production at hadron colliders in nonrelativistic QCD, Phys. Rev. D 94, 014028 (2016), arXiv: 1410.8537
33 Zhang P.Meng C.Ma Y.-Q.Chao K.-T., Gluon fragmentation into 3P J[1,8] quark pair and test of NRQCD factorization at two-loop level, J. High Energy Phys. 08, 111(2021), arXiv: 2011.04905
34 Liu H.-Y.Ma Y.-Q.Chao K.-T., Improvement for color glass condensate factorization: Single hadron production in pA collisions at next-to-leading order, Phys. Rev. D 100, 071503 (2019), arXiv: 1909.02370
35 -Q. Ma Y.Chao K.-T., New factorization theory for heavy quarkonium production and decay, Phys. Rev. D 100, 094007 (2019), arXiv: 1703.08402
36 Sun L.-P.Han H.Chao K.-T., Impact of J/ψ pair production at the LHC and predictions in nonrelativistic QCD, Phys. Rev. D 94, 074033(2016), arXiv: 1404.4042
37 Ma Y.-Q.Wang K.Chao K.-T., A complete NLO calculation of the J/ψ and ψ′ production at hadron colliders, Phys. Rev. D 84, 114001(2011), arXiv: 1012.1030
38 Ma Y.-Q.Wang K.Chao K.-T., J/ψ( ψ′) production at the Tevatron and LHC at O( αs4v4) in nonrelativistic QCD, Phys. Rev. Lett. 106, 042002(2011), arXiv: 1009.3655
39 Li B.-Q.Chao K.-T., Higher charmonia and X, Y, Z states with screened potential, Phys. Rev. D 79, 094004 (2009), arXiv: 0903.5506
40 Ma Y.-Q.Wang K.Chao K.-T., QCD radiative corrections to χcJ production at hadron colliders, Phys. Rev. D 83, 111503 (2011), arXiv: 1002.3987
41 Zhang Y.-J.Ma Y.-Q.Wang K.Chao K.-T., QCD radiative correction to color-octet J/ψ inclusive production at B factories, Phys. Rev. D 81, 034015 (2010), arXiv: 0911.2166
42 Shao H.-S., HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics, Comput. Phys. Commun. 184, 2562 (2013), arXiv: 1212.5293
43 Chang C.-H.Wu X.-G., Uncertainties in estimating Bc hadronic production and comparisons of the production at TEVATRON and LHC, Eur. Phys. J. C 38, 267 (2004), arXiv: hep-ph/0309121
44 Niu J.-J.Guo L.Ma H.-H.Wang S.-M., Heavy quarkonium production through the top quark rare decays via the channels involving flavor changing neutral currents, Eur. Phys. J. C 78, 657 (2018), arXiv: 1808.01231
45 He K., et al.., P-wave excited Bc∗∗ meson photoproduction at the LHeC, J. Phys. G 45, 055005 (2018), arXiv: 1710.11508
46 Zhang G.Ma B.-Q., Searching for lepton number violating Λ baryon decays mediated by a GeV-scale Majorana neutrino with LHCb, Phys. Rev. D 103, 033004 (2021), arXiv: 2101.05566
47 Chen G.Wu X.-G.Xu S., Impacts of the intrinsic charm content of the proton on the Ξcc hadroproduction at a fixed target experiment at the LHC, Phys. Rev. D 100, 054022 (2019), arXiv: 1903.00722
48 Hu Y., et al.., The production of doubly charmed exotic hadrons in heavy ion collisions, arXiv: 2109.07733 (2021)
49 Jia S.Zhou X.Shen C., Experimental review of the ϒ(1S, 2S, 3S) physics at e+e− colliders and the LHC, Front. Phys. 15, 64301 (2020), arXiv: 2005.05892
50 Brambilla N., et al.., The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep. 873, 1 (2020), arXiv: 1907.07583
51 H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092
52 Guo F.-K., et al.., Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018), arXiv: 1705.00141
53 E. S. Swanson, The new heavy mesons: A status report, Phys. Rep. 429 (2006) 243, arXiv: hep-ph/0601110
54 S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012
55 Liu Y.-R., et al.., Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976
56 Chen H.-X., et al.., A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928
57 X. Liu, An overview of XYZ new particles, Chin. Sci. Bull. 59, 3815 (2014), arXiv: 1312.7408
58 F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030
59 C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33, 1830018 (2018), arXiv: 1808.01570
60 X. Liu, Z.-G. Luo, Y.-R. Liu, and S.-L. Zhu, X(3872) and other possible heavy molecular states, Eur. Phys. J. C 61, 411 (2009), arXiv: 0808.0073
61 X.-K. Dong, F.-K. Guo, and B.-S. Zou, A survey of heavy-heavy hadronic molecules, Commun. Theor. Phys. 73, 125201 (2021), arXiv: 2108.02673
62 R.-X. Shi, Y. Xiao, and L.-S. Geng, Magnetic moments of the spin-1/2 singly charmed baryons in covariant baryon chiral perturbation theory, Phys. Rev. D 100, 054019 (2019), arXiv: 1812.07833
63 A. Ali, J. S. Lange, and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97, 123 (2017), arXiv: 1706.00610
64 Esposito A., et al.., Four-quark hadrons: An updated review, Int. J. Mod. Phys. A 30, 1530002 (2015), arXiv: 1411.5997
65 L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, The Z(4430) and a new paradigm for spin interactions in tetraquarks, Phys. Rev. D 89, 114010 (2014), arXiv: 1405.1551
66 F.-Z. Peng, M.-Z. Liu, M. S. Sánchez, and M. P. Valderrama, Heavy-hadron molecules from light-meson-exchange saturation, Phys. Rev. D 102, 114020 (2020), arXiv: 2004.05658
67 G. Yang, J. Ping, and J. Segovia, Tetra- and penta-quark structures in the constituent quark model, Symmetry 12, 1869 (2020), arXiv: 2009.00238
68 J.-M. Richard, Fully-heavy tetraquarks and other heavy multiquarks, Nucl. Part. Phys. Proc. 312–317, 15295 (2021), arXiv: 2105.02503
69 M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018), arXiv: 1711.10626
70 J.-M. Richard, Exotic hadrons: Review and perspectives, Few Body Syst. 57, 1185 (2016), arXiv: 1606.08593
71 Wu R.-H., et al.., NLO effects for QQQ baryons in QCD sum rules, Chin. Phys. C 45, 093103 (2021), arXiv: 2104.07384
72 S. Wicks, W. Horowitz, M. Djordjevic, and M. Gyulassy, Elastic, inelastic, and path length fluctuations in jet tomography, Nucl. Phys. A 784, 426 (2007), arXiv: nucl-th/0512076
73 K. Zhou, N. Xu, Z. Xu, and P. Zhuang, Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider, Phys. Rev. C 89, 054911 (2014), arXiv: 1401.5845
74 LHCb Collaboration, Study of prompt D0 meson production in pPb at sN N = 8.16 TeV at LHCb, LHCb-CONF-2019-004, 2019
75 R. Aaij,. LHCb Collaboration, et al.., Observation of J/ψ-pair production in pp collisions at s = 7 TeV, Phys. Lett. B 707, 52 (2012), arXiv: 1109.0963
76 R. Aaij,. LHCb collaboration, et al.., Measurement of the cross-section ratio σ(χc2)/σ(χc1) for prompt χc production at s = 7 TeV, Phys. Lett. B 714, 215 (2012), arXiv: 1202.1080
77 R. Aaij,. LHCb Collaboration, et al.., Measurement of the ratio of prompt χc to J/ψ production in pp collisions at s = 7 TeV, Phys. Lett. B 718, 431 (2012), arXiv: 1204.1462
78 R. Aaij,. LHCb Collaboration, et al.., Observation of X(3872) production in pp collisions at s = 7 TeV, Eur. Phys. J. C 72, 1972 (2012), arXiv: 1112.5310
79 R. Aaij,. LHCb Collaboration, et al.., Measurement of ϒ production in pp collisions at s = 7 TeV, Eur. Phys. J. C 72, 2025 (2012), arXiv: 1202.6579
80 R. Aaij,. LHCb Collaboration, et al.., Measurement of the B± production cross-section in pp collisions at s = 7 TeV, J. High Energy Phys. 04, 093 (2012), arXiv: 1202.4812
81 R. Aaij,. LHCb Collaboration, et al.., Measurement of ψ(2S) meson production in pp collisions at s = 7 TeV, Eur. Phys. J. C 72, 2100 (2012), Erratum: Eur. Phys. J. C 80, 2100 (2012), arXiv: 1204.1258
82 R. Aaij,. LHCb Collaboration, et al.., Observation of double charm production involving open charm in pp collisions at s = 7 TeV, J. High Energy Phys. 06, 141 (2012), Addendum: J. High Energy Phys. 03, 108 (2012), arXiv: 1205.0975
83 R. Aaij,. LHCb Collaboration, et al.., Measurements of Bc+ production and mass with the Bc+ → J/ψπ+ decay, Phys. Rev. Lett. 109, 232001 (2012), arXiv: 1209.5634
84 R. Aaij,. LHCb Collaboration, et al.., Measurement of J/ψ production in pp collisions at s = 2.76 TeV, J. High Energy Phys. 02, 041 (2013), arXiv: 1212.1045
85 R. Aaij,. LHCb Collaboration, et al.., Measurement of B meson production cross-sections in proton−proton collisions at s = 7 TeV, J. High Energy Phys. 08, 117 (2013), arXiv: 1306.3663
86 R. Aaij,. LHCb Collaboration, et al.., Measurement of the relative rate of prompt χc0, χc1 and χc2 production at s = 7 TeV, J. High Energy Phys. 10, 115 (2013), arXiv: 1307.4285
87 R. Aaij,. LHCb Collaboration, et al.., Study of J/ψ production and cold nuclear matter effects in pPb collisions at sN N = 5 TeV, J. High Energy Phys. 02, 072 (2014), arXiv: 1308.6729
88 R. Aaij,. LHCb Collaboration, et al.., Measurement of ϒ production in pp collisions at s = 2.76TeV, Eur. Phys. J. C 74, 2835(2014), arXiv: 1402.2539
89 R. Aaij,. LHCb Collaboration, et al.., Study of the kinematic dependences of Λb0 production in pp collisions and a measurement of the Λ b0→ Λc 0π− branching fraction, J. High Energy Phys. 08, 143 (2014), arXiv: 1405.6842
90 R. Aaij,. LHCb Collaboration, et al.., Study of ϒ production and cold nuclear matter effects in pPb collisions at sNN = 5 TeV, J. High Energy Phys. 07, 094 (2014), arXiv: 1405.5152
91 R. Aaij,. LHCb Collaboration, et al.., Measurement of the ηc(1S) production cross-section in proton−proton collisions via the decay ηc(1S)→p p¯, Eur. Phys. J. C 75, 311 (2015), arXiv: 1409.3612
92 R. Aaij,. LHCb Collaboration, et al.., Study of χb meson production in pp collisions at s = 7 and 8 TeV and observation of the decay χb →ϒ(3S)γ, Eur. Phys. J. C 74 (2014) 3092, arXiv: 1407.7734
93 R. Aaij,. LHCb Collaboration, et al.., Measurement of the χb(3P) mass and of the relative rate of χb1(1P) and χb2(1P) production, J. High Energy Phys. 10, 088 (2014), arXiv: 1409.1408
94 R. Aaij,. LHCb Collaboration, et al.., Measurement of Bc+ production in proton−proton collisions at s = 8 TeV, Phys. Rev. Lett. 114, 132001 (2015), arXiv: 1411.2943
95 R. Aaij,. LHCb Collaboration, et al.., Identification of beauty and charm quark jets at LHCb, J. Instrument. 10, P06013 (2015), arXiv: 1504.07670
96 R. Aaij,. LHCb Collaboration, et al.., Study of the productions of Λb0 and B¯ 0 hadrons in pp collisions and first measurement of the Λb 0 → J/ψpK− branching fraction, Chin. Phys. C 40, 011001 (2016), arXiv: 1509.00292
97 R. Aaij,. LHCb Collaboration, et al.., Forward production of ϒ mesons in pp collisions at s = 7 and 8 TeV, J. High Energy Phys. 11, 103 (2015), arXiv: 1509.02372
98 R. Aaij,. LHCb Collaboration, et al.., Production of associated ϒ and open charm hadrons in pp collisions at s = 7 and 8 TeV via double parton scattering, J. High Energy Phys. 07, 052 (2016), arXiv: 1510.05949
99 R. Aaij,. LHCb Collaboration, et al.., Study of ψ(2S) production cross-sections and cold nuclear matter effects in pPb collisions at sNN = 5 TeV, J. High Energy Phys. 03, 133 (2016), arXiv: 1601.07878
100 R. Aaij,. LHCb Collaboration, et al.., Measurements of prompt charm production cross-sections in pp collisions at s = 5 TeV, J. High Energy Phys. 06, 147 (2017), arXiv: 1610.02230
101 R. Aaij,. LHCb Collaboration, et al.., Measurement of the J/ψ pair production cross-section in pp collisions at s = 13 TeV, J. High Energy Phys. 06 (2017) 047, Erratum: J. High Energy Phys. 10, 047 (2017), arXiv: 1612.07451
102 R. Aaij,. LHCb Collaboration, et al.., Study of J/ψ production in jets, Phys. Rev. Lett. 118, 192001 (2017), arXiv: 1701.05116
103 R. Aaij,. LHCb Collaboration, et al.., Prompt and nonprompt J/ψ production and nuclear modification in pPb collisions at sN N = 8.16 TeV, Phys. Lett. B 774 (2017) 159, arXiv: 1706.07122
104 R. Aaij,. LHCb Collaboration, et al.., Study of prompt D0 meson production in pPb collisions at sN N = 5 TeV, J. High Energy Phys. 10, 090 (2017), arXiv: 1707.02750
105 R. Aaij,. LHCb Collaboration, et al.., Measurement of the B± production cross-section in pp collisions at s = 7 and 13 TeV, J. High Energy Phys. 12, 026 (2017), arXiv: 1710.04921
106 R. Aaij,. LHCb Collaboration, et al.., Measurement of ϒ production cross-section in pp collisions at s = 13 TeV, J. High Energy Phys. 07, 134 (2018), arXiv: 1804.09214
107 R. Aaij,. LHCb Collaboration, et al.., Prompt Λ c+ production in pPb collisions at sNN = 5.02 TeV, J. High Energy Phys. 02, 102 (2019), arXiv: 1809.01404
108 R. Aaij,. LHCb Collaboration, et al.., Study of ϒ production in pPb collisions at sN N = 8.16 TeV, J. High Energy Phys. 11, 194 (2018), arXiv: 1810.07655
109 R. Aaij,. LHCb Collaboration, et al.., Measurement of the mass and production rate of Ξb− baryons, Phys. Rev. D 99, 052006 (2019), arXiv: 1901.07075
110 R. Aaij,. LHCb Collaboration, et al.., Measurement of B+, B0 and Λb0 production in pPb collisions at sN N = 8.16 TeV, Phys. Rev. D 99, 052011 (2019), arXiv: 1902.05599
111 R. Aaij,. LHCb Collaboration, et al.., Measurement of ψ(2S) production cross-sections in proton−proton collisions at s = 7 and 13 TeV, Eur. Phys. J. C 80, 185 (2020), arXiv: 1908.03099
112 R. Aaij,. LHCb Collaboration, et al.., Measurement of the ηc(1S) production cross-section in pp collisions at s = 13 TeV, Eur. Phys. J. C 80, 191 (2020), arXiv: 1911.03326
113 R. Aaij,. LHCb Collaboration, et al.., Measurement of the B c− production fraction and asymmetry in 7 and 13 TeV pp collisions, Phys. Rev. D 100, 112006 (2019), arXiv: 1910.13404
114 R. Aaij,. LHCb Collaboration, et al.., Measurement of Ξcc++ production in pp collisions at s = 13 TeV, Chin. Phys. C 44, 022001 (2020), arXiv: 1910.11316
115 R. Aaij,. LHCb Collaboration, et al.., Observation of enhanced double parton scattering in proton-lead collisions at sN N = 8.16 TeV, Phys. Rev. Lett. 125, 212001 (2020), arXiv: 2007.06945
116 R. Aaij,. LHCb Collaboration, et al.., Observation of multiplicity-dependent χc1(3872) and ψ(2S) production in pp collisions, Phys. Rev. Lett. 126, 092001 (2021), arXiv: 2009.06619
117 R. Aaij,. LHCb Collaboration, et al.., Precise measurement of the fs/fd ratio of fragmentation fractions and of Bs0 decay branching fractions, Phys. Rev. D 104, 032005 (2021), arXiv: 2103.06810
118 R. Aaij,. LHCb Collaboration, et al.., Measurement of prompt-cross-section ratio σ(χc2)/σ(χc1) in pPb collisions at sN N = 8.16 TeV, Phys. Rev. C 103 (2021) 064905, arXiv: 2103.07349
119 R. Aaij,. LHCb Collaboration, et al.., Measurement of χc1(3872) production in proton−proton collisions at s = 8 and 13 TeV, J. High Energy Phys. 01, 131 (2022), arXiv: 2109.07360
120 Pumplin J., et al.., New generation of parton distributions with uncertainties from global QCD analysis, J. High Energy Phys. 07, 012 (2002), arXiv: hep-ph/0201195
121 M. Cacciari, M. Greco, and P. Nason, The pT spectrum in heavy-flavor hadroproduction, J. High Energy Phys. 05, 007 (1998), arXiv: hep-ph/9803400
122 R. Gauld and J. Rojo, Precision determination of the small-x gluon from charm production at LHCb, Phys. Rev. Lett. 118, 072001 (2017), arXiv: 1610.09373
123 R. LHCb Collaboration, Measurement of J/ψ polarization in pp collisions at s = 7 TeV, Eur. Phys. J. C 73, 2631 (2013), arXiv: 1307.6379
124 K, J/ψ polarization at hadron colliders in nonrelativistic QCD, Phys. Rev. Lett. 108, 242004 (2012), arXiv: 1201.2675
125 M. Butenschoen and B. A. Kniehl, J/ψ production in NRQCD: A global analysis of yield and polarization, Nucl. Phys. B Proc. Suppl. 222–224, 151 (2012), arXiv: 1201.3862
126 B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang, Polarization for prompt J/ψ and ψ(2S) production at the Tevatron and LHC, Phys. Rev. Lett. 110, 042002 (2013), arXiv: 1205.6682
127 Y.-Q. Ma and R. Venugopalan, Comprehensive description of J/ψ production in proton−proton collisions at collider energies, Phys. Rev. Lett. 113, 192301 (2014), arXiv: 1408.4075
128 Y. Zhang, Measurement of charmonium polarization with the LHCb detector, PhD thesis, Tsinghua University, Beijing, 2013
129 N, Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C 71, 1534 (2011), arXiv: 1010.5827
130 N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77, 1423 (2005), arXiv: hep-ph/0410047
131 G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51, 1125 (1995), Erratum: Phys. Rev. D 55, 5853 (1997), arXiv: hep-ph/9407339
132 Y.-Q. Ma and R. Vogt, Quarkonium production in an improved color evaporation model, Phys. Rev. D 94, 114029 (2016), arXiv: 1609.06042
133 R. LHCb Collaboration, Measurement of the ϒ(nS) polarizations in pp collisions at s = 7 and 8 TeV, J. High Energy Phys. 12, 110 (2017), arXiv: 1709.01301
134 R. LHCb Collaboration, Measurement of ψ(2S) polarisation in pp collisions at s = 7 TeV, Eur. Phys. J. C 74, 2872 (2014), arXiv: 1403.1339
135 H, Yields and polarizations of prompt J/ψ and ψ(2S) production in hadronic collisions, J. High Energy Phys. 05, 103 (2015), arXiv: 1411.3300
136 H.-S. Shao, Probing heavy quarkonium production mechanism: χc polarization, AIP Conf. Proc. 1701, 050006 (2016), arXiv: 1412.2576
137 M. Butenschoen and B. A. Kniehl, J/ψ polarization at Tevatron and LHC: Nonrelativistic-QCD factorization at the crossroads, Phys. Rev. Lett. 108, 172002 (2012), arXiv: 1201.1872
138 Y.-Q. Ma, T. Stebel, and R. Venugopalan, J/ψ polarization in the CGC+NRQCD approach, J. High Energy Phys. 12, 057 (2018), arXiv: 1809.03573
139 H.-S. Shao, Y.-Q. Ma, K. Wang, and K.-T. Chao, Polarizations of χc1 and χc2 in prompt production at the LHC, Phys. Rev. Lett. 112, 182003 (2014), arXiv: 1402.2913
140 H.-S. Shao and K.-T. Chao, Spin correlations in polarizations of P-wave charmonia χcJ and impact on J/ψ polarization, Phys. Rev. D 90, 014002 (2014), arXiv: 1209.4610
141 E, Prospects for quarkonium studies at the high-luminosity LHC, Prog. Part. Nucl. Phys. 122, 103906 (2022), arXiv: 2012.14161
142 C. H. Kom, A. Kulesza, and W. J. Stirling, Pair production of J/ψ as a probe of double parton scattering at LHCb, Phys. Rev. Lett. 107, 082002 (2011), arXiv: 1105.4186
143 H.-S. Shao and Y.-J. Zhang, Triple prompt J/ψ hadroproduction as a hard probe of multiple-parton scatterings, Phys. Rev. Lett. 122, 192002 (2019), arXiv: 1902.04949
144 Z.-G. He, Y. Fan, and K.-T. Chao, Relativistic corrections to J/ψ exclusive and inclusive double charm production at B factories, Phys. Rev. D 75, 074011 (2007), arXiv: hep-ph/0702239
145 J.-P. Lansberg and H.-S. Shao, Production of J/ψ + ηc versus J/ψ + J/ψ at the LHC: Importance of real αs5 corrections, Phys. Rev. Lett. 111, 122001 (2013), arXiv: 1308.0474
146 H.-S. Shao, J/ψ meson production in association with an open charm hadron at the LHC: A reappraisal, Phys. Rev. D 102, 034023 (2020), arXiv: 2005.12967
147 F. Abe,. CDF Collaboration. et al.. Double parton scattering in p ¯p collisions at s = 1.8 TeV. Phys. Rev. D, 1997, 56: 3811
https://doi.org/10.1103/PhysRevD.56.3811
148 M. ATLAS Collaboration, Measurement of the prompt J/ψ pair production cross-section in pp collisions at s = 8 TeV with the ATLAS detector, Eur. Phys. J. C 77, 76 (2017), arXiv: 1612.02950
149 Collaboration D0V, Evidence for simultaneous production of J/ψ and ϒ mesons, Phys. Rev. Lett. 116, 082002 (2016), arXiv: 1511.02428
150 J.-P. Lansberg and H.-S. Shao, J/ψ-pair production at large momenta: Indications for double parton scatterings and large αs5 contributions, Phys. Lett. B 751, 479 (2015), arXiv: 1410.8822
151 S. P. Baranov, A. M. Snigirev, and N. P. Zotov, Double heavy meson production through double parton scattering in hadronic collisions, Phys. Lett. B 705, 116 (2011), arXiv: 1105.6276
152 D. d'Enterria and A. M. Snigirev, Same-sign WW production in proton−nucleus collisions at the LHC as a signal for double parton scattering, Phys. Lett. B 718, 1395 (2013), arXiv: 1211.0197
153 E. G. Ferreiro and J.-P. Lansberg, Is bottomonium suppression in proton−nucleus and nucleus−nucleus collisions at LHC energies due to the same effects? J. High Energy Phys. 10, 094 (2018), Erratum: J. High Energy Phys. 03, 063 (2019), arXiv: 1804.04474
154 S. Gavin and J. Milana, Energy loss at large xF in nuclear collisions, Phys. Rev. Lett. 68, 1834 (1992)
155 N. Armesto, Nuclear shadowing, J. Phys. G 32, R367 (2006), arXiv: hep-ph/0604108
156 F. Arleo and S. Peigne, Heavy-quarkonium suppression in p−A collisions from parton energy loss in cold QCD matter, J. High Energy Phys. 03, 122 (2013), arXiv: 1212.0434
157 A. Kusina, J.-P. Lansberg, I. Schienbein, and H.-S. Shao, Gluon shadowing in heavy-flavor production at the LHC, Phys. Rev. Lett. 121, 052004 (2018), arXiv: 1712.07024
158 F. Arleo, G. Jackson, and S. Peigné, Impact of fully coherent energy loss on heavy meson production in pA collisions, arXiv: 2107.05871 (2021)
159 E. Braaten, L.-P. He, K. Ingles, and J. Jiang, Production of X(3872) at high multiplicity, Phys. Rev. D 103, L071901 (2021), arXiv: 2012.13499
160 A, The nature of X(3872) from high-multiplicity pp collisions, Eur. Phys. J. C 81, 669 (2021), arXiv: 2006.15044
161 M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8, 214 (1964)
162 G. Zweig, An SU3 Model for Strong Interaction Symmetry and Its Breaking, Version 2, 1964
163 S.-L. Zhu, Understanding pentaquark states in QCD, Phys. Rev. Lett. 91, 232002 (2003), arXiv: hep-ph/0307345
164 Z, Zb(10610)± and Zb(10650)± as the B ∗B¯ and B ∗B¯* molecular states, Phys. Rev. D 84, 054002 (2011), arXiv: 1106.2968
165 X. Liu and S.-L. Zhu, Y(4143) is probably a molecular partner of Y(3930), Phys. Rev. D 80, 017502 (2009), Erratum: Phys. Rev. D 85, 019902 (2012), arXiv: 0903.2529
166 Y.-R. Liu, X. Liu, W.-Z. Deng, and S.-L. Zhu, Is X(3872) really a molecular state? Eur. Phys. J. C 56, 63 (2008), arXiv: 0801.3540
167 S.-L. Zhu, New hadron states, Int. J. Mod. Phys. E 17, 283 (2008), arXiv: hep-ph/0703225
168 R. Chen, Z.-F. Sun, X. Liu, and S.-L. Zhu, Strong LHCb evidence supporting the existence of the hidden-charm molecular pentaquarks, Phys. Rev. D 100, 011502 (2019), arXiv: 1903.11013
169 X. Liu, Y.-R. Liu, W.-Z. Deng, and S.-L. Zhu, Is Z+(4430) a loosely bound molecular state? Phys. Rev. D 77, 034003 (2008), arXiv: 0711.0494
170 Webpage:
171 R. Aaij,. LHCb Collaboration, et al.., Precise measurements of the properties of the B1(5721)0,+ and B2*(5747)0,+ states and observation of structure at higher invariant mass in the B+π− and B0π+ spectra, J. High Energy Phys. 04, 024 (2015), arXiv: 1502.02638
172 R. LHCb Collaboration, Observation of new excited Bs0 states, Eur. Phys. J. C 81, 601 (2021), arXiv: 2010.15931
173 R. LHCb Collaboration, Study of DJ meson decays to D+π−, D0π+ and D*+π− final states in pp collisions, J. High Energy Phys. 09, 145 (2013), arXiv: 1307.4556
174 R. LHCb Collaboration, Observation of overlapping spin-1 and spin-3 D¯0K− resonances at mass 2.86 GeV/c2, Phys. Rev. Lett. 113, 162001 (2014), arXiv: 1407.7574
175 R. LHCb Collaboration, Amplitude analysis of B−→D+π−π− decays, Phys. Rev. D 94, 072001 (2016), arXiv: 1608.01289
176 R. LHCb Collaboration, Observation of a new excited Ds+ state in B0→ DD+K+π decays, Phys. Rev. Lett. 126, 122002 (2021), arXiv: 2011.09112
177 S.-Q. Luo, B. Chen, X. Liu, and T. Matsuki, Predicting a new resonance as charmed-strange baryonic analog of Ds 0∗ (2317), Phys. Rev. D 103, 074027 (2021), arXiv: 2102.00679
178 R.-H. Ni, Q. Li, and X.-H. Zhong, Mass spectra and strong decays of charmed and charmed-strange mesons, arXiv: 2110.05024 (2021)
179 J.-M. Xie, M.-Z. Liu, and L.-S. Geng, Ds0(2590) as a dominant c s¯ state with a small D*K component, arXiv: 2108.12993 (2021)
180 Yang Z., et al.., Novel coupled channel framework connecting quark model and lattice QCD: An investigation on near-threshold Ds states, arXiv: 2107.04860 (2021)
181 G, The newly observed state Ds0(2590)+ and width of D*(2007)0, arXiv: 2107.01751 (2021)
182 Z.-H. Wang, G.-L. Wang, J.-M. Zhang, and T.-H. Wang, The productions and strong decays of Dq(2S) and Bq(2S), J. Phys. G 39, 085006 (2012), arXiv: 1207.2528
183 X, Bottom baryons, Phys. Rev. D 77, 014031 (2008), arXiv: 0710.0123
184 G.-L. Yu, Z.-G. Wang, and X.-W. Wang, The 1D, 2D Ξb and Λb baryons, arXiv: 2109.02217 (2021)
185 K.-L. Wang and X.-H. Zhong, Toward establishing the low-lying P-wave excited Σc baryon states, arXiv: 2110.12443 (2021)
186 Matsuki T.. et al.. Regge-like relation and universal description of heavy-light systems. PoS Hadron, 2018, 2017: 071
https://doi.org/10.22323/1.310.0071
187 K.-L. Wang, Y.-X. Yao, X.-H. Zhong, and Q. Zhao, Strong and radiative decays of the low-lying S- and P-wave singly heavy baryons, Phys. Rev. D 96, 116016 (2017), arXiv: 1709.04268
188 Q, D-wave heavy baryons of the SU(3) flavor 6F, Phys. Rev. D 96, 074021 (2017), arXiv: 1707.03712
189 H.-Y. Cheng and C.-W. Chiang, Quantum numbers of Ωc states and other charmed baryons, Phys. Rev. D 95, 094018 (2017), arXiv: 1704.00396
190 H.-M. Yang and H.-X. Chen, P-wave bottom baryons of the SU(3) flavor 6F, Phys. Rev. D 101, 114013 (2020), Erratum: Phys. Rev. D 102, 079901 (2020), arXiv: 2003.07488
191 B. Chen, K.-W. Wei, X. Liu, and A. Zhang, Role of newly discovered Ξb(6227)− for constructing excited bottom baryon family, Phys. Rev. D 98, 031502 (2018), arXiv: 1805.10826
192 Z.-Y. Wang, J.-J. Qi, X.-H. Guo, and K.-W. Wei, Spectra of charmed and bottom baryons with hyperfine interaction, Chin. Phys. C 41, 093103 (2017), arXiv: 1701.04524
193 K, Spectroscopy of singly, doubly, and triply bottom baryons, Phys. Rev. D 95, 116005 (2017), arXiv: 1609.02512
194 J, Λc(2595) resonance as a dynamically generated state: The compositeness condition and the large Nc evolution, Phys. Rev. D 93, 114028 (2016), arXiv: 1603.05388
195 H.-Z. He, W. Liang, Q.-F. Lü, and Y.-B. Dong, Strong decays of the low-lying bottom strange baryons, Sci. China Phys. Mech. Astron. 64, 261012 (2021), arXiv: 2102.07391
196 J.-R. Zhang and M.-Q. Huang, Heavy baryon spectroscopy in QCD, Phys. Rev. D 78, 094015 (2008), arXiv: 0811.3266
197 J.-R. Zhang and M.-Q. Huang, Mass spectra of the heavy baryons ΛQ and ΣQ(*) From QCD sum rules, Phys. Rev. D 77, 094002 (2008), arXiv: 0805.0479
198 Wei K.-W., Guo X.-H.. Mass spectra of doubly heavy mesons in Regge phenomenology. Phys. Rev. D, 2010, 81: 076005
https://doi.org/10.1103/PhysRevD.81.076005
199 F.-K. Guo, C. Hanhart, and U.-G. Meissner, Mass splittings within heavy baryon isospin multiplets in chiral perturbation theory, J. High Energy Phys. 09, 136 (2008), arXiv: 0809.2359
200 R. LHCb Collaboration, Observation of five new narrow Ω0c states decaying to Ξ c+K−, Phys. Rev. Lett. 118, 182001 (2017), arXiv: 1703.04639
201 J. Belle Collaboration, Observation of excited Ωc charmed baryons in e+e− collisions, Phys. Rev. D 97, 051102 (2018), arXiv: 1711.07927
202 R. LHCb Collaboration, Observation of excited Ω c0 baryons in Ωb− → Ξc+K−π+ decays, Phys. Rev. D 104, L091102 (2021), arXiv: 2107.03419
203 M. Karliner and J. L. Rosner, Very narrow excited c baryons, Phys. Rev. D 95, 114012 (2017), arXiv: 1703.07774
204 K.-L. Wang, L.-Y. Xiao, X.-H. Zhong, and Q. Zhao, Understanding the newly observed Ωc states through their decays, Phys. Rev. D 95, 116010 (2017), arXiv: 1703.09130
205 H, Investigation of Ωc0 states decaying to Ξc+K− in pp collisions at s = 7.13 TeV, Phys. Rev. C 102, 054319 (2020), arXiv: 1912.12905
206 B. Chen and X. Liu, New Ωc0 baryons discovered by LHCb as the members of 1P and 2S states, Phys. Rev. D 96, 094015 (2017), arXiv: 1704.02583
207 W. Wang and R.-L. Zhu, Interpretation of the newly observed Ωc0 resonances, Phys. Rev. D 96, 014024 (2017), arXiv: 1704.00179
208 H, Decay properties of P-wave charmed baryons from light-cone QCD sum rules, Phys. Rev. D 95, 094008 (2017), arXiv: 1703.07703
209 G. Yang and J. Ping, Dynamical study of Ωc0 in the chiral quark model, Phys. Rev. D 97, 034023 (2018), arXiv: 1703.08845
210 Wang H.-J., Di Z.-Y., Wang Z.-G.. Analysis of the excited Ωc states as the (1/2)± pentaquark states with QCD sum rules. Commun. Theor. Phys., 2021, 73: 035201
https://doi.org/10.1088/1572-9494/abc7b1
211 Z.-G. Wang and J.-X. Zhang, Possible pentaquark candidates: New excited Ωc states, Eur. Phys. J. C 78, 503 (2018), arXiv: 1804.06195
212 R. Chen, A. Hosaka, and X. Liu, Searching for possible Ωc-like molecular states from meson−baryon interaction, Phys. Rev. D 97, 036016 (2018), arXiv: 1711.07650
213 C, Possible open-charmed pentaquark molecule Ωc(3188) — the bound state — in the Bethe−Salpeter formalism, Eur. Phys. J. C 78, 407 (2018), arXiv: 1710.10850
214 Z.-G. Wang, X.-N. Wei, and Z.-H. Yan, Revisit assignments of the new excited Ωc states with QCD sum rules, Eur. Phys. J. C 77, 832 (2017), arXiv: 1706.09401
215 R. LHCb Collaboration, Observation of new Ξ c0 baryons decaying to Λc +K−, Phys. Rev. Lett. 124, 222001 (2020), arXiv: 2003.13649
216 collaboration BelleY, Observation of Ξc(2930)0 and updated measurement of B−→K−Λc+ Λ¯ c¯ at Belle, Eur. Phys. J. C 78, 252 (2018), arXiv: 1712.03612
217 R. LHCb Collaboration, Study of the B+ → Λc+Λ¯ c¯K+ decay, arXiv: 2211.00812 (submitted to Phys. Rev. D)
218 D. Ebert, R. N. Faustov, and V. O. Galkin, Masses of excited heavy baryons in the relativistic quark model, Phys. Lett. B 659, 612 (2008), arXiv: 0705.2957
219 W. Roberts and M. Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A 23, 2817 (2008), arXiv: 0711.2492
220 S. Migura, D. Merten, B. Metsch, and H.-R. Petry, Charmed baryons in a relativistic quark model, Eur. Phys. J. A 28, 41 (2006), arXiv: hep-ph/0602153
221 H.-M. Yang and H.-X. Chen, P-wave charmed baryons of the SU(3) flavor 6F, Phys. Rev. D 104, 034037 (2021), arXiv: 2106.15488
222 B. Chen, S.-Q. Luo, and X. Liu, Universal behavior of mass gaps existing in the single heavy baryon family, Eur. Phys. J. C 81, 474 (2021), arXiv: 2101.10806
223 J. Nieves, R. Pavao, and L. Tolos, Ξc and Ξb excited states within a SU(6)lsf×HQSS model, Eur. Phys. J. C 80, 22 (2020), arXiv: 1911.06089
224 Y.-J. Xu, Y.-L. Liu, C.-Y. Cui, and M.-Q. Huang, P-wave Ωb states: Masses and pole residues, arXiv: 2010.10697 (2020)
225 M. Karliner and J. L. Rosner, Interpretation of excited Ωb signals, Phys. Rev. D 102, 014027 (2020), arXiv: 2005.12424
226 L.-Y. Xiao and X.-H. Zhong, Toward establishing the low-lying P-wave Σb states, Phys. Rev. D 102, 014009 (2020), arXiv: 2004.11106
227 H.-M. Yang, H.-X. Chen, and Q. Mao, Excited Ξc0 baryons within the QCD rum rule approach, Phys. Rev. D 102, 114009 (2020), arXiv: 2004.00531
228 L.-Y. Xiao, K.-L. Wang, M.-S. Liu, and X.-H. Zhong, Possible interpretation of the newly observed Ωb states, Eur. Phys. J. C 80, 279 (2020), arXiv: 2001.05110
229 Z.-G. Wang, Analysis of the Ωb(6316), Ωb(6330), Ωb(6340) and Ωb(6350) with QCD sum rules, Int. J. Mod. Phys. A 35, 2050043 (2020), arXiv: 2001.02961
230 W.-H. Liang and E. Oset, Observed Ωb spectrum and meson−baryon molecular states, Phys. Rev. D 101, 054033 (2020), arXiv: 2001.02929
231 H, Excited Ωb baryons and fine structure of strong interaction, Eur. Phys. J. C 80, 256 (2020), arXiv: 2001.02147
232 W. Liang and Q.-F. Lü, Strong decays of the newly observed narrow Ωb structures, Eur. Phys. J. C 80, 198 (2020), arXiv: 2001.02221
233 Q.-F. Lü and X.-H. Zhong, Strong decays of the higher excited ΛQ and ΣQ baryons, Phys. Rev. D 101, 014017 (2020), arXiv: 1910.06126
234 B. Chen and X. Liu, Assigning the newly reported Σb(6097) as a P-wave excited state and predicting its partners, Phys. Rev. D 98, 074032 (2018), arXiv: 1810.00389
235 Wang H.-J., Di Z.-Y., Wang Z.-G.. Analysis of the Ξb(6227) as the (1/2)± pentaquark molecular states with QCD sum rules. Int. J. Theor. Phys., 2020, 59: 3124
https://doi.org/10.1007/s10773-020-04566-2
236 Q, QCD sum rule calculation for P-wave bottom baryons, Phys. Rev. D 92, 114007 (2015), arXiv: 1510.05267
237 J, Dynamically generated JP = 1/2− (3/2−) singly charmed and bottom heavy baryons, Phys. Rev. D 92, 014036 (2015), arXiv: 1409.3133
238 P. Yang, J.-J. Guo, and A. Zhang, Identification of the newly observed Σb(6097)± baryons from their strong decays, Phys. Rev. D 99, 034018 (2019), arXiv: 1810.06947
239 Y. Huang, C.-j. Xiao, L.-S. Geng, and J. He, Strong decays of the Ξb(6227) as a ΣbK¯ molecule, Phys. Rev. D 99, 014008 (2019), arXiv: 1811.10769
240 R. LHCb Collaboration, Observation of excited Λb0 baryons, Phys. Rev. Lett. 109, 172003 (2012), arXiv: 1205.3452
241 R. LHCb Collaboration, Observation of new resonances in the Λ b0π+π− system, Phys. Rev. Lett. 123, 152001 (2019), arXiv: 1907.13598
242 R. Aaij,. LHCb Collaboration, et al.., Observation of a new baryon state in the Λb0π+π− mass spectrum, JHEP 06 (2020) 136, arXiv: 2002.05112
243 B. Chen, S.-Q. Luo, X. Liu, and T. Matsuki, Interpretation of the observed Λb(6146)0 and Λb(6152)0 states as 1D bottom baryons, Phys. Rev. D 100, 094032 (2019), arXiv: 1910.03318
244 H, Decay properties of P-wave bottom baryons within light-cone sum rules, Eur. Phys. J. C 80, 80 (2020), arXiv: 1909.13575
245 K.-L. Wang, Q.-F. Lü, and X.-H. Zhong, Interpretation of the newly observed Λb(6146)0 and Λb(6152)0 states in a chiral quark model, Phys. Rev. D 100, 114035 (2019), arXiv: 1908.04622
246 K.-L. Wang, Q.-F. Lü, and X.-H. Zhong, Interpretation of the newly observed Σb(6097)± and Ξb(6227)− states as the P-wave bottom baryons, Phys. Rev. D 99, 014011 (2019), arXiv: 1810.02205
247 Q. Mao, H.-X. Chen, and H.-M. Yang, Identifying the Λb(6146)0 and Λb(6152)0 as D-wave bottom baryons, Universe 6, 86 (2020), arXiv: 2002.11435
248 T. CDF Collaboration, Observation of the heavy baryons Σb and Σb*, Phys. Rev. Lett. 99, 202001 (2007), arXiv: 0706.3868
249 R. LHCb Collaboration, Observation of two resonances in the Λ b0π± systems and precise measurement of Σb± and Σb*± properties, Phys. Rev. Lett. 122, 012001 (2019), arXiv: 1809.07752
250 S. CMS Collaboration, Observation of a new Ξb baryon, Phys. Rev. Lett. 108, 252002 (2012), arXiv: 1204.5955
251 R. LHCb Collaboration, Observation of two new Ξb baryon resonances, Phys. Rev. Lett. 114, 062004 (2015), arXiv: 1411.4849
252 R. LHCb Collaboration, Observation of a new Ξb resonance, Phys. Rev. Lett. 121, 072002 (2018), arXiv: 1805.09418
253 R. LHCb Collaboration, Observation of a new Ξb0 state, Phys. Rev. D 103, 012004 (2021), arXiv: 2010.14485
254 R. LHCb Collaboration, Observation of two new excited Ξb0 states decaying to Λb0Kπ+, Phys. Rev. Lett. 128, 162001 (2022), arXiv: 2110.04497
255 Collaboration CMSA, Observation of a new excited beauty strange baryon decaying to Ξbπ+π, Phys. Rev. Lett. 126, 252003 (2021), arXiv: 2102.04524
256 R. LHCb Collaboration, First observation of excited Ωb− states, Phys. Rev. Lett. 124, 082002 (2020), arXiv: 2001.00851
257 R. LHCb Collaboration, Observation of an excited Bc+ state, Phys. Rev. Lett. 122, 232001 (2019), arXiv: 1904.00081
258 R. LHCb Collaboration, Observation of the doubly charmed baryon Ξ cc ++, Phys. Rev. Lett. 119, 112001 (2017), arXiv: 1707.01621
259 R. LHCb Collaboration, Near-threshold DD¯ spectroscopy and observation of a new charmonium state, J. High Energy Phys. 07, 035 (2019), arXiv: 1903.12240
260 T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005), arXiv: hep-ph/0505002
261 Collaboration CMSA, Observation of two excited Bc+ states and measurement of the B c+(2S) mass in pp collisions at s= 13 TeV, Phys. Rev. Lett. 122, 132001 (2019), arXiv: 1902.00571
262 S. N. Gupta and J. M. Johnson, Bc spectroscopy in a quantum chromodynamic potential model, Phys. Rev. D 53, 312 (1996), arXiv: hep-ph/9511267
263 Y. -Q. Chen and Y. -P. Kuang, Improved QCD motivated heavy quark potentials with explicit Λ M S¯ dependence, Phys. Rev. D 46, 1165 (1992), Erratum: Phys. Rev. D 47, 350 (1993)
264 R, Finding Bc(3S) states via their strong decays, Phys. Lett. B 816, 136277 (2021), arXiv: 2101.01958
265 M. Chen, L. Chang, and Y.-X. Liu, Bc meson spectrum via Dyson−Schwinger equation and Bethe−Salpeter equation approach, Phys. Rev. D 101, 056002 (2020), arXiv: 2001.00161
266 L, Can the hyperfine mass splitting formula in heavy quarkonia be applied to the Bc system? Few Body Syst. 62, 4 (2021), arXiv: 1912.08339
267 L. Chang, M. Chen, and Y.-X. Liu, Excited Bc states via the Dyson−Schwinger equation approach of QCD, Phys. Rev. D 102, 074010 (2020), arXiv: 1904.00399
268 C.-H. Chang, C. Driouichi, P. Eerola, and X. G. Wu, BCVEGPY: An event generator for hadronic production of the Bc meson, Comput. Phys. Commun. 159, 192 (2004), arXiv: hep-ph/0309120
269 C.-H. Chang, J.-X. Wang, and X.-G. Wu, BCVEGPY2.0: An upgraded version of the generator BCVEGPY with an addition of hadroproduction of the P-wave Bc states, Comput. Phys. Commun. 174, 241 (2006), arXiv: hep-ph/0504017
270 F.-S. Yu, Role of decay in the search for double-charm baryons, Sci. China Phys. Mech. Astron. 63, 221065 (2020), arXiv: 1912.10253
271 X.-H. Hu and Y.-J. Shi, Light-cone sum rules analysis of ΞQ Q′ →ΣQ′ weak decays, Eur. Phys. J. C 80, 56 (2020), arXiv: 1910.07909
272 R. LHCb Collaboration, First observation of the doubly charmed baryon decay Ξcc++→ Ξc+π+, Phys. Rev. Lett. 121, 162002 (2018), arXiv: 1807.01919
273 R. LHCb Collaboration, Precision measurement of the Ξcc++ mass, J. High Energy Phys. 02, 049 (2020), arXiv: 1911.08594
274 R. LHCb Collaboration, Search for the doubly charmed baryon Ξcc+, Sci. China Phys. Mech. Astron. 63, 221062 (2020), arXiv: 1909.12273
275 R. LHCb Collaboration, Search for the doubly charmed baryon Ω cc +, Sci. China Phys. Mech. Astron. 64, 101062 (2021), arXiv: 2105.06841
276 R. LHCb Collaboration, Search for the doubly charmed baryon Ξcc++ in the Ξc+ π−π+ final state, J. High Energy Phys. 12, 107 (2021), arXiv: 2109.07292
277 H.-Z. Tong and H.-S. Li, The chiral corrections to the masses of the doubly heavy baryons, arXiv: 2110.01380 (2021)
278 H.-S. Li and W.-L. Yang, Spin-3/2 doubly charmed baryon contribution to the magnetic moments of the spin-1/2 doubly charmed baryons, Phys. Rev. D 103, 056024 (2021), arXiv: 2012.14596
279 J, Ωcc resonances with negative parity in the chiral constituent quark model, Phys. Rev. D 104, 094008 (2021), arXiv: 2110.06408
280 M.-S. Liu, Q.-F. Lü, and X.-H. Zhong, Triply charmed and bottom baryons in a constituent quark model, Phys. Rev. D 101, 074031 (2020), arXiv: 1912.11805
281 J, Ξbb and Ξbbb molecular states, Chin. Phys. C 44 (2020) 064101, arXiv: 1912.04517
282 Q.-X. Yu, J. M. Dias, W.-H. Liang, and E. Oset, Molecular Ξbc states from meson−baryon interaction, Eur. Phys. J. C 79, 1025 (2019), arXiv: 1909.13449
283 Q. Li, C.-H. Chang, S.-X. Qin, and G.-L. Wang, Mass spectra and wave functions of the doubly heavy baryons with JP = 1+ heavy diquark cores, Chin. Phys. C 44, 013102 (2020), arXiv: 1903.02282
284 Chen H.-X., et al.., Establishing low-lying doubly charmed baryons, Phys. Rev. D 96, 031501 (2017), Erratum: Phys. Rev. D 96, 119902 (2017), arXiv: 1707.01779
285 C.-Y. Wang, C. Meng, Y.-Q. Ma, and K.-T. Chao, NLO effects for doubly heavy baryons in QCD sum rules, Phys. Rev. D 99, 014018 (2019), arXiv: 1708.04563
286 T. Guo, J. Li, J. Zhao, and L. He, Mass spectra of doubly heavy tetraquarks in an improved chromomagnetic interaction model, arXiv: 2108.10462 (2021)
287 Q, Inclusive approach to hunt for the beauty-charmed baryons Ξbc, Phys. Rev. D 105, L031902 (2022), arXiv: 2108.06716
288 Gao D., et al.., Masses of doubly heavy tetraquark states with isospin = 1/2 and 1 and spin-parity 1+±, arXiv: 2007.15213 (2020)
289 X.-Z. Weng, X.-L. Chen, and W.-Z. Deng, Masses of doubly heavy-quark baryons in an extended chromomagnetic model, Phys. Rev. D 97, 054008 (2018), arXiv: 1801.08644
290 J, Weak decays of bottom-charm baryons: Bbc →BbP, Eur. Phys. J. C 81, 539 (2021), arXiv: 2102.00961
291 D.-M. Li, X.-R. Zhang, Y. Xing, and J. Xu, Weak decays of doubly heavy baryons: Four-body nonleptonic decay channels, Eur. Phys. J. Plus 136, 772 (2021), arXiv: 2101.12574
292 J, Rescattering mechanism of weak decays of double-charm baryons, Chin. Phys. C 45, 053105 (2021), arXiv: 2101.12019
293 Z.-G. Wang, Analysis of the triply-heavy baryon states with the QCD sum rules, AAPPS Bull. 31, 5 (2021), arXiv: 2010.08939
294 L.-Y. Xiao, Q.-F. Lü, and S.-L. Zhu, Strong decays of the 1P and 2D doubly charmed states, Phys. Rev. D 97, 074005 (2018), arXiv: 1712.07295
295 Y.-J. Shi, W. Wang, and Z.-X. Zhao, QCD sum rules analysis of weak decays of doubly-heavy baryons, Eur. Phys. J. C 80, 568 (2020), arXiv: 1902.01092
296 H.-Y. Cheng and F. Xu, Lifetimes of doubly heavy baryons Bbb and Bbc, Phys. Rev. D 99, 073006 (2019), arXiv: 1903.08148
297 Q.-A. Zhang, Weak decays of doubly heavy baryons: W-exchange, Eur. Phys. J. C 78, 1024 (2018), arXiv: 1811.02199
298 L.-J. Jiang, B. He, and R.-H. Li, Weak decays of doubly heavy baryons: Bcc →BcV, Eur. Phys. J. C 78, 961 (2018), arXiv: 1810.00541
299 Z.-X. Zhao, Weak decays of heavy baryons in the light-front approach, Chin. Phys. C 42, 093101 (2018), arXiv: 1803.02292
300 W. Wang and J. Xu, Weak decays of triply heavy baryons, Phys. Rev. D 97, 093007 (2018), arXiv: 1803.01476
301 E, Suggested search for doubly charmed baryons of JP = 3/2+ via their electromagnetic transitions, Phys. Rev. D 97, 034018 (2018), arXiv: 1712.03615
302 Y.-J. Shi, W. Wang, Y. Xing, and J. Xu, Weak decays of doubly heavy baryons: Multi-body decay channels, Eur. Phys. J. C 78, 56 (2018), arXiv: 1712.03830
303 L. Meng, H.-S. Li, Z.-W. Liu, and S.-L. Zhu, Magnetic moments of the spin-3/2 doubly heavy baryons, Eur. Phys. J. C 77, 869 (2017), arXiv: 1710.08283
304 C. Q. Geng, Y. K. Hsiao, C.-W. Liu, and T.-H. Tsai, Charmed baryon weak decays with SU(3) flavor symmetry, J. High Energy Phys. 11, 147 (2017), arXiv: 1709.00808
305 Q.-F. Lü, K.-L. Wang, L.-Y. Xiao, and X.-H. Zhong, Mass spectra and radiative transitions of doubly heavy baryons in a relativized quark model, Phys. Rev. D 96, 114006 (2017), arXiv: 1708.04468
306 L, Strong and radiative decays of the doubly charmed baryons, Phys. Rev. D 96, 094005 (2017), arXiv: 1708.04384
307 H.-S. Li, L. Meng, Z.-W. Liu, and S.-L. Zhu, Radiative decays of the doubly charmed baryons in chiral perturbation theory, Phys. Lett. B 777, 169 (2018), arXiv: 1708.03620
308 W. Wang, Z.-P. Xing, and J. Xu, Weak decays of doubly heavy baryons: SU(3) analysis, Eur. Phys. J. C 77, 800 (2017), arXiv: 1707.06570
309 W. Wang, F.-S. Yu, and Z.-X. Zhao, Weak decays of doubly heavy baryons: The 1/2 → 1/2 case, Eur. Phys. J. C 77, 781 (2017), arXiv: 1707.02834
310 F, Discovery potentials of doubly charmed baryons, Chin. Phys. C 42, 051001 (2018), arXiv: 1703.09086
311 G.-Y. Chen, W.-S. Huo, and Q. Zhao, Identifying the structure of near-threshold states from the line shape, Chin. Phys. C 39, 093101 (2015), arXiv: 1309.2859
312 Z.-Y. Wang, J.-J. Qi, X.-H. Guo, and C. Wang, X(3872) as a molecular D D¯∗ state in the Bethe−Salpeter equation approach, Phys. Rev. D 97, 016015 (2018), arXiv: 1710.07424
313 J, Double-heavy tetraquark states with heavy diquark−antiquark symmetry, Chin. Phys. C 45, 043102 (2021), arXiv: 2008.00737
314 Q.-F. Lü, D.-Y. Chen, and Y.-B. Dong, Masses of doubly heavy tetraquarks T QQ′ in a relativized quark model, Phys. Rev. D 102, 034012 (2020), arXiv: 2006.08087
315 Y.-J. Shi, W. Wang, Z.-X. Zhao, and U.-G. Meiβner, Towards a heavy diquark effective theory for weak decays of doubly heavy baryons, Eur. Phys. J. C 80, 398 (2020), arXiv: 2002.02785
316 H, Exotic pentaquark states with the qqQQQ¯ configuration, Phys. Rev. D 100, 056004 (2019), arXiv: 1905.07858
317 L. Meng and S.-L. Zhu, Light pseudoscalar meson and doubly charmed baryon scattering lengths with heavy diquark-antiquark symmetry, Phys. Rev. D 100, 014006 (2019), arXiv: 1811.07320
318 Q, Surveying exotic pentaquarks with the typical QQqqq¯ configuration, Phys. Rev. C 98, 045204 (2018), arXiv: 1801.04557
319 K, Triply heavy tetraquark states with the QQQq¯ configuration, Eur. Phys. J. A 53, 5 (2017), arXiv: 1609.06117
320 Dong X.-K., Guo F.-K., S. Zou B.. Near threshold structures and hadronic molecules. Few Body Syst., 2021, 62: 61
https://doi.org/10.1007/s00601-021-01649-6
321 Z.-M. Ding, H.-Y. Jiang, D. Song, and J. He, Hidden and doubly heavy molecular states from interactions D(s ) (∗)D¯s(∗ )/B (s)(∗ )B¯s(∗ ) and D( s)(∗ )Ds(∗)/B(s ) (∗)B s(∗), Eur. Phys. J. C 81, 732 (2021), arXiv: 2107.00855
322 Chen X.. The genuine resonance of full-charm tetraquarks. Universe, 2021, 7: 155
https://doi.org/10.3390/universe7050155
323 G. Yang, J. Ping, and J. Segovia, QQ tetraquarks in the chiral quark model, Phys. Rev. D 102, 054023 (2020), arXiv: 2007.05190
324 S. Belle Collaboration, Observation of a narrow charmoniumlike state in exclusive B±→K±π+π−J/ψ decays, Phys. Rev. Lett. 91, 262001 (2003), arXiv: hep-ex/0309032
325 R. LHCb Collaboration, Quantum numbers of the X(3872) state and orbital angular momentum in its ρ0 J/ψ decays, Phys. Rev. D 92, 011102(R) (2015), arXiv: 1504.06339
326 P. A. Zyla,. Particle Data Group. et al.. Review of particle physics. Prog. Theor. Exp. Phys., 2020, 2020: 083C01
https://doi.org/10.1093/ptep/ptaa104
327 R. LHCb Collaboration, Study of the line shape of the χc1(3872) state, Phys. Rev. D 102, 092005 (2020), arXiv: 2005.13419
328 R. LHCb Collaboration, Study of the ψ2(3823) and χc1(3872) states in B+→( J/ ψπ+π−) K+ decays, J. High Energy Phys. 08, 123 (2020), arXiv: 2005.13422
329 R. LHCb Collaboration, Evidence for the decay X(3872) → ψ(2S)γ, Nucl. Phys. B 886, 665 (2014), arXiv: 1404.0275
330 R. LHCb Collaboration, Observation of sizeable ω contribution to χc1→π+π−J/ψ decays, arXiv: 2204.12597 (submitted to Phys. Rev. Lett.)
331 Z.-H. Zhang and F.-K. Guo, D±D∗∓ hadronic atom as a key to revealing the X(3872) mystery, Phys. Rev. Lett. 127, 012002 (2021), arXiv: 2012.08281
332 L. Meng, G.-J. Wang, B. Wang, and S.-L. Zhu, Revisit the isospin violating decays of X(3872), Phys. Rev. D 104, 094003 (2021), arXiv: 2109.01333
333 He L., Ingles K., Braaten E., Jiang J.. Triangle singularities in the production of X(3872). PoS CHARM, 2021, 2020: 027
https://doi.org/10.22323/1.385.0027
334 L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Diquark−antidiquarks with hidden or open charm and the nature of X(3872), Phys. Rev. D 71, 014028 (2005), arXiv: hep-ph/0412098
335 Z.-G. Wang and T. Huang, Analysis of the X(3872), Zc(3900) and Zc(3885) as axial-vector tetraquark states with QCD sum rules, Phys. Rev. D 89, 054019 (2014), arXiv: 1310.2422
336 W. Chen and S.-L. Zhu, Vector and axial-vector charmoniumlike states, Phys. Rev. D 83, 034010 (2011), arXiv: 1010.3397
337 B. A. Li, Is X(3872) a possible candidate of as a hybrid meson, Phys. Lett. B 605, 306 (2005), arXiv: hep-ph/0410264
338 F.-K. Guo, C. Hanhart, Q. Wang, and Q. Zhao, Could the near-threshold XYZ states be simply kinematic effects? Phys. Rev. D 91, 051504 (2015), arXiv: 1411.5584
339 F, Production of the X(3872) in charmonia radiative decays, Phys. Lett. B 725, 127 (2013), arXiv: 1306.3096
340 C. Meng and K.-T. Chao, Decays of the X(3872) and χc1(2P) charmonium state, Phys. Rev. D 75, 114002 (2007), arXiv: hep-ph/0703205
341 F, Interplay of quark and meson degrees of freedom in near-threshold states: A practical parametrization for line shapes, Phys. Rev. D 93 (2016) 074031, arXiv: 1602.00940
342 S, Exotic tetraquark states with the qqQ¯ Q¯ configuration, Eur. Phys. J. C 77, 709 (2017), arXiv: 1707.01180
343 X.-W. Kang and J. A. Oller, Different pole structures in line shapes of the X(3872), Eur. Phys. J. C 77, 399 (2017), arXiv: 1612.08420
344 C. Z. Yuan, P. Wang, and X. H. Mo, The Y(4260) as an ωχc1 molecular state, Phys. Lett. B 634, 399 (2006), arXiv: hep-ph/0511107
345 Y. Cui, X.-L. Chen, W.-Z. Deng, and S.-L. Zhu, Possible heavy tetraquarks qQq¯ Q¯,qq QQ¯ and qQ QQ¯∗, High Energy Phys. Nucl. Phys. 31, 7 (2007), arXiv: hep-ph/0607226
346 C. Meng, Y.-J. Gao, and K.-T. Chao, Bχc1(1P, 2P)K decays in QCD factorization and X(3872), Phys. Rev. D 87, 074035 (2013), arXiv: hep-ph/0506222
347 J.-R. Zhang and M.-Q. Huang, {Qq¯}{ Q¯(′)q} molecular states, Phys. Rev. D 80, 056004 (2009), arXiv: 0906.0090
348 O. Zhang, C. Meng, and H. Q. Zheng, Ambiversion of X(3872), Phys. Lett. B 680, 453 (2009), arXiv: 0901.1553
349 C. Meng, H. Han, and K.-T. Chao, X(3872) and its production at hadron colliders, Phys. Rev. D 96, 074014 (2017), arXiv: 1304.6710
350 G.-J. Ding, J.-F. Liu, and M.-L. Yan, Dynamics of hadronic molecule in one-boson exchange approach and possible heavy flavor molecules, Phys. Rev. D 79, 054005 (2009), arXiv: 0901.0426
351 H, QCD sum rule study of hidden-charm pentaquarks, Eur. Phys. J. C 76, 572 (2016), arXiv: 1602.02433
352 N. Li and S.-L. Zhu, Isospin breaking, coupled-channel effects and diagnosis of X(3872), Phys. Rev. D 86, 074022 (2012), arXiv: 1207.3954
353 M, Heavy-quark spin and avor symmetry partners of the X(3872) revisited: What can we learn from the one boson exchange model? Phys. Rev. D 99, 094018 (2019), arXiv: 1902.03044
354 W, QCD sum-rule interpretation of X(3872) with JPC = 1++ mixtures of hybrid charmonium and D¯D∗ molecular currents, Phys. Rev. D 88 (2013) 045027, arXiv: 1305.0244
355 X.-K. Dong, F.-K. Guo, and B.-S. Zou, A survey of heavy-antiheavy hadronic molecules, Prog. Phys. 41 (2021) 65, arXiv: 2101.01021
356 F, What can radiative decays of the X(3872) teach us about its nature? Phys. Lett. B 742, 394 (2015), arXiv: 1410.6712
357 F.-K. Guo, Novel method for precisely measuring the X(3872) mass, Phys. Rev. Lett. 122, 202002 (2019), arXiv: 1902.11221
358 L. Zhao, L. Ma, and S.-L. Zhu, Spin-orbit force, recoil corrections, and possible B B¯∗ and D D¯∗ molecular states, Phys. Rev. D 89, 094026 (2014), arXiv: 1403.4043
359 Y.-R. Liu and Z.-Y. Zhang, X(3872) and the bound state problem of D0D¯∗0( D ¯0D∗0) in a chiral quark model, Phys. Rev. C 79, 035206 (2009), arXiv: 0805.1616
360 H, Is Zb(10610) a molecular state? J. High Energy Phys. 04, 056 (2012), arXiv: 1202.2178
361 L. Geng, J. Lu, and M. P. Valderrama, Scale invariance in heavy hadron molecules, Phys. Rev. D 97, 094036 (2018), arXiv: 1704.06123
362 C, Refined analysis on the X(3872) resonance, Phys. Rev. D 92, 034020 (2015), arXiv: 1411.3106
363 R. Chen, A. Hosaka, and X. Liu, Heavy molecules and one-σ/ω-exchange model, Phys. Rev. D 96, 116012 (2017), arXiv: 1707.08306
364 L, The molecular systems composed of the charmed mesons in the HS¯ + h.c. doublet, Eur. Phys. J. C 70, 183 (2010), arXiv: 1005.0994
365 H. X. Zhang, M. Zhang, and Z. Y. Zhang, Q qQ ¯q¯′ states in chiral SU(3) quark model, Chin. Phys. Lett. 24, 2533 (2007), arXiv: 0705.2470
366 T. Wang, G.-L. Wang, Y. Jiang, and W.-L. Ju, Electromagnetic decay of X(3872) as the 11D2(2−+) charmonium, J. Phys. G 40, 035003 (2013), arXiv: 1205.5725
367 W. Wang and Q. Zhao, Decipher the short-distance component of X(3872) in Bc decays, Phys. Lett. B 755, 261 (2016), arXiv: 1512.03123
368 Y.-C. Yang, Z.-Y. Tan, J. Ping, and H.-S. Zong, Possible D(∗)D ¯(∗ )andB(∗ )B¯(∗) molecular states in the extended constituent quark models, Eur. Phys. J. C 77, 575 (2017), arXiv: 1703.09718
369 Z.-R. Liang, X.-Y. Wu, and D.-L. Yao, Hunting for states in the recent LHCb di-J/ψ invariant mass spectrum, Phys. Rev. D 104, 034034 (2021), arXiv: 2104.08589
370 B.-X. Sun, D.-M. Wan, and S.-Y. Zhao, The D D¯∗ interaction with isospin zero in an extended hidden gauge symmetry approach, Chin. Phys. C 42, 053105 (2018), arXiv: 1709.07263
371 S.-H. Yu, B.-K. Wang, X.-L. Chen, and W.-Z. Deng, Study the Heavy molecular states in quark model with meson exchange interaction, Chin. Phys. C 36, 25 (2012), arXiv: 1104.4535
372 H.-Y. Cao and H.-Q. Zhou, Decay widths of 3PJ charmonium to DD, DD*, D*D* and corresponding mass shifts of 3PJ charmonium, Eur. Phys. J. C 80, 975 (2020), arXiv: 2008.11324
373 C.-F. Qiao and L. Tang, Molecular states with hidden charm and strange in QCD sum rules, Europhys. Lett. 107, 31001 (2014), arXiv: 1309.7596
374 S. Belle Collaboration, Observation of a resonance-like structure in the π±ψ' mass distribution in exclusive BKπ±ψ' decays, Phys. Rev. Lett. 100, 142001 (2008), arXiv: 0708.1790
375 LHCb Collaboration, T. Gershon, Exotic hadron naming convention, arXiv: 2206.15233 (2022)
376 R. LHCb Collaboration, Observation of the resonant character of the Z(4430)− state, Phys. Rev. Lett. 112, 222002 (2014), arXiv: 1404.1903
377 M. BESIII collaboration, Observation of a charged charmoniumlike structure in e+e−→ π+π−J/ψ at s = 4.26 GeV, Phys. Rev. Lett. 110, 252001 (2013), arXiv: 1303.5949
378 Q. Wu and D.-Y. Chen, Exploration of the hidden charm decays of Zcs(3985), Phys. Rev. D 104, 074011 (2021), arXiv: 2108.06700
379 F.-L. Wang, X.-D. Yang, R. Chen, and X. Liu, Correlation of the hidden-charm molecular tetraquarks and the charmoniumlike structures existing in the BXYZ + K process, Phys. Rev. D 104, 094010 (2021), arXiv: 2103.04698
380 Y. Zhang, E. Wang, D.-M. Li, and Y.-X. Li, Search for the D∗D¯∗ molecular state Zc(4000) in the reaction B− → J/ψρ0K−, Chin. Phys. C 44, 093107 (2020), arXiv: 2001.06624
381 L.-Y. Xiao, G.-J. Wang, and S.-L. Zhu, Hidden-charm strong decays of the Zc states, Phys. Rev. D 101, 054001 (2020), arXiv: 1912.12781
382 J. He and D.-Y. Chen, Interpretation of Y(4390) as an isoscalar partner of Z(4430) from D*(2010)D¯1(2420) interaction, Eur. Phys. J. C 77, 398 (2017), arXiv: 1704.08776
383 W. Chen, T. G. Steele, H.-X. Chen, and S.-L. Zhu, Mass spectra of Zc and Zb exotic states as hadron molecules, Phys. Rev. D 92, 054002 (2015), arXiv: 1505.05619
384 W. Chen, T. G. Steele, H.-X. Chen, and S.-L. Zhu, Zc (4200)+ decay width as a charmonium-like tetraquark state, Eur. Phys. J. C 75, 358 (2015), arXiv: 1501.03863
385 X, Resolving the puzzling decay patterns of charged Zc and Zb states, Phys. Rev. D 90, 074020 (2014), arXiv: 1407.3684
386 L. Ma, X.-H. Liu, X. Liu, and S.-L. Zhu, Strong decays of the XYZ states, Phys. Rev. D 91, 034032 (2015), arXiv: 1406.6879
387 Z.-G. Wang, Analysis of the Z(4430) as the first radial excitation of the Zc(3900), Commun. Theor. Phys. 63, 325 (2015), arXiv: 1405.3581
388 L. Ma, X.-H. Liu, X. Liu, and S.-L. Zhu, Exotic four quark matter: Z1(4475), Phys. Rev. D 90, 037502 (2014), arXiv: 1404.3450
389 H.-W. Ke, Z.-T. Wei, and X.-Q. Li, Is Zc(3900) a molecular state, Eur. Phys. J. C 73, 2561 (2013), arXiv: 1307.2414
390 L. Zhao, W.-Z. Deng, and S.-L. Zhu, Hidden-Charm Tetraquarks and charged Zc states, Phys. Rev. D 90, 094031 (2014), arXiv: 1408.3924
391 Q, Zc(3900) as a DD¯* molecule from the pole counting rule, Phys. Rev. D 94, 114019 (2016), arXiv: 1604.08836
392 L, Strong decays of higher charmonium states into open-charm meson pairs, Phys. Rev. D 98, 016010 (2018), arXiv: 1801.08791
393 Z.-G. Wang, Analysis of the hidden-charm tetraquark mass spectrum with the QCD sum rules, Phys. Rev. D 102, 014018 (2020), arXiv: 1908.07914
394 J. He and P.-L. Lü, D ∗D¯1(2420) and DD¯'*(2600) interactions and the charged charmonium-like state Z(4430), Chin. Phys. C 40, 043101 (2016), arXiv: 1410.8645
395 Y.-R. Liu and Z.-Y. Zhang, A chiral quark model study of Z+(4430) in the molecular picture, arXiv: 0908.1734 (2009)
396 T. CDF Collaboration, Evidence for a narrow near-threshold structure in the J/ψϕ mass spectrum in B+ → J/ ψϕK+ decays, Phys. Rev. Lett. 102, 242002 (2009), arXiv: 0903.2229
397 T. CDF Collaboration, Observation of the Y(4140) structure in the J/ψϕ mass spectrum in B± →J/ψϕK± decays, Mod. Phys. Lett. A 32, 1750139 (2017), arXiv: 1101.6058
398 S. CMS Collaboration, Observation of a peaking structure in the J/ψϕ mass spectrum from B± →J/ψϕK± decays, Phys. Lett. B 734, 261 (2014), arXiv: 1309.6920
399 B, Possible heavy molecular states composed of a pair of excited charm-strange mesons, Chin. Phys. C 35, 113 (2011), arXiv: 1004.4032
400 Q, Compact sssc pentaquark states predicted by a quark model, Phys. Lett. B 798, 135028 (2019), arXiv: 1907.00144
401 R. LHCb Collaboration, Observation of exotic J/ψϕ structures from amplitude analysis of B± →J/ψϕK± decays, Phys. Rev. Lett. 118, 022003 (2017), arXiv: 1606.07895
402 Q.-F. Cao, H.-R. Qi, Y.-F. Wang, and H.-Q. Zheng, Discussions on the line-shape of the X(4660) resonance, Phys. Rev. D 100, 054040 (2019), arXiv: 1906.00356
403 W, Canonical interpretation of the X(4140) state within the 3P0 model, Eur. Phys. J. C 80, 626 (2020), arXiv: 1909.13099
404 F.-L. Wang and X. Liu, Exotic double-charm molecular states with hidden or open strangeness and around 4.5−4.7 GeV, Phys. Rev. D 102, 094006 (2020), arXiv: 2008.13484
405 Chen D.-Y., Xiao C.-J.. Strong two-body decays of the S-wave Ds+ Ds− molecule state. Nucl. Phys. A, 2016, 947: 26
https://doi.org/10.1016/j.nuclphysa.2015.12.003
406 Q.-F. Lü and Y.-B. Dong, X(4140), X(4274), X(4500), and X(4700) in the relativized quark model, Phys. Rev. D 94, 074007 (2016), arXiv: 1607.05570
407 J, X(4140), X(4270), X(4500) and X(4700) and their cscs¯ tetraquark partners, Phys. Rev. D 94, 094031 (2016), arXiv: 1608.07900
408 X.-H. Liu, How to understand the underlying structures of X(4140), X(4274), X(4500) and X(4700), Phys. Lett. B 766, 117 (2017), arXiv: 1607.01385
409 Z.-G. Wang, Reanalysis of the X(3915), X(4500) and X(4700) with QCD sum rules, Eur. Phys. J. A 53, 19 (2017), arXiv: 1607.04840
410 Z.-G. Wang, Reanalysis of the Y(3940), Y(4140), Zc(4020), Zc(4025) and Zb(10650) as molecular states with QCD sum rules, Eur. Phys. J. C 74, 2963 (2014), arXiv: 1403.0810
411 J.-R. Zhang and M.-Q. Huang, ( Qs ¯)(∗)(Q¯s)(∗) molecular states from QCD sum rules: A view on Y(4140), J. Phys. G 37, 025005 (2010), arXiv: 0905.4178
412 X. Liu, The hidden charm decay of Y(4140) by the rescattering mechanism, Phys. Lett. B 680, 137 (2009), arXiv: 0904.0136
413 H, Understanding the internal structures of the X(4140), X(4274), X(4500) and X(4700), Eur. Phys. J. C 77, 160 (2017), arXiv: 1606.03179
414 Z.-G. Wang, Analysis of the X(4350) as a scalar c ¯c and Ds∗D¯s∗ mixing state with QCD sum rules, Phys. Lett. B 690, 403 (2010), arXiv: 0912.4626
415 E. Wang, J.-J. Xie, L.-S. Geng, and E. Oset, Analysis of the B+ → J/ ψϕK+ data at low J/ψϕ invariant masses and the X(4140) and X(4160) resonances, Phys. Rev. D 97, 014017 (2018), arXiv: 1710.02061
416 J. He and P.-L. Lü, Understanding Y(4274) and X(4320) in the J/ ψϕ invariant mass spectrum, Nucl. Phys. A 919, 1 (2013), arXiv: 1309.6718
417 J. Ferretti, E. Santopinto, M. N. Anwar, and Y. Lu, Quark structure of the χc(3P) and X(4274) resonances and their strong and radiative decays, Eur. Phys. J. C 80, 464 (2020), arXiv: 2002.09401
418 C. Deng, H. Chen, and J. Ping, Can the state Y(4626) be a P-wave tetraquark state [cs][c ¯s¯]? Phys. Rev. D 101, 054039 (2020), arXiv: 1912.07174
419 Z.-G. Wang, X.-S. Yang, and Q. Xin, Tetraquark molecular states in the Ds D¯s1 and Ds∗D¯s0∗ mass spectrum, Int. J. Mod. Phys. A 36, 2150202 (2021), arXiv: 2106.12400
420 P.-P. Shi, F. Huang, and W.-L. Wang, Hidden charm tetraquark states in a diquark model, Phys. Rev. D 103, 094038 (2021), arXiv: 2105.02397
421 X, The explanation of some exotic states in the cs tetraquark system, Eur. Phys. J. C 81, 950 (2021), arXiv: 2103.12425
422 Y.-H. Ge, X.-H. Liu, and H.-W. Ke, Threshold effects as the origin of Zcs(4000), Zcs(4220) and X(4700) observed in B+ → J/ ψϕK+, Eur. Phys. J. C 81, 854 (2021), arXiv: 2103.05282
423 X.-D. Yang, F.-L. Wang, Z.-W. Liu, and X. Liu, Newly observed X(4630): A new charmoniumlike molecule, Eur. Phys. J. C 81, 807 (2021), arXiv: 2103.03127
424 Z, Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725
425 Q.-N. Wang, W. Chen, and H.-X. Chen, Exotic D¯s(∗ )D( ∗) molecular states and scqc¯ tetraquark states with JP = 0+, 1+, 2+, Chin. Phys. C 45, 093102 (2021), arXiv: 2011.10495
426 D.-Y. Chen, X. Liu, and T. Matsuki, Predictions of charged charmoniumlike structures with hidden-charm and open-strange channels, Phys. Rev. Lett. 110, 232001 (2013), arXiv: 1303.6842
427 Jin X., et al.., Strange hidden-charm tetraquarks in constituent quark models, arXiv: 2011.12230 (2020)
428 Liu Z.. Four-quark matter — a new era of spectroscopy. AAPPS Bull., 2021, 31: 8
https://doi.org/10.1007/s43673-021-00007-2
429 R. LHCb Collaboration, Observation of new resonances decaying to J/ψ K+ and J/ψϕ, Phys. Rev. Lett. 127, 082001 (2021), arXiv: 2103.01803
430 M. BESIII Collaboration, Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e− → K+(Ds− D∗ 0+D s∗ −D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855
431 R. Aaij,. LHCb Collaboration, et al.., TBD, LHCb-PAPER-2022-040 (in preparation)
432 X. Cao and Z. Yang, Hunting for the heavy quark spin symmetry partner of Zcs, arXiv: 2110.09760 (2021)
433 Duan M.-Y., et al.., Revisiting the Zc(4025) structure observed by BESIII in e+e− → (D∗D¯∗ )± ,0π ∓, 0 at s = 4.26 GeV, Phys. Rev. D 104, 074030 (2021), arXiv: 2109.00731
434 R. LHCb Collaboration, Model-independent study of structure in B+ →D+DK+ decays, Phys. Rev. Lett. 125, 242001 (2020), arXiv: 2009.00025
435 R. LHCb collaboration, Amplitude analysis of the B+ →D+DK+ decay, Phys. Rev. D 102, 112003 (2020), arXiv: 2009.00026
436 Chen Y.-K., et al.., Branching fractions of B− → DX0, 1(2900) and their implications, Eur. Phys. J. C 81, 71 (2021), arXiv: 2009.01182
437 R. Aaij,. LHCb Collaboration, et al.., TBD, LHCb-PAPER-2022-026, arXiv: 2212.02716 (submitted to Phys. Rev. Lett.)
438 R. Aaij,. LHCb Collaboration, et al.., TBD, LHCb-PAPER-2022-027, arXiv: 2212.02717 (submitted to Phys. Rev. D)
439 Q. -F. Lü, D.-Y. Chen, and Y.-B. Dong, Open charm and bottom tetraquarks in an extended relativized quark model, Phys. Rev. D 102, 074021 (2020), arXiv: 2008.07340
440 M.-Z. Liu, J.-J. Xie, and L.-S. Geng, X0(2866) as a D∗K ¯∗ molecular state, Phys. Rev. D 102, 091502 (2020), arXiv: 2008.07389
441 M.-W. Hu, X.-Y. Lao, P. Ling, and Q. Wang, X0(2900) and its heavy quark spin partners in molecular picture, Chin. Phys. C 45, 021003 (2021), arXiv: 2008.06894
442 Y. Tan and J. Ping, X(2900) in a chiral quark model, Chin. Phys. C 45, 093104 (2021), arXiv: 2010.04045
443 X.-K. Dong and B.-S. Zou, Prediction of possible DK1 bound states, Eur. Phys. J. A 57, 139 (2021), arXiv: 2009.11619
444 L. R. Dai, J.-J. Xie, and E. Oset, B0→D 0 D¯ 0K0, B +→ D0D¯0K+, and the scalar DD¯ bound state, Eur. Phys. J. C 76, 121 (2016), arXiv: 1512.04048
445 J, Spectrum and rearrangement decays of tetraquark states with four different flavors, Phys. Rev. D 101, 114017 (2020), arXiv: 2001.05287
446 B.Wang and S.-L. Zhu, How to understand the X(2900)? arXiv: 2107.09275 (2021)
447 Z.-G. Wang, Analysis of the X0(2900) as the scalar tetraquark state via the QCD sum rules, Int. J. Mod. Phys. A 35, 2050187 (2020), arXiv: 2008.07833
448 Y. Huang, J.-X. Lu, J.-J. Xie, and L.-S. Geng, Strong decays of D¯ ∗K∗ molecules and the newly observed X0,1 states, Eur. Phys. J. C 80, 973 (2020), arXiv: 2008.07959
449 X.-G. He, W. Wang, and R. Zhu, Open-charm tetraquark Xc and open-bottom tetraquark Xb, Eur. Phys. J. C 80, 1026 (2020), arXiv: 2008.07145
450 H.-X. Chen, W. Chen, R.-R. Dong, and N. Su, X0(2900) and X1(2900): Hadronic molecules or compact tetraquarks, Chin. Phys. Lett. 37, 101201 (2020), arXiv: 2008.07516
451 J.-R. Zhang, Open-charm tetraquark candidate: Note on X0(2900), Phys. Rev. D 103, 054019 (2021), arXiv: 2008.07295
452 X, Triangle singularity as the origin of X0(2900) and X1(2900) observed in B+ → D+DK+, Eur. Phys. J. C 80, 1178 (2020), arXiv: 2008.07190
453 R. LHCb Collaboration, Observation of a resonant structure near the Ds+Ds− threshold in the B +→ Ds +Ds−K+ decay, arXiv: 2210.15153 (submitted to Phys. Rev. Lett.)
454 R. LHCb Collaboration, First observation of the B +→ Ds +Ds−K+ decay, arXiv: 2211.05034 (submitted to Phys. Rev. D)
455 Y. Yang, C. Deng, J. Ping, and T. Goldman, S-wave QQq ¯q¯ state in the constituent quark model, Phys. Rev. D 80, 114023 (2009)
456 R. LHCb Collaboration, Observation of an exotic narrow doubly charmed tetraquark, Nat. Phys. 18, 751 (2022), arXiv: 2109.01038
457 R. LHCb Collaboration, Study of the doubly charmed tetraquark T cc +, Nat. Commun. 13, 3351 (2022), arXiv: 2109.01056
458 Ling X.-Z., et al.., Can we understand the decay width of the T cc + state? arXiv: 2108.00947 (2021)
459 L. Meng, G.-J. Wang, B. Wang, and S.-L. Zhu, Probing the long-range structure of the T+cc with the strong and electromagnetic decays, Phys. Rev. D 104, 051502 (2021), arXiv: 2107.14784
460 L, Pole analysis on the doubly charmed meson in D0D0π+ mass spectrum, Phys. Rev. D 105, L051507 (2022), arXiv: 2108.06002
461 N. Li, Z.-F. Sun, X. Liu, and S.-L. Zhu, Perfect DD* molecular prediction matching the Tcc observation at LHCb, Chin. Phys. Lett. 38, 092001 (2021), arXiv: 2107.13748
462 T. Guo, J. Li, J. Zhao, and L. He, Mass spectra and decays of open-heavy tetraquark states, Phys. Rev. D 105, 054018 (2022), arXiv: 2108.06222
463 R, Doubly charmed molecular pentaquarks, Phys. Lett. B 822, 136693 (2021), arXiv: 2108.12730
464 Y. Xing and Y. Niu, The study of doubly charmed pentaquark ccq¯qq with the SU(3) symmetry, Eur. Phys. J. C 81, 978 (2021), arXiv: 2106.09939
465 H.-T. An, K. Chen, Z.-W. Liu, and X. Liu, Heavy flavor pentaquarks with four heavy quarks, Phys. Rev. D 103, 114027 (2021), arXiv: 2106.02837
466 C. Deng, H. Chen, and J. Ping, Systematical investigation on the stability of doubly heavy tetraquark states, Eur. Phys. J. A 56, 9 (2020), arXiv: 1811.06462
467 Z.-G. Wang and Z.-H. Yan, Analysis of the scalar, axialvector, vector, tensor doubly charmed tetraquark states with QCD sum rules, Eur. Phys. J. C 78, 19 (2018), arXiv: 1710.02810
468 M. Karliner and J. L. Rosner, Discovery of the doubly-charmed Ξcc baryon implies a stable bbu¯ d¯ tetraquark, Phys. Rev. Lett. 119, 202001 (2017), arXiv: 1707.07666
469 E. J. Eichten and C. Quigg, Heavy-quark symmetry implies stable heavy tetraquark mesons Qi Qjq¯kq¯l, Phys. Rev. Lett. 119, 202002 (2017), arXiv: 1707.09575
470 R. Zhu, Hidden charm octet tetraquarks from a diquark−antidiquark model, Phys. Rev. D 94, 054009 (2016), arXiv: 1607.02799
471 G. Yang, J. Ping, and J. Segovia, Doubly-heavy tetraquarks, Phys. Rev. D 101, 014001 (2020), arXiv: 1911.00215
472 X. Yan, B. Zhong, and R. Zhu, Doubly charmed tetraquarks in a diquark−antidiquark model, Int. J. Mod. Phys. A 33, 1850096 (2018), arXiv: 1804.06761
473 Y. Tan, W. Lu, and J. Ping, Systematics of QQq¯q¯ in a chiral constituent quark model, Eur. Phys. J. Plus 135, 716 (2020), arXiv: 2004.02106
474 S.-Y. Kong, J.-T. Zhu, D. Song, and J. He, Heavy-strange meson molecules and possible candidates Ds0∗(2317), Ds1(2460), and X0(2900), Phys. Rev. D 104, 094012 (2021), arXiv: 2106.07272
475 Y.-K. Hsiao and Y. Yu, New X0,1(2900)-like exotic states in b-baryon decays, Phys. Rev. D 104, 034008 (2021), arXiv: 2104.01296
476 H.-X. Chen, Hadronic molecules in B decays, Phys. Rev. D 105, 094003 (2022), arXiv: 2103.08586
477 X, Is the existence of a J/ψJ/ψ bound state plausible? Sci. Bull. 66, 2462 (2021), arXiv: 2107.03946
478 He Z.-G., A. Kniehl B., A. Nefedov M., A. Saleev V.. Double prompt J /ψ production at hadron colliders. Mod. Phys. Lett. A, 2021, 36: 2130018
https://doi.org/10.1142/S0217732321300184
479 A. J. Majarshin, Y.-A. Luo, F. Pan, and J. Segovia, Bosonic algebraic approach applied to the [QQ][Q¯Q¯] tetraquarks, Phys. Rev. D 105, 054024 (2022), arXiv: 2106.01179
480 F.-L. Wang, R. Chen, and X. Liu, A new group of doubly charmed molecule with T-doublet charmed meson pair, Phys. Lett. B 835, 137502 (2022), arXiv: 2111.00208
481 M, Coupled-channel approach to Tcc+ including three-body effects, Phys. Rev. D 105, 014024 (2022), arXiv: 2110.13765
482 X.-Z. Ling, M.-Z. Liu, and L.-S. Geng, Masses and strong decays of open charm hexaquark states Σ c(∗)Σc( ∗), Eur. Phys. J. C 81, 1090 (2021), arXiv: 2110.13792
483 V, Effective range expansion for narrow near-threshold resonances, Phys. Lett. B 833, 137290 (2022), arXiv: 2110.07484
484 H. Ren, F. Wu, and R. Zhu, Hadronic molecule interpretation of Tc c+ and its beauty partners, Adv. High Energy Phys. 2022, 9103031 (2022), arXiv: 2109.02531
485 Z.-G. Wang, Analysis of the axialvector doubly heavy tetraquark states with QCD sum rules, Acta Phys. Polon. B 49, 1781 (2018), arXiv: 1708.04545
486 K. Chen, B. Wang, and S.-L. Zhu, Exploration of the doubly charmed molecular pentaquarks, Phys. Rev. D 103, 116017 (2021), arXiv: 2102.05868
487 R. LHCb Collaboration, Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65, 1983 (2020), arXiv: 2006.16957
488 Iwasaki Y.. Is a state c c¯cc¯ found at 6.0 GeV. Phys. Rev. Lett., 1976, 36: 1266
https://doi.org/10.1103/PhysRevLett.36.1266
489 K.-T. Chao, The cc− c¯ c¯(diquark−antidiquark) states in e+e annihilation, Z. Phys. C 7, 317 (1981)
490 Ader J.-P., Richard J.-M., Taxil P.. Do narrow heavy multiquark states exist. Phys. Rev. D, 1982, 25: 2370
https://doi.org/10.1103/PhysRevD.25.2370
491 B.-A. Li and K.-F. Liu, J/ψ pair production in hadronic collisions, Phys. Rev. D 29, 426 (1984)
492 M. Badalian A., L. Ioffe B., V. Smilga A.. Four quark states in heavy quark systems. Nucl. Phys., 1987, 281: B85
https://doi.org/10.1016/0550-3213(87)90248-3
493 A. V. Berezhnoy, A. V. Luchinsky, and A. A. Novoselov, Heavy tetraquarks production at the LHC, Phys. Rev. D 86, 034004 (2012), arXiv: 1111.1867
494 Wu J., et al.., Heavy-flavored tetraquark states with the QQQ ¯Q¯ configuration, Phys. Rev. D 97, 094015 (2018), arXiv: 1605.01134
495 M. Karliner, S. Nussinov, and J. L. Rosner, Q QQ¯Q¯ states: Masses, production, and decays, Phys. Rev. D 95, 034011 (2017), arXiv: 1611.00348
496 N. Barnea, J. Vijande, and A. Valcarce, Four-quark spectroscopy within the hyper-spherical formalism, Phys. Rev. D 73, 054004 (2006), arXiv: hep-ph/0604010
497 V. R. Debastiani and F. S. Navarra, A non-relativistic model for the [cc][ c¯c¯] tetraquark, Chin. Phys. C 43, 013105 (2019), arXiv: 1706.07553
498 M.-S. Liu, Q.-F. Lü, X.-H. Zhong, and Q. Zhao, All-heavy tetraquarks, Phys. Rev. D 100, 016006 (2019), arXiv: 1901.02564
499 W, Hunting for exotic doubly hidden-charm/bottom tetraquark states, Phys. Lett. B 773, 247 (2017), arXiv: 1605.01647
500 G.-J. Wang, L. Meng, and S.-L. Zhu, Spectrum of the fully-heavy tetraquark state QQQ¯′Q ¯′, Phys. Rev. D 100, 096013 (2019), arXiv: 1907.05177
501 M. A. Bedolla, J. Ferretti, C. D. Roberts, and E. Santopinto, Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective, Eur. Phys. J. C 80, 1004 (2020), arXiv: 1911.00960
502 R. J. Lloyd and J. P. Vary, All-charm tetraquarks, Phys. Rev. D 70, 014009 (2004), arXiv: hep-ph/0311179
503 X. Chen, Fully-charm tetraquarks: cc c¯ c¯, arXiv: 2001.06755 (2020)
504 Z.-G. Wang and Z.-Y. Di, Analysis of the vector and axialvector QQQ¯Q¯ tetraquark states with QCD sum rules, Acta Phys. Polon. B 50, 1335 (2019), arXiv: 1807.08520
505 M, Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018), arXiv: 1710.02540
506 A. Esposito and A. D. Polosa, A bbb¯ b¯ di-bottomonium at the LHC? Eur. Phys. J. C 78, 782 (2018), arXiv: 1807.06040
507 C. Becchi, A. Giachino, L. Maiani, and E. Santopinto, Search for bbb¯b¯ tetraquark decays in 4 muons, B+B−, B0B ¯0 and Bs0 B¯s0 channels at LHC, Phys. Lett. B 806, 135495 (2020), arXiv: 2002.11077
508 Y. Bai, S. Lu, and J. Osborne, Beauty-full tetraquarks, Phys. Lett. B 798, 134930 (2019), arXiv: 1612.00012
509 J.-M. Richard, A. Valcarce, and J. Vijande, String dynamics and metastability of all-heavy tetraquarks, Phys. Rev. D 95, 054019 (2017), arXiv: 1703.00783
510 Y. Chen and R. Vega-Morales, Golden probe of the di-ϒ threshold, arXiv: 1710.02738 (2017)
511 X. Chen, Fully-heavy tetraquarks: bbc¯ c¯ and bcb¯ c¯, Phys. Rev. D 100, 094009 (2019), arXiv: 1908.08811
512 A. V. Berezhnoy, A. K. Likhoded, and A. A. Novoselov, ϒ-meson pair production at the LHC, Phys. Rev. D 87, 054023 (2013), arXiv: 1210.5754
513 CMS Collaboration, Observation of new structures in the JJ/ψ mass spectrum in pp collisions at s = 13 TeV
514 ATLAS Collaboration, Observation of an excess of di-charmonium events in the four-muon final state with the ATLAS detector
515 K.-T. Chao and S.-L. Zhu, The possible tetraquark states ccc¯c¯ observed by the LHCb experiment, Sci. Bull. 65, 1952 (2020), arXiv: 2008.07670
516 X.-Z. Weng, X.-L. Chen, W.-Z. Deng, and S.-L. Zhu, Systematics of fully heavy tetraquarks, Phys. Rev. D 103, 034001 (2021), arXiv: 2010.05163
517 H.-T. An, K. Chen, and X. Liu, Exotic pentaquark states and chromomagnetic interaction, arXiv: 2010.05014 (2020)
518 Q.-F. Lü, D.-Y. Chen, and Y.-B. Dong, Masses of fully heavy tetraquarks QQQ¯ Q¯ in an extended relativized quark model, Eur. Phys. J. C 80, 871 (2020), arXiv: 2006.14445
519 N. Lee, Z.-G. Luo, X.-L. Chen, and S.-L. Zhu, Possible deuteronlike molecular states composed of heavy baryons, Phys. Rev. D 84, 014031 (2011), arXiv: 1104.4257
520 X. Jin, Y. Xue, H. Huang, and J. Ping, Full-heavy tetraquarks in constituent quark models, Eur. Phys. J. C 80, 1083 (2020), arXiv: 2006.13745
521 J.-X. Lu, L.-S. Geng, and M. P. Valderrama, Heavy baryon-antibaryon molecules in effective field theory, Phys. Rev. D 99, 074026 (2019), arXiv: 1706.02588
522 L. Meng, N. Li, and S.-L. Zhu, Deuteron-like states composed of two doubly charmed baryons, Phys. Rev. D 95, 114019 (2017), arXiv: 1704.01009
523 Z.-G. Wang, Revisit the tetraquark candidates in the J /ψ J/ψ mass spectrum, Int. J. Mod. Phys. A 36, 2150014 (2021), arXiv: 2009.05371
524 L. Tang, B.-D. Wan, K. Maltman, and C.-F. Qiao, Doubly heavy tetraquarks in QCD sum rules, Phys. Rev. D 101, 094032 (2020), arXiv: 1911.10951
525 B.-D. Wan and C.-F. Qiao, Gluonic tetracharm configuration of X(6900), Phys. Lett. B 817, 136339 (2021), arXiv: 2012.00454
526 B.-C. Yang, L. Tang, and C.-F. Qiao, Scalar fully-heavy tetraquark states QQ′ Q¯Q ¯′ in QCD sum rules, Eur. Phys. J. C 81, 324 (2021), arXiv: 2012.04463
527 G. Li, X.-F. Wang, and Y. Xing, Fully heavy tetraquark b bc ¯c¯: Lifetimes and weak decays, Eur. Phys. J. C 79, 645 (2019), arXiv: 1902.05805
528 M.-Z. Liu and L.-S. Geng, Is X(7200) the heavy anti-quark diquark symmetry partner of X(3872)? Eur. Phys. J. C 81, 179 (2021), arXiv: 2012.05096
529 Z, Study of charmoniumlike and fully-charm tetraquark spectroscopy, Phys. Rev. D 103, 116027 (2021), arXiv: 2012.15554
530 Yan Y., et al.., Fully heavy pentaquarks in quark models, arXiv: 2110.10853 (2021)
531 F.-X. Liu, M.-S. Liu, X.-H. Zhong, and Q. Zhao, Higher mass spectra of the fully-charmed and fully-bottom tetraquarks, arXiv: 2110.09052 (2021)
532 Q.-N. Wang, Z.-Y. Yang, and W. Chen, Exotic fully-heavy QQ¯QQ¯ tetraquark states in 8[QQ¯]⊗ 8[Q Q¯] color configuration, arXiv: 2109.08091 (2021)
533 Q. Li, C.-H. Chang, G.-L. Wang, and T. Wang, Mass spectra and wave functions of T QQ Q¯ Q¯ tetraquarks, Phys. Rev. D 104, 014018 (2021), arXiv: 2104.12372
534 H.-W. Ke, X. Han, X.-H. Liu, and Y.-L. Shi, Tetraquark state X(6900) and the interaction between diquark and antidiquark, Eur. Phys. J. C 81, 427 (2021), arXiv: 2103.13140
535 G. Huang, J. Zhao, and P. Zhuang, Pair structure of heavy tetraquark systems, Phys. Rev. D 103, 054014 (2021), arXiv: 2012.14845
536 H.-T. An, K. Chen, Z.-W. Liu, and X. Liu, Fully heavy pentaquarks, Phys. Rev. D 103, 074006 (2021), arXiv: 2012.12459
537 Gong C., et al.., Nature of X(6900) and its production mechanism at LHCb, arXiv: 2011.11374 (2020)
538 Zhu J.-W., et al.., A possible interpretation for X(6900) observed in four-muon final state by LHCb - A light Higgs-like boson? arXiv: 2011.07799 (2020)
539 J.-R. Zhang, Fully-heavy pentaquark states, Phys. Rev. D 103, 074016 (2021), arXiv: 2011.04594
540 Q.-F. Cao, H. Chen, H.-R. Qi, and H.-Q. Zheng, Some remarks on X(6900), Chin. Phys. C 45, 103102 (2021), arXiv: 2011.04347
541 Z.-H. Guo and J. A. Oller, Insights into the inner structures of the fully charmed tetraquark state X(6900), Phys. Rev. D 103, 034024 (2021), arXiv: 2011.00978
542 R. Zhu, Fully-heavy tetraquark spectra and production at hadron colliders, Nucl. Phys. B 966, 115393 (2021), arXiv: 2010.09082
543 J.-R. Zhang, 0+ fully-charmed tetraquark states, Phys. Rev. D 103, 014018 (2021), arXiv: 2010.07719
544 R. N. Faustov, V. O. Galkin, and E. M. Savchenko, Masses of the QQQ¯ Q¯ tetraquarks in the relativistic diquark−antidiquark picture, Phys. Rev. D 102, 114030 (2020), arXiv: 2009.13237
545 Feng F., et al.., Fragmentation production of fully-charmed tetraquarks at LHC, arXiv: 2009.08450 (2020)
546 Y.-Q. Ma and H.-F. Zhang, Exploring the di-J/ψ resonances around 6.9 GeV based on ab initio perturbative QCD, arXiv: 2009.08376 (2020)
547 Dong X.-K., et al.., Coupled-channel interpretation of the LHCb double-J/ψ spectrum and hints of a new state near the JJ/ψ threshold, Phys. Rev. Lett. 126, 132001 (2021), Erratum: Phys. Rev. Lett. 127, 119901 (2021), arXiv: 2009.07795
548 M. Karliner and J. L. Rosner, Interpretation of structure in the di-J/ψ spectrum, Phys. Rev. D 102, 114039 (2020), arXiv: 2009.04429
549 J.-Z. Wang, D.-Y. Chen, X. Liu, and T. Matsuki, Producing fully charm structures in the J/ψ-pair invariant mass spectrum, Phys. Rev. D 103, 071503 (2021), arXiv: 2008.07430
550 G. Yang, J. Ping, L. He, and Q. Wang, Potential model prediction of fully-heavy tetraquarks QQQ¯ Q¯ (Q = c, b), arXiv: 2006.13756 (2020)
551 C. Deng, H. Chen, and J. Ping, Towards the understanding of fully-heavy tetraquark states from various models, Phys. Rev. D 103, 014001 (2021), arXiv: 2003.05154
552 Z, Possible hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon, Chin. Phys. C 36, 6 (2012), arXiv: 1105.2901
553 R. Zhu and C.-F. Qiao, Pentaquark states in a diquark−triquark model, Phys. Lett. B 756, 259 (2016), arXiv: 1510.08693
554 N. Li and S.-L. Zhu, Hadronic molecular states composed of heavy flavor baryons, Phys. Rev. D 86, 014020 (2012), arXiv: 1204.3364
555 M, and D*Ξ molecular states from one boson exchange, Phys. Rev. D 98, 014014 (2018), arXiv: 1805.08384
556 R. LHCb Collaboration, Observation of Jp resonances consistent with pentaquark states in Λb0→J /ψ pK − decays, Phys. Rev. Lett. 115, 072001 (2015), arXiv: 1507.03414
557 R. LHCb Collaboration, Evidence for exotic hadron contributions to Λ b0→ J/ ψpπ− decays, Phys. Rev. Lett. 117, 082003 (2016), arXiv: 1606.06999
558 R. LHCb Collaboration, Model-independent evidence for Jp contributions to Λ b0→ J/ ψpK− decays, Phys. Rev. Lett. 117, 082002 (2016), arXiv: 1604.05708
559 R. LHCb Collaboration, Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+, Phys. Rev. Lett. 122, 222001 (2019), arXiv: 1904.03947
560 R. LHCb Collaboration, Evidence for a new structure in the Jp and J/ψ p¯ systems in Bs0→J/ψpp¯ decays, Phys. Rev. Lett. 128, 062001 (2022), arXiv: 2108.04720
561 B. Wang, L. Meng, and S.-L. Zhu, Spectrum of the strange hidden charm molecular pentaquarks in chiral effective field theory, Phys. Rev. D 101, 034018 (2020), arXiv: 1912.12592
562 H, Looking for a hidden-charm pentaquark state with strangeness S = −1 from Ξb− decay into JKΛ, Phys. Rev. C 93, 065203 (2016), arXiv: 1510.01803
563 R. LHCb Collaboration, Evidence of a JΛ structure and observation of excited Ξ states in the Ξb−→J/ψΛK − decay, Sci. Bull. 66, 1278 (2021), arXiv: 2012.10380
564 R. LHCb Collaboration, Observation of a JΛ resonance consistent with a strange pentaquark candidate in B−→J/ψΛ p¯ decays, arXiv: 2210.10346 (submitted to Phys. Rev. Lett.)
565 F.-L. Wang, R. Chen, Z. -W. Liu, and X. Liu, Probing new types of Pc states inspired by the interaction between S-wave charmed baryon and anti-charmed meson in a doublet, Phys. Rev. C 101, 025201 (2020), arXiv: 1905.03636
566 M, Interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380), Phys. Rev. Lett. 124, 072001 (2020), arXiv: 1910.11846
567 L. Meng, B. Wang, G.-J. Wang, and S.-L. Zhu, Hidden charm pentaquark states and Σc D¯(∗ ) interaction in chiral perturbation theory, Phys. Rev. D 100, 014031 (2019), arXiv: 1905.04113
568 X.-Z. Weng, X.-L. Chen, W.-Z. Deng, and S.-L. Zhu, Hidden-charm pentaquarks and Pc states, Phys. Rev. D 100, 016014 (2019), arXiv: 1904.09891
569 Y.-J. Xu, C.-Y. Cui, Y.-L. Liu, and M.-Q. Huang, Partial decay widths of Pc(4312) as a D¯Σc molecular state, Phys. Rev. D 102, 034028 (2020), arXiv: 1907.05097
570 U. Ozdem and K. Azizi, Magnetic dipole moment of Zb(10610) in light-cone QCD, Phys. Rev. D 97, 014010 (2018), arXiv: 1709.09714
571 H. Huang, C. Deng, J. Ping, and F. Wang, Possible pentaquarks with heavy quarks, Eur. Phys. J. C 76, 624 (2016), arXiv: 1510.04648
572 M.-L. Du, Z.-H. Guo, and J. A. Oller, Insights into the nature of the Pcs(4459), arXiv: 2109.14237 (2021)
573 K, Systematics of the heavy flavor hadronic molecules, Eur. Phys. J. C 82, 581 (2022), arXiv: 2109.13057
574 X. Hu and J. Ping, Investigation of hidden-charm pentaquarks with strangeness S = −1, Eur. Phys. J. C 82, 118 (2022), arXiv: 2109.09972
575 N, Coupled channel effects of the Σc(∗ )D¯(∗)-Λc(2595)D* system and molecular nature of the Pc pentaquark states from one-boson exchange model, Phys. Rev. D 104, 094039 (2021), arXiv: 2109.03504
576 J.-X. Lu, M.-Z. Liu, R.-X. Shi, and L.-S. Geng, Understanding Pcs(4459) as a hadronic molecule in the Ξb−→J /ψ ΛK− decay, Phys. Rev. D 104, 034022 (2021), arXiv: 2104.10303
577 M, Revisiting the nature of the Pc pentaquarks, J. High Energy Phys. 08, 157 (2021), arXiv: 2102.07159
578 J.-T. Zhu, L.-Q. Song, and J. He, Pcs(4459) and other possible molecular states from Ξc(∗ )D¯(∗) and Ξc′D¯(∗) interactions, Phys. Rev. D 103, 074007 (2021), arXiv: 2101.12441
579 S. X. Nakamura, A. Hosaka, and Y. Yamaguchi, Pc(4312)+ and Pc(4337)+ as interfering Σc D¯ and Λc D¯∗ (anomalous) threshold cusps, arXiv: 2109.15235 (2021)
580 P.-P. Shi, F. Huang, and W.-L. Wang, Hidden charm pentaquark states in a diquark model, Eur. Phys. J. A 57, 237 (2021), arXiv: 2107.08680
581 Phumphan K., et al.., Pc resonances in molecular picture, arXiv: 2105.03150 (2021)
582 S. X. Nakamura, Pc(4312)+, Pc(4380)+, and Pc(4457)+ as double triangle cusps, Phys. Rev. D 103, 111503 (2021), arXiv: 2103.06817
583 C. W. Xiao, J. J. Wu, and B. S. Zou, Molecular nature of Pcs(4459) and its heavy quark spin partners, Phys. Rev. D 103, 054016 (2021), arXiv: 2102.02607
584 R. Chen, Can the newly reported Pcs(4459) be a strange hidden-charm ΞcD¯∗ molecular pentaquark? Phys. Rev. D 103 (2021) 054007, arXiv: 2011.07214
585 Z.-G. Wang, Analysis of the Pcs(4459) as the hidden-charm pentaquark state with QCD sum rules, Int. J. Mod. Phys. A 36, 2150071 (2021), arXiv: 2011.05102
586 F, Peaks within peaks and the possible two-peak structure of the Pc(4457): The effective field theory perspective, Phys. Rev. D 103, 014023 (2021), arXiv: 2007.01198
587 H. Xu, Q. Li, C.-H. Chang, and G.-L. Wang, Recently observed Pc as molecular states and possible mixture of Pc(4457), Phys. Rev. D 101, 054037 (2020), arXiv: 2001.02980
588 Giachino A.. et al.. Hidden-charm and bottom meson-baryon molecules coupled with five-quark states. Springer Proc. Phys., 2020, 238: 621
https://doi.org/10.1007/978-3-030-32357-8_98
589 C.-Y. Chen, M. Chen, and Y.-X. Liu, Quantum numbers of the pentaquark states Pc+ via symmetry analysis, Commun. Theor. Phys. 72, 125202 (2020), arXiv: 1912.01931
590 B. Wang, L. Meng, and S.-L. Zhu, Hidden-charm and hidden-bottom molecular pentaquarks in chiral effective field theory, J. High Energy Phys. 11, 108 (2019), arXiv: 1909.13054
591 A. Pimikov, H.-J. Lee, and P. Zhang, Hidden-charm pentaquarks with color-octet sub-structure in QCD sum rules, Phys. Rev. D 101, 014002 (2020), arXiv: 1908.04459
592 Z.-G. Wang and X. Wang, Analysis of the strong decays of the Pc(4312) as a pentaquark molecular state with QCD sum rules, Chin. Phys. C 44, 103102 (2020), arXiv: 1907.04582
593 Y, Pc pentaquarks with chiral tensor and quark dynamics, Phys. Rev. D 101, 091502 (2020), arXiv: 1907.04684
594 J.-B. Cheng and Y.-R. Liu, Pc(4457)+, Pc(4440)+, and Pc(4312)+: Molecules or compact pentaquarks? Phys. Rev. D 100, 054002 (2019), arXiv: 1905.08605
595 Z.-G. Wang, Analysis of the Pc(4312), Pc(4440), Pc(4457) and related hidden-charm pentaquark states with QCD sum rules, Int. J. Mod. Phys. A 35, 2050003 (2020), arXiv: 1905.02892
596 C. JPAC Collaboration, Interpretation of the LHCb Pc(4312)+ signal, Phys. Rev. Lett. 123, 092001 (2019), arXiv: 1904.10021
597 C, Exploring the molecular scenario of Pc(4312), Pc(4440), and Pc(4457), Phys. Rev. D 100, 014022 (2019), arXiv: 1904.00872
598 Z.-H. Guo and J. A. Oller, Anatomy of the newly observed hidden-charm pen-taquark states: Pc(4312), Pc(4440) and Pc(4457), Phys. Lett. B 793, 144 (2019), arXiv: 1904.00851
599 J. He, Study of Pc(4457), Pc(4440), and Pc(4312) in a quasipotential Bethe−Salpeter equation approach, Eur. Phys. J. C 79, 393 (2019), arXiv: 1903.11872
600 F.-K. Guo, H.-J. Jing, U.-G. Meiβner, and S. Sakai, Isospin breaking decays as a diagnosis of the hadronic molecular structure of the Pc(4457), Phys. Rev. D 99, 091501 (2019), arXiv: 1903.11503
601 H.-X. Chen, W. Chen, and S.-L. Zhu, Possible interpretations of the Pc(4312), Pc(4440), and Pc(4457), Phys. Rev. D 100, 051501 (2019), arXiv: 1903.11001
602 X. Liu, H. Huang, and J. Ping, Hidden strange pentaquark states in constituent quark models, Phys. Rev. C 98, 055203 (2018), arXiv: 1807.03195.
603 J. Ferretti, E. Santopinto, M. Naeem Anwar, and M. A. Bedolla, The baryo-quarkonium picture for hidden-charm and bottom pentaquarks and LHCb Pc(4380) and Pc(4450) states, Phys. Lett. B 789, 562 (2019), arXiv: 1807.01207
604 E. Hiyama, A. Hosaka, M. Oka, and J. -M. Richard, Quark model estimate of hidden-charm pentaquark resonances, Phys. Rev. C 98, 045208 (2018), arXiv: 1803.11369
605 S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Poincaré-covariant analysis of heavy-quark baryons, Phys. Rev. D 97, 114017 (2018), arXiv: 1801.09697
606 J.-M. Richard, A. Valcarce, and J. Vijande, Stable heavy pentaquarks in constituent models, Phys. Lett. B 774, 710 (2017), arXiv: 1710.08239. 100
607 J. He, Understanding spin parity of Pc(4450) and Y (4274) in a hadronic molecular state picture, Phys. Rev. D 95, 074004 (2017), arXiv: 1607.03223
608 M. I. Eides, V. Y. Petrov, and M. V. Polyakov, Pentaquarks with hidden charm as hadroquarkonia, Eur. Phys. J. C 78, 36 (2018), arXiv: 1709.09523
609 Y, Hidden-charm and bottom meson-baryon molecules coupled with five-quark states, Phys. Rev. D 96, 114031 (2017), arXiv: 1709.00819
610 Dong Y., Faessler A., E. Lyubovitskij V.. Description of heavy exotic resonances as molecular states using phenomenological Lagrangians. Prog. Part. Nucl. Phys., 2017, 94: 282
https://doi.org/10.1016/j.ppnp.2017.01.002
611 Y.-H. Lin, C.-W. Shen, F.-K. Guo, and B.-S. Zou, Decay behaviors of the Pc hadronic molecules, Phys. Rev. D 95, 114017 (2017), arXiv: 1703.01045
612 R. Chen, J. He, and X. Liu, Possible strange hidden-charm pentaquarks from Σ c(∗ )D¯ s∗ and Ξc(′, ∗)D¯∗ interactions, Chin. Phys. C 41, 103105 (2017), arXiv: 1609.03235
613 F.-K. Guo, U. G. Meißner, J. Nieves, and Z. Yang, Remarks on the Pc structures and triangle singularities, Eur. Phys. J. A 52, 318 (2016), arXiv: 1605.05113
614 E. Santopinto and A. Giachino, Compact pentaquark structures, Phys. Rev. D 96, 014014 (2017), arXiv: 1604.03769
615 C.-W. Shen, F.-K. Guo, J.-J. Xie, and B.-S. Zou, Disentangling the hadronic molecule nature of the Pc(4380) pentaquark-like structure, Nucl. Phys. A 954, 393 (2016), arXiv: 1603.04672
616 Y. Shimizu, D. Suenaga, and M. Harada, Coupled channel analysis of molecule picture of Pc(4380), Phys. Rev. D 93, 114003 (2016), arXiv: 1603.02376
617 Q.-F. Lü and Y.-B. Dong, Strong decay mode J/ψp of hidden charm pentaquark states Pc (4380) and Pc+(4450) in Σ c∗ molecular scenario, Phys. Rev. D 93, 074020 (2016), arXiv: 1603.00559
618 E, Weak decays of heavy hadrons into dynamically generated resonances, Int. J. Mod. Phys. E 25, 1630001 (2016), arXiv: 1601.03972
619 R. Chen, X. Liu, and S.-L. Zhu, Hidden-charm molecular pentaquarks and their charm-strange partners, Nucl. Phys. A 954, 406 (2016), arXiv: 1601.03233
620 Z.-G. Wang, Analysis of the 32± pentaquark states in the diquark−diquark−antiquark model with QCD sum rules, Nucl. Phys. B 913, 163 (2016), arXiv: 1512.04763
621 G. Yang and J. Ping, Structure of pentaquarks Pc+ in the chiral quark model, Phys. Rev. D 95, 014010 (2017), arXiv: 1511.09053
622 T. J. Burns, Phenomenology of Pc(4380)+, Pc(4450)+ and related states, Eur. Phys. J. A 51, 152(2015), arXiv: 1509.02460
623 N. N. Scoccola, D. O. Riska, and M. Rho, Pentaquark candidates Pc+(4380) and Pc+(4450) within the soliton picture of baryons, Phys. Rev. D 92, 051501 (2015), arXiv: 1508.01172
624 Z.-G. Wang, Analysis of Pc(4380) and Pc(4450) as pentaquark states in the diquark model with QCD sum rules, Eur. Phys. J. C 76, 70 (2016), arXiv: 1508.01468
625 R. Ghosh, A. Bhattacharya, and B. Chakrabarti, A study on Pc∗(4380) and Pc∗(4450) mass in the quasi particle diquark model, Phys. Part. Nucl. Lett. 14, 550 (2017), arXiv: 1508.00356
626 G.-N. Li, X.-G. He, and M. He, Some predictions of diquark model for hidden charm pentaquark discovered at the LHCb, J. High Energy Phys. 12, 128 (2015), arXiv: 1507.08252
627 V, Pentaquarks and resonances in the pJ/ψ spectrum, arXiv: 1507.07652 (2015)
628 M. Mikhasenko, A triangle singularity and the LHCb pentaquarks, arXiv: 1507.06552 (2015)
629 R. F. Lebed, The pentaquark candidates in the dynamical diquark picture, Phys. Lett. B 749, 454 (2015), arXiv: 1507.05867
630 X.-H. Liu, Q. Wang, and Q. Zhao, Understanding the newly observed heavy pentaquark candidates, Phys. Lett. B 757, 231 (2016), arXiv: 1507.05359
631 J. He, D ¯Σc∗ and D¯ ∗Σ c interactions and the LHCb hidden-charmed pentaquarks, Phys. Lett. B 753, 547 (2016), arXiv: 1507.05200
632 L. Maiani, A. D. Polosa, and V. Riquer, The new pentaquarks in the diquark model, Phys. Lett. B 749, 289 (2015), arXiv: 1507.04980
633 F.-K. Guo, U.-G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D 92, 071502 (2015), arXiv: 1507.04950
634 A. Mironov and A. Morozov, Is the pentaquark doublet a hadronic molecule? JETP Lett. 102, 271 (2015), arXiv: 1507.04694
635 L. Roca, J. Nieves, and E. Oset, LHCb pentaquark as a D¯*Σc−D ¯*Σc* molecular state, Phys. Rev. D 92, 094003 (2015), arXiv: 1507.04249
636 H, Towards exotic hidden-charm pentaquarks in QCD, Phys. Rev. Lett. 115, 172001 (2015), arXiv: 1507.03717
637 R. Chen, X. Liu, X.-Q. Li, and S.-L. Zhu, Identifying exotic hidden-charm pentaquarks, Phys. Rev. Lett. 115 (2015) 132002, arXiv: 1507.03704
638 M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly heavy hadronic molecules, Phys. Rev. Lett. 115, 122001 (2015), arXiv: 1506.06386
639 X.-K. Dong, F.-K. Guo, and B.-S. Zou, Explaining the many threshold structures in the heavy-quark hadron spectrum, Phys. Rev. Lett. 126, 152001 (2021), arXiv: 2011.14517
640 TWQCD Collaboration, T.-W. Chiu and T.-H. Hsieh, X(3872) in lattice QCD with exact chiral symmetry, Phys. Lett. B 646, 95 (2007), arXiv: hep-ph/0603207
641 F.-K. Guo, L. Liu, U.-G. Meissner, and P. Wang, Tetraquarks, hadronic molecules, meson−meson scattering and disconnected contributions in lattice QCD, Phys. Rev. D 88, 074506 (2013), arXiv: 1308.2545
642 Y, Diquark mass differences from unquenched lattice QCD, Chin. Phys. C 40, 073106(2016), arXiv: 1510.07354
643 C. Liu, Review on hadron spectroscopy, PoS LATTICE2016, 006(2017), arXiv: 1612.00103
644 L. Leskovec, S. Prelovsek, C. B. Lang, and D. Mohler, Study of the Zc+ channel in lattice QCD, PoS LATTICE 2014, 118 (2015), arXiv: 1410.8828
645 L. Gayer,. Hadron Spectrum Collaboration, et al.., Isospin-1/2 Dπ scattering and the lightest D 0∗ resonance from lattice QCD, J. High Energy Phys. 07, 123 (2021), arXiv: 2102.04973
646 G. Hadron Spectrum Collaboration, DK I = 0, DK¯I = 0, 1 scattering and the Ds0*(2317) from lattice QCD, J. High Energy Phys. 02, 100 (2021), arXiv: 2008.06432
647 L. Glashow S., Iliopoulos J., Maiani L.. Weak interactions with lepton−hadron symmetry. Phys. Rev. D, 1970, 2: 1285
https://doi.org/10.1103/PhysRevD.2.1285
648 A. J. Buras and M. Munz, Effective Hamiltonian for BXse+e− beyond leading logarithms in the naive dimensional regularization and ’t Hooft-Veltman schemes, Phys. Rev. D 52, 186 (1995), arXiv: hep-ph/9501281
649 A. J. Buras, Weak Hamiltonian, CP violation and rare decays, in Les Houches summer school in theoretical physics, session 68: Probing the standard model of particle interactions, 1998, arXiv: hep-ph/9806471
650 G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125 (1996), arXiv: hep-ph/9512380
651 W, Symmetries and asymmetries of BK*μ+μ− decays in the standard model and beyond, J. High Energy Phys. 01, 019 (2009), arXiv: 0811.1214.
652 F. Kruger and J. Matias, Probing new physics via the transverse amplitudes of B0 → K*0(→ K−π+)l+l− at large recoil, Phys. Rev. D 71 (2005) 094009, arXiv: hep-ph/0502060
653 S. Descotes-Genon, D. Ghosh, J. Matias, and M. Ramon, Exploring new physics in the C7−C7′ plane, J. High Energy Phys. 06, 099 (2011), arXiv: 1104.3342
654 E. Lunghi and J. Matias, Huge right-handed current effects in BK*(Kπ)ℓ+ℓ− in supersymmetry, J. High Energy Phys. 04, 058 (2007), arXiv: hep-ph/0612166
655 M. Beneke, C. Bobeth, and R. Szafron, Power-enhanced leading-logarithmic QED corrections to Bqμ+μ−, J. High Energy Phys. 10, 232 (2019), arXiv: 1908.07011
656 Collaborations CMSKhachatryan LHCbV., et al.., Observation of the rare Bs0 → μ+μ− decay from the combined analysis of CMS and LHCb data, Nature 522, 68 (2015), arXiv: 1411.4413
657 R. LHCb Collaboration, Measurement of the Bs0 → μ+μ− branching fraction and effective lifetime and search for B0 → μ+μ− decays, Phys. Rev. Lett. 118 (2017) 191801, arXiv: 1703.05747
658 Collaboration CMSA, Measurement of properties of Bs0 → μ+μ− decays and search for B0 → μ+μ− with the CMS experiment, J. High Energy Phys. 04, 188 (2020), arXiv: 1910.12127
659 M. ATLAS Collaboration, Study of the rare decays of Bs0 and B0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, J. High Energy Phys. 04, 098 (2019), arXiv: 1812.03017
660 LHCb Collaboration, Combination of the ATLAS, CMS and LHCb results on the B(s)0 → μ+μ− decays, LHCb-CONF-2020-002, 2020, ATLAS-CONF-2020-049, CMS PAS BPH-20-003, LHCb-CONF-2020-002
661 R. LHCb Collaboration, Analysis of neutral B-meson decays into two muons, Phys. Rev. Lett. 128, 041801 (2022), arXiv: 2108.09284
662 R. LHCb Collaboration, Measurement of the Bs0 → μ+μ− decay properties and search for the Bs0 → μ+μ− and Bs0 → μ+μγ decays, Phys. Rev. D105, 012010 (2022), arXiv: 2108.09283
663 K, Probing new physics via the Bs0 → μ+μ− effective lifetime, Phys. Rev. Lett. 109, 041801 (2012), arXiv: 1204.1737
664 LHCb Collaboration, Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv: 1808.08865
665 R. LHCb Collaboration, Search for the rare decays Bs0 → e+e− and B0 → e+e−, Phys. Rev. Lett. 124, 211802 (2020), arXiv: 2003.03999
666 R. LHCb Collaboration, Search for rare B(s)0 → μ+μμ+μ− decays, J. High Energy Phys. 03, 109 (2022), arXiv: 2111.11339
667 A. Bharucha, D. M. Straub, and R. Zwicky, BVℓ+ℓ− in the standard model from light-cone sum rules, J. High Energy Phys. 08, 098 (2016), arXiv: 1503.05534
668 A. Khodjamirian, T. Mannel, A. A. Pivovarov, and Y. -M. Wang, Charm-loop effect in BK(*)ℓ+ℓ− and BK*γ, J. High Energy Phys. 09, 089 (2010), arXiv: 1006.4945
669 J, Precision calculations of BV form factors from soft-collinear effective theory sum rules on the light-cone, Phys. Rev. D 101, 074035 (2020), arXiv: 1907.11092
670 R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Lattice QCD calculation of form factors describing the rare decays BK*ℓ+ℓ− and Bs → ϕℓ+ℓ−, Phys. Rev. D 89, 094501 (2014), arXiv: 1310.3722
671 R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Rare B decays using lattice QCD form factors, PoS Lattice 2014, 372 (2015), arXiv: 1501.00367
672 R. LHCb Collaboration, Angular analysis and differential branching fraction of the decay Bs0 → ϕμ+μ−, J. High Energy Phys. 09, 179 (2015), arXiv: 1506.08777
673 R. LHCb Collaboration, Branching fraction measurements of the rare Bs0 → ϕμ+μ− and Bs0f2′ (1525)μ+μ− decays, Phys. Rev. Lett. 127, 151801 (2021), arXiv: 2105.14007
674 R. Aaij,. LHCb Collaboration, et al.., Differential branching fraction and angular analysis of Λb0 → Λμ+μ− decays, J. High Energy Phys. 06, 115 (2015), Erratum JHEP 09, 145 (2018), arXiv: 1503.07138
675 R. LHCb Collaboration, Measurements of the S-wave fraction in B0 → K+π−μ+μ− decays and the B0 →K*(892)0μ+μ− differential branching fraction, J. High Energy Phys. 11, 047 (2016), Erratum: J. High Energy Phys. 04, 142 (2017), arXiv: 1606.04731
676 R. LHCb Collaboration, Differential branching fractions and isospin asymmetries of BK(*)μ+μ− decays, J. High Energy Phys. 06, 133 (2014), arXiv: 1403.8044
677 W. Altmannshofer and D. M. Straub, New physics in bs transitions after LHC Run 1, Eur. Phys. J. C 75, 382 (2015), arXiv: 1411.3161
678 W. Altmannshofer and D. M. Straub, Implications of bs measurements, in 50th Rencontres de Moriond on EW Interactions and Unified Theories, 333–338, 2015, arXiv: 1503.06199
679 W. Detmold, C. -J. D. Lin, S. Meinel, and M. Wingate, Λb0 → Λℓ+ℓ− form factors and differential branching fraction from lattice QCD, Phys. Rev. D 87, 074502 (2013), arXiv: 1212.4827
680 C. Bobeth, G. Hiller, and D. van Dyk, More benefits of semileptonic rare B decays at low recoil: CP violation, J. High Energy Phys. 07, 067 (2011), arXiv: 1105.0376
681 C. Bobeth, G. Hiller, D. van Dyk, and C. Wacker, The decay B → ℓ+ℓ− at low hadronic recoil and model-independent ∆B = 1 constraints, J. High Energy Phys. 01, 107 (2012), arXiv: 1111.2558
682 B. BaBar Collaboration, Measurements of branching fractions, rate asymmetries, and angular distributions in the rare decays BKℓ+ℓ− and BK*ℓ+ℓ−, Phys. Rev. D 73, 092001 (2006), arXiv: hep-ex/0604007
683 S. Belle Collaboration, Lepton-flavor-dependent angular analysis of BK*ℓ+ℓ−, Phys. Rev. Lett. 118, 111801 (2017), arXiv: 1612.05014
684 M. ATLAS Collaboration, Angular analysis of Bd0 → K*μ+μ− decays in pp collisions at s = 8 TeV with the ATLAS detector, J. High Energy Phys. 10 (2018) 047, arXiv: 1805.04000
685 Collaboration CMSA, Measurement of angular parameters from the decay B0 → K*0μ+μ− in proton−proton collisions at s = 8 TeV, Phys. Lett. B 781, 517 (2018), arXiv: 1710.02846
686 R. LHCb Collaboration, Differential branching fraction and angular analysis of the decay B0 → K*0μ+μ−, Phys. Rev. Lett. 108, 181806 (2012), arXiv: 1112.3515
687 R. Aaij,. LHCb Collaboration, et al.., Differential branching fraction and angular analysis of the decay B0 → K*0μ+μ−, JHEP 08, 131 (2013), arXiv: 1304.6325
688 R. LHCb Collaboration, Angular analysis of the B0 → K*0μ+μ− decay using 3 fb−1 of integrated luminosity, J. High Energy Phys. 02, 104 (2016), arXiv: 1512.04442
689 R. LHCb Collaboration, Measurement of CP-averaged observables in the B0 → K*0μ+μ− decay, Phys. Rev. Lett. 125, 011802 (2020), arXiv: 2003.04831
690 S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, On the impact of power corrections in the prediction of BK*μ+μ− observables, J. High Energy Phys. 12, 125 (2014), arXiv: 1407.8526
691 D. M. Straub, flavio: A Python package for flavour and precision phenomenology in the standard model and beyond, arXiv: 1810.08132
692 R. LHCb Collaboration, Angular analysis of the B+ → K*+μ+μ− decay, Phys. Rev. Lett. 126, 161802 (2021), arXiv: 2012.13241
693 R. LHCb Collaboration, Angular analysis of the rare decay Bs0 → ϕμ+μ−, J. High Energy Phys. 11, 043 (2021), arXiv: 2107.13428
694 C. Bobeth, G. Hiller, and G. Piranishvili, CP asymmetries in B ¯ → K¯*(→K ¯π) ℓ¯ℓ and untagged B¯s, B¯s → ϕ(→ K+K−)ℓ¯ℓ decays at NLO, J. High Energy Phys. 07, 106 (2008), arXiv: 0805.2525
695 S. Descotes-Genon and J. Virto, Time dependence in BVℓℓ decays, J. High Energy Phys. 04, 045 (2015), Erratum: J. High Energy Phys. 07, 049 (2015), arXiv: 1502.05509
696 R. LHCb Collaboration, Angular analysis of charged and neutral BKμ+μ− decays, J. High Energy Phys. 05, 082 (2014), arXiv: 1403.8045
697 Collaboration CMSA, Angular analysis of the decay B+ → K+μ+μ− in proton-proton collisions at s = 8 TeV, Phys. Rev. D 98, 112011 (2018), arXiv: 1806.00636
698 R. LHCb Collaboration, Angular moments of the decay Λ b0 → Λμ+μ– at low hadronic recoil, J. High Energy Phys. 09, 146 (2018), arXiv: 1808.00264
699 G. Hiller and F. Kruger, More model-independent analysis of bs processes, Phys. Rev. D 69, 074020 (2004), arXiv: hep-ph/0310219
700 M. Bordone, G. Isidori, and A. Pattori, On the standard model predictions for RK and R K∗, Eur. Phys. J. C 76, 440 (2016), arXiv: 1605.07633
701 G. Isidori, S. Nabeebaccus, and R. Zwicky, QED corrections in B¯ → K¯ℓ+ℓ− at the double-differential level, J. High Energy Phys. 12, 104 (2020), arXiv: 2009.00929
702 R. LHCb Collaboration, Search for lepton-universality violation in B+ → K+ℓ+ℓ− decays, Phys. Rev. Lett. 122, 191801 (2019), arXiv: 1903.09252
703 R. LHCb Collaboration, Test of lepton universality in beauty-quark decays, Nat. Phys. 18, 277 (2022), arXiv: 2103.11769
704 S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, Global analysis of bsℓℓ anomalies, J. High Energy Phys. 06, 092 (2016), arXiv: 1510.04239
705 C. Bobeth, G. Hiller, and G. Piranishvili, Angular distributions of B ¯→ K¯ ℓ¯ℓ¯ decays, J. High Energy Phys. 12, 040 (2007), arXiv: 0709.4174
706 D. van Dyk, F. Beaujean, and C. Bobeth, Eos (“delta456” release), 2016, Zenodo, doi: 10.5281/zenodo.159680
707 J. BaBar Collaboration, Measurement of branching fractions and rate asymmetries in the rare decays BK(*)ℓ+ℓ−, Phys. Rev. D 86, 032012 (2012), arXiv: 1204.3933
708 J. Belle Collaboration, Measurement of the differential branching fraction and forward-backward asymmetry for BK(*)ℓ+ℓ−, Phys. Rev. Lett. 103, 171801 (2009), arXiv: 0904.0770
709 R. LHCb Collaboration, Test of lepton universality with B0 → K*0ℓ+ℓ− decays, J. High Energy Phys. 08, 055(2017), arXiv: 1705.05802
710 B. Capdevila, S. Descotes-Genon, J. Matias, and J. Virto, Assessing lepton-flavour non-universality from BK*ℓ+ℓ− angular analyses, J. High Energy Phys. 10, 075 (2016), arXiv: 1605.03156
711 B. Capdevila, S. Descotes-Genon, L. Hofer, and J. Matias, Hadronic uncertainties in BK*μ+μ−: A state-of-the-art analysis, J. High Energy Phys. 04, 016 (2017), arXiv: 1701.08672
712 N. Serra, R. Silva Coutinho, and D. van Dyk, Measuring the breaking of lepton flavor universality in BK*ℓ+ℓ−, Phys. Rev. D 95, 035029 (2017), arXiv: 1610.08761
713 S. Jäger and J. M. Camalich, Reassessing the discovery potential of the BK*ℓ+ℓ− decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D 93, 014028 (2016), arXiv: 1412.3183
714 R. LHCb Collaboration, Test of lepton universality using Λb0 → pK−ℓ+ℓ− decays, J. High Energy Phys. 05, 040 (2020), arXiv: 1912.08139
715 R. LHCb Collaboration, Tests of lepton universality using B0 → K S0ℓ+ℓ− and B+ → K*+ℓ+ℓ− decays, Phys. Rev. Lett. 128, 191802 (2022), arXiv: 2110.09501
716 Algueró M., et al.., Emerging patterns of new physics with and without lepton flavour universal contributions, Eur. Phys. J. C 79, 714 (2019), Addendum Eur. Phys. J. C 80, 511(2020), arXiv: 1903.09578
717 Ciuchini M., et al.., Lessons from the B0,+ → K*0,+ μ+μ− angular analyses, Phys. Rev. D 103, 015030 (2021), arXiv: 2011.01212
718 J, B-decay discrepancies after Moriond 2019, Eur. Phys. J. C 80, 252 (2020), arXiv: 1903.10434
719 Algueró M., et al.., bsℓℓ global fits after Moriond 2021 results, in: 55th Rencontres de Moriond on QCD and High Energy Interactions, 2021, arXiv: 2104.08921
720 W. Altmannshofer and P. Stangl, New physics in rare B decays after Moriond 2021, Eur. Phys. J. C 81, 952 (2021), arXiv: 2103.13370
721 L, Implications of new evidence for lepton-universality violation in bsℓ+ℓ− decays, Phys. Rev. D 104, 035029 (2021), arXiv: 2103.12738
722 Cornella C., et al.., Reading the footprints of the B-meson flavor anomalies, J. High Energy Phys. 08, 050 (2021), arXiv: 2103.16558
723 G. Isidori, D. Lancierini, P. Owen, and N. Serra, On the significance of new physics in bsℓ+ℓ− decays, Phys. Lett. B 822, 136644 (2021), arXiv: 2104.05631
724 G, A general effective field theory description of b → sℓ+ℓ− lepton universality ratios, Phys. Lett. B 830, 137151 (2022), arXiv: 2110.09882
725 T. Hurth, F. Mahmoudi, D. M. Santos, and S. Neshatpour, More indications for lepton nonuniversality in bsℓ+ℓ−, Phys. Lett. B 824, 136838 (2022), arXiv: 2104.10058
726 S. Descotes-Genon, M. Novoa-Brunet, and K. K. Vos, The time-dependent angular analysis of BdKSℓℓ, a new benchmark for new physics, J. High Energy Phys. 02, 129 (2021), arXiv: 2008.08000
727 N. Košnik and A. Smolkovič, LFU and CP violation with S3, arXiv: 2108.11929
728 M. Bordone, C. Cornella, G. Isidori, and M. König, The LFU ratio Rπ in the standard model and beyond, Eur. Phys. J. C 81, 850 (2021), arXiv: 2101.11626
729 A. V. Rusov, Probing new physics in bd transitions, J. High Energy Phys. 07 (2020) 158, arXiv: 1911.12819
730 R. Soni N., et al.., Rare bd decays in covariant confined quark model, arXiv: 2008.07202 (2020)
731 B. Kindra and N. Mahajan, Predictions of angular observables for B¯sK*ℓℓ and B¯ → ρℓℓ in the standard model, Phys. Rev. D 98, 094012 (2018), arXiv: 1803.05876
732 D. Atwood, M. Gronau, and A. Soni, Mixing induced CP asymmetries in radiative B decays in and beyond the standard model, Phys. Rev. Lett. 79, 185 (1997), arXiv: hep-ph/9704272
733 L, Alternative approach to bsγ in the uMSSM, J. High Energy Phys. 01, 022 (2002), arXiv: hep-ph/0112126
734 B. Grinstein, Y. Grossman, Z. Ligeti, and D. Pirjol, Photon polarization in BXγ in the standard model, Phys. Rev. D 71, 011504 (2005), arXiv: hep-ph/0412019
735 D. Becirevic, E. Kou, A. Le Yaouanc, and A. Tayduganov, Future prospects for the determination of the Wilson coefficient C7γ′, J. High Energy Phys. 08, 090 (2012), arXiv: 1206.1502
736 E. Kou, C.-D. Lü, and F.-S. Yu, Photon polarization in the bsγ processes in the left-right symmetric model, J. High Energy Phys. 12, 102 (2013), arXiv: 1305.3173
737 Haba N., et al.., Search for new physics via photon polarization of bsγ, J. High Energy Phys. 03, 160 (2015), arXiv: 1501.00668
738 A. Paul and D. M. Straub, Constraints on new physics from radiative B decays, J. High Energy Phys. 04, 027 (2017), arXiv: 1608.02556
739 D. Atwood, T. Gershon, M. Hazumi, and A. Soni, Mixing-induced CP violation in BP1P2γ in search of clean new physics signals, Phys. Rev. D 71, 076003 (2005), arXiv: hep-ph/0410036
740 F. Muheim, Y. Xie, and R. Zwicky, Exploiting the width difference in Bs → ϕγ, Phys. Lett. B 664, 174 (2008), arXiv: 0802.0876
741 J. BaBar Collaboration, Precision measurement of the BXsγ photon energy spectrum, branching fraction, and direct CP asymmetry ACP(BXs+dγ), Phys. Rev. Lett. 109, 191801 (2012), arXiv: 1207.2690
742 T. Belle Collaboration, Evidence for isospin violation and measurement of CP asymmetries in BK*(892) γ, Phys. Rev. Lett. 119, 191802 (2017), arXiv: 1707.00394
743 R. LHCb Collaboration, Measurement of the ratio of branching fractions B(B0 → K*0γ)/B(Bs0 → ϕγ) and the direct CP asymmetry in B0 → K*0γ, Nucl. Phys. B 867, 1 (2013), arXiv: 1209.0313
744 Y. Belle Collaboration, Time-dependent CP asymmetries in Bs0 → KS0π0γ transitions, Phys. Rev. D 74, 111104 (2006), arXiv: hep-ex/0608017
745 B. BaBar Collaboration, Measurement of time-dependent CP asymmetry in B0 → KS0π0γ decays, Phys. Rev. D 78, 071102 (2008), arXiv: 0807.3103
746 R. LHCb Collaboration, Measurement of CP-violating and mixing-induced observables in Bs0 → ϕγ decays, Phys. Rev. Lett. 123, 081802 (2019), arXiv: 1905.06284
747 D. Becirevic and E. Schneider, On transverse asymmetries in BK*+−, Nucl. Phys. B 854, 321 (2012), arXiv: 1106.3283
748 R. LHCb Collaboration, Strong constraints on the bsγ photon polarisation from B0 → K*0e+e− decays, J. High Energy Phys. 12, 081 (2020), arXiv: 2010.06011
749 M. Gronau and D. Pirjol, Photon polarization in radiative B decays, Phys. Rev. D 66, 054008 (2002), arXiv: hep-ph/0205065
750 E. Kou, A. Le Yaouanc, and A. Tayduganov, Determining the photon polarization of the bsγ using the BK1(1270) → (Kππ)γ decay, Phys. Rev. D 83, 094007 (2011), arXiv: 1011.6593
751 R. LHCb Collaboration, Observation of photon polarization in the bsγ transition, Phys. Rev. Lett. 112, 161801 (2014), arXiv: 1402.6852
752 W. Wang, F.-S. Yu, and Z.-X. Zhao, Novel method to reliably determine the photon helicity in BK1γ, Phys. Rev. Lett. 125, 051802 (2020), arXiv: 1909.13083
753 H.-Y. Cheng, X.-R. Lyu, and Z.-Z. Xing, Charm physics in the high-luminosity super τ-charm factory, in: 2022 Snowmass Summer Study, 2022, arXiv: 2203.03211
754 R. LHCb Collaboration, First observation of the radiative Λb0 → Λγ decay, Phys. Rev. Lett. 123, 031801 (2019), arXiv: 1904.06697
755 M. Gremm, F. Kruger, and L. M. Sehgal, Angular distribution and polarization of photons in the inclusive decay ΛbXsγ, Phys. Lett. B 355, 579 (1995), arXiv: hep-ph/9505354
756 T. Mannel and S. Recksiegel, Flavor changing neutral current decays of heavy baryons: The case Λb → Λγ, J. Phys. G 24, 979 (1998), arXiv: hep-ph/9701399
757 G. Hiller and A. Kagan, Probing for new physics in polarized Λb decays at the Z, Phys. Rev. D 65, 074038 (2002), arXiv: hep-ph/0108074
758 R. Aaij,. LHCb Collaboration, et al.., Measurement of the photon polarization in Λb 0 → Λγ decays, arXiv: 2111.10194, submitted to PRL
759 M. BESIII Collaboration, Polarization and entanglement in baryon-antibaryon pair production in electron-positron annihilation, Nature Phys. 15, 631 (2019), arXiv: 1808.08917
760 Y.-M. Wang, Y. Li, and C.-D. Lü, Rare decays of Λb → Λ + γ and Λ b → Λ + l+l− in the light-cone sum rules, Eur. Phys. J. C 59, 861 (2009), arXiv: 0804.0648
761 T. Mannel and Y.-M. Wang, Heavy-to-light baryonic form factors at large recoil, J. High Energy Phys. 12, 067 (2011), arXiv: 1111.1849
762 T, Rare baryon decays Λb → Λℓ+ℓ− (ℓ = e, μ, τ) and Λb → Λγ: Differential and total rates, lepton- and hadron-side forward-backward asymmetries, Phys. Rev. D 87, 074031 (2013), arXiv: 1301.3737
763 R. Aaij,. LHCb Collaboration, et al.., Search for the radiative Ξb−→ Ξ−γ decay, J. High Energy Phys. 01, 069 (2022), arXiv: 2108.07678
764 R. LHCb Collaboration, Search for the lepton flavour violating decay B0 → K∗0τ±μ∓, arXiv: 2209.09846 (submitted to J. High Energy Phys.)
765 R. LHCb Collaboration, Search for the lepton-flavour violating decays B0 → K∗0μ± e∓ and Bs0 → ϕμ± e∓, arXiv: 2207.04005 (submitted to J. High Energy Phys.)
766 R. LHCb Collaboration, Search for the lepton flavour violating decay B+ → K+μ−τ+ using Bs2∗0 decays, J. High Energy Phys. 06, 129(2020), arXiv: 2003.04352
767 R. LHCb Collaboration, Search for the lepton-flavour violating decays B+→ K+μ± e∓, Phys. Rev. Lett. 123, 231802 (2019), arXiv: 1909.01010
768 R. LHCb Collaboration, Search for the lepton-flavour-violating decays Bs0 → τ±μ∓ and B0 → τ±μ∓, Phys. Rev. Lett. 123, 211801 (2019), arXiv: 1905.06614
769 R. LHCb Collaboration, Search for the lepton-flavour violating decays B(s)0 → e±μ∓, J. High Energy Phys. 03, 078 (2018), arXiv: 1710.04111
770 R. LHCb Collaboration, Search for the baryon- and lepton-number violating decays B0 → pμ− and Bs0pμ−, arXiv: 2210.10412 (submitted to Phys. Rev. D)
771 R. LHCb Collaboration, Evidence for the decay Bs0 →K ¯*0μ+μ−, J. High Energy Phys. 07, 020 (2018), arXiv: 1804.07167
772 R. LHCb Collaboration, Observation of the suppressed decay Λb0 → pπ−μ+μ−, J. High Energy Phys. 04, 029 (2017), arXiv: 1701.08705
773 R. LHCb Collaboration, First observation of the decay B+ → π+μ+μ−, J. High Energy Phys. 12, 125 (2012), arXiv: 1210.2645
774 R. LHCb Collaboration, Search for the decay B0 → ϕμ+μ−, J. High Energy Phys. 05, 067 (2022), arXiv: 2201.10167
775 R. LHCb Collaboration, Search for the rare decay B0 → J/ψϕ, Chin. Phys. C 45, 043001 (2021), arXiv: 2011.06847
776 J. Brod, A. Lenz, G. Tetlalmatzi-Xolocotzi, and M. Wiebusch, New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ, Phys. Rev. D 92, 033002 (2015), arXiv: 1412.1446
777 J. Brod and J. Zupan, The ultimate theoretical error on γ from BDK decays, JHEP 01, 051 (2014), arXiv: 1308.5663
778 Gronau M., Wyler D.. On determining a weak phase from CP asymmetries in charged B decays. Phys. Lett. B, 1991, 265: 172
https://doi.org/10.1016/0370-2693(91)90034-N
779 Gronau M., London D.. How to determine all the angles of the unitarity triangle from Bd0 → DKs and Bs0 → Dϕ. Phys. Lett. B, 1991, 253: 483
https://doi.org/10.1016/0370-2693(91)91756-L
780 D. Atwood, I. Dunietz, and A. Soni, Enhanced CP violation with BKD0(D¯0) modes and extraction of the Cabibbo−Kobayashi−Maskawa angle γ, Phys. Rev. Lett. 78, 3257 (1997), arXiv: hep-ph/9612433
781 A. Giri, Y. Grossman, A. Soffer, and J. Zupan, Determining γ using B± → DK± with multibody D decays, Phys. Rev. D 68, 054018 (2003), arXiv: hep-ph/0303187
782 A. Bondar and A. Poluektov, Feasibility study of model-independent approach to φ3 measurement using Dalitz plot analysis, Eur. Phys. J. C 47, 347 (2006), arXiv: hep-ph/0510246
783 A. Bondar and A. Poluektov, The use of quantum-correlated D0 decays for φ3 measurement, Eur. Phys. J. C 55, 51 (2008), arXiv: 0801.0840
784 R. LHCb Collaboration, Simultaneous determination of CKM angle γ and charm mixing parameters, J. High Energy Phys. 12, 141 (2021), arXiv: 2110.02350
785 S, First determination of the CP content of D → π+π−π+π− and updated determination of the CP contents of D → π+π−π0 and DK+K−π0, Phys. Lett. B 747, 9 (2015), arXiv: 1504.05878
786 B. BaBar Collaboration, Measurement of CP violation parameters with a Dalitz plot analysis of B± → D(π+π−π0)K±, Phys. Rev. Lett. 99, 251801 (2007), arXiv: hep-ex/0703037
787 D. CLEO Collaboration, Searches for CP violation and ππ S-wave in the dalitz-Plot of D0 → π+π−π0, Phys. Rev. D 72, 031102 (2005), Erratum: Phys. Rev. D 75, 119904 (2007), arXiv: hep-ex/0503052
788 B. BaBar Collaboration, Amplitude analysis of the decay D0 → K+K−π0, Phys. Rev. D 76, 011102 (2007), arXiv: 0704.3593
789 C. CLEO Collaboration, Measurement of interfering K*+K− and K*−K+ amplitudes in the decay D0 → K+K−π0, Phys. Rev. D 74, 031108 (2006), arXiv: hep-ex/0606045
790 R. LHCb Collaboration, Observation of CP violation in charm decays, Phys. Rev. Lett. 122, 211803 (2019), arXiv: 1903.08726
791 W. Wang, CP violation effects on the measurement of the Cabibbo−Kobayashi−Maskawa angle γ from BDK, Phys. Rev. Lett. 110, 061802 (2013), arXiv: 1211.4539
792 R. LHCb Collaboration, Measurement of CP observables in B± → D(*)K± and B± → D(*)π± decays using two-body D final states, J. High Energy Phys. 04, 081 (2021), arXiv: 2012.09903
793 Evans T., et al.., Improved determination of the DK−π+π+π− coherence factor and associated hadronic parameters from a combination of e+e− → ψ(3770) → cc¯ and pp → cc¯X data, Phys. Lett. B 757, 520 (2016), Erratum: Phys. Lett. B 765, 402 (2017), arXiv: 1602.07430
794 T. Evans, J. Libby, S. Malde, and G. Wilkinson, Improved sensitivity to the CKM phase γ through binning phase space in B− → DK−, DK+π−π−π+ decays, Phys. Lett. B 802, 135188 (2020), arXiv: 1909.10196. 112
795 R. LHCb Collaboration, Measurement of the CKM angle γ with B ∓ → D[K± π∓π∓π±]h ∓ decays using a binned phase-space approach, arXiv: 2209.03692 (submitted to J. High Energy Phys.)
796 R. LHCb Collaboration, Constraints on the CKM angle γ from B± → Dh± decays using Dh±h′∓π0 final states, J. High Energy Phys. 07, 099 (2022), arXiv: 2112.10617
797 J. Libby,. CLEO Collaboration, et al.., Model-independent determination of the strong-phase difference between D0 and D¯0 → KS ,L0h+h− (h = π, K) and its impact on the measurement of the CKM angle γ/ϕ3, Phys. Rev. D 82, 112006 (2010), arXiv: 1010.2817
798 M. Ablikim,. BESIII Collaboration, et al.., Determination of strong-phase parameters in D → KS,L0π+π−, Phys. Rev. Lett. 124, 241802 (2020), arXiv: 2002.12791
799 M. Ablikim,. BESIII Collaboration, et al.., Model-independent determination of the relative strong-phase difference between D0 and D¯0 → KS ,L0π+π− and its impact on the measurement of the CKM angle γ/ϕ3, Phys. Rev. D 101, 112002 (2020), arXiv: 2003.00091
800 M. Ablikim,. BESIII Collaboration, et al.., Improved model-independent determination of the strong-phase difference between D0 and D¯0 → KS ,L0K+K− decays, Phys. Rev. D 102, 052008 (2020), arXiv: 2007.07959
801 R. Aaij,. LHCb Collaboration, et al.., Measurement of the CKM angle γ using B± → DK± with D → KS0π+π−, KS0K+K− decays, J. High Energy Phys. 08, 176 (2018), Erratum JHEP 10, 107 (2018), arXiv: 1806.01202
802 R. Aaij,. LHCb Collaboration, et al.., Measurement of the CKM angle γ in B± → DK± and B± → Dπ± decays with D → KS0h+h−, J. High Energy Phys. 02 (2021) 0169, arXiv: 2010.08483
803 R. Aaij,. LHCb Collaboration, et al.., Constraints on the unitarity triangle angle γ from Dalitz plot analysis of B0 → DK+π− decays, Phys. Rev. D 93, 112018 (2016), Erratum: Phys. Rev. D 94, 079902 (2016), arXiv: 1602.03455
804 R. LHCb Collaboration, Measurement of the CKM angle γ and Bs0− B¯s 0 mixing frequency with Bs0 → Ds∓h±π±π ∓ decays, J. High Energy Phys. 03, 137 (2021), arXiv: 2011.12041
805 R. LHCb Collaboration, Measurement of CP asymmetry in Bs0 → Ds∓K± decays, J. High Energy Phys. 03, 059 (2018), arXiv: 1712.07428
806 R. LHCb Collaboration, Observation of the decay Bs0 → D¯0ϕ, Phys. Lett. B 727, 403 (2013), arXiv: 1308.4583
807 R. LHCb Collaboration, Observation of the decay Bs0 → D¯0*ϕ and search for the mode B0 → D ¯0ϕ, Phys. Rev. D 98, 071103(R) (2018), arXiv: 1807.01892
808 R. LHCb Collaboration, Measurement of CP asymmetry in Bs0 → Ds∓ K± decays, J. High Energy Phys. 11, 060 (2014), arXiv: 1407.6127
809 D, Study of CKM angle γ sensitivity using flavor untagged Bs0 → D~(∗ )0ϕ decays, Chin. Phys. C 45, 023003 (2021), arXiv: 2008.00668
810 W. Wang, Determining CP violation angle γ with B decays into a scalar/tensor meson, Phys. Rev. D 85, 051301 (2012), arXiv: 1110.5194
811 Wolfenstein L.. Parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett., 1983, 51: 1945
https://doi.org/10.1103/PhysRevLett.51.1945
812 Y. Amhis,. Heavy Flavor Averaging Group, et al.., Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, Eur. Phys. J. C 81, 226 (2021), arXiv: 1909.12524, updated results and plots available at
813 R. LHCb Collaboration, Measurement of CP violation in B0 → J/ψKS0 decays, Phys. Rev. Lett. 115, 031601 (2015), arXiv: 1503.07089
814 R. LHCb Collaboration, Measurement of CP violation in B0 → J/ψKS0 and B0 → ψ(2S)KS0 decays, J. High Energy Phys. 11, 170 (2017), arXiv: 1709.03944
815 B. BaBar Collaboration, Measurement of time-dependent CP asymmetry in B0 → cc¯K(*)0 Decays, Phys. Rev. D 79, 072009 (2009), arXiv: 0902.1708
816 I. Belle Collaboration, Precise measurement of the CP violation parameter sin(2ϕ1) in B0 → (cc¯)K0 decays, Phys. Rev. Lett. 108, 171802 (2012), arXiv: 1201.4643
817 M. Ciuchini, M. Pierini, and L. Silvestrini, Effect of penguin operators in the B0 → J/ψK0 CP asymmetry, Phys. Rev. Lett. 95, 221804 (2005), arXiv: hep-ph/0507290
818 Collaboration BaBarBelleI, First evidence for cos(2β) > 0 and resolution of the Cabibbo−Kobayashi−Maskawa quark-mixing unitarity triangle ambiguity, Phys. Rev. Lett. 121, 261801 (2018), arXiv: 1804.06152
819 Collaboration BaBarBelleI, Measurement of cos(2β) in B0 → D(*)h0 with DKS0π+π− decays by a combined time-dependent Dalitz plot analysis of BaBar and Belle data, Phys. Rev. D 98, 112012 (2018), arXiv: 1804.06153
820 J. Charles,. CKMfitter Group, et al.., Current status of the standard model CKM fit and constraints on ∆F = 2 new physics, Phys. Rev. D 91, 073007 (2015), arXiv: 1501.05013, updated results and plots available at
821 R. Aaij,. LHCb Collaboration, et al.., Updated measurement of time-dependent CP-violating observables in B s0 → J/ψK+K− decays, Eur. Phys. J. C 79, 706 (2019), Erratum: Eur. Phys. J. C 80, 601 (2020), arXiv: 1906.08356
822 R. LHCb Collaboration, Measurement of the CP-violating phase ϕs from Bs0 → J/ ψπ+π− decays in 13 TeV pp collisions, Phys. Lett. B 797, 134789 (2019), arXiv: 1903.05530
823 R. LHCb Collaboration, Resonances and CP-violation in B0s and B¯0s → J/ψK+K− decays in the mass region above the ϕ(1020), J. High Energy Phys. 08, 037 (2017), arXiv: 1704.08217
824 R. LHCb Collaboration, Measurement of the CP violating phase and decay-width difference in Bs0 → ψ(2S)ϕ decays, Phys. Lett. B 762, 253 (2016), arXiv: 1608.04855
825 R. LHCb Collaboration, Measurement of the CP-violating phase ϕs in B¯s 0 →Ds+Ds− decays, Phys. Rev. Lett. 113, 211801 (2014), arXiv: 1409.4619
826 R. Aaij,. LHCb Collaboration, et al.., First measurement of the CP-violating phase in Bs0 → J/ψ(e+e−)ϕ decays, arXiv: 2105.14738 (2021)
827 G. ATLAS Collaboration, Measurement of the CP-violating phase ϕs in Bs0 → J/ψϕ decays in ATLAS at 13 TeV, Eur. Phys. J. C 81, 342(2021), arXiv: 2001.07115
828 Collaboration CMSA, Measurement of the CP-violating phase ϕs in the Bs0 → J/ψϕ(1020) → μ+μK+K− channel in proton−proton collisions at s = 13 TeV, Phys. Lett. B 816, 136188 (2021), arXiv: 2007.02434
829 X. Liu, W. Wang, and Y. Xie, Penguin pollution in B → J/ψV decays and impact on the extraction of the Bs−B¯s0 mixing phase, Phys. Rev. D 89, 094010 (2014), arXiv: 1309.0313
830 S. Faller, M. Jung, R. Fleischer, and T. Mannel, The golden modes B0 → J/ψKS,L in the era of precision flavour physics, Phys. Rev. D 79, 014030 (2009), arXiv: 0809.0842
831 H. Nagahiro, L. Roca, A. Hosaka, and E. Oset, Hidden gauge formalism for the radiative decays of axial-vector mesons, Phys. Rev. D 79, 014015 (2009), arXiv: 0809.0943
832 K. De Bruyn, R. Fleischer, and P. Koppenburg, Extracting γ and penguin topologies through CP violation in Bs0 → J/ψK S0, Eur. Phys. J. C 70, 1025 (2010), arXiv: 1010.0089
833 M. Jung, Determining weak phases from B → J/ψP decays, Phys. Rev. D 86, 053008 (2012), arXiv: 1206.2050
834 K. De Bruyn and R. Fleischer, A roadmap to control penguin effects in Bd0 → J/ψK S0 and Bs0 → J/ψϕ, J. High Energy Phys. 03, 145 (2015), arXiv: 1412.6834
835 P. Frings, U. Nierste, and M. Wiebusch, Penguin contributions to CP phases in Bd,s decays to charmonium, Phys. Rev. Lett. 115, 061802 (2015), arXiv: 1503.00859
836 M. Z. Barel, K. De Bruyn, R. Fleischer, and E. Malami, In pursuit of new physics with Bd0 → J/ψK0 and Bs0 → J/ψϕ decays at the high-precision frontier, J. Phys. G 48, 065002 (2021), arXiv: 2010.14423
837 R. LHCb Collaboration, Measurement of the CP-violating phase β in B¯0 → J/ψπ+π− decays and limits on penguin effects, Phys. Lett. B 742, 38 (2015), arXiv: 1411.1634
838 R. LHCb Collaboration, Measurement of CP violation parameters and polarisation fractions in B s0 → J/ψK¯*0 decays, J. High Energy Phys. 11, 082 (2015), arXiv: 1509.00400
839 R. LHCb Collaboration, Measurement of CP violation in the Bs0 → ϕϕ decay and search for the B0 → ϕϕ decay, J. High Energy Phys. 12, 155 (2019), arXiv: 1907.10003.
840 R. LHCb Collaboration, First measurement of the CP-violating phase ϕsd in Bs0 → (K+π−)(K−π+) decays, J. High Energy Phys. 03, 140 (2018), arXiv: 1712.08683
841 H.-n. Li, Y.-L. Shen, and Y.-M. Wang, Next-to-leading-order corrections to B → π form factors in kT factorization, Phys. Rev. D 85, 074004 (2012), arXiv: 1201.5066
842 Y.-M. Wang and Y.-L. Shen, QCD corrections to B → π form factors from light-cone sum rules, Nucl. Phys. B 898, 563 (2015), arXiv: 1506.00667
843 Y.-M. Wang, Y.-B. Wei, Y.-L. Shen, and C.-D. Lü, Perturbative corrections to BD form factors in QCD, JHEP 06, 062 (2017), arXiv: 1701.06810
844 C.-D. Lü, Y.-L. Shen, Y.-M. Wang, and Y.-B. Wei, QCD calculations of B → π, K form factors with higher-twist corrections, J. High Energy Phys. 01, 024 (2019), arXiv: 1810.00819
845 A. Khodjamirian, C. Klein, T. Mannel, and Y.-M. Wang, Form factors and strong couplings of heavy baryons from QCD light-cone sum rules, J. High Energy Phys. 09, 106 (2011), arXiv: 1108.2971
846 J. CKMfitter group, CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41, 1 (2005), arXiv: hep-ph/0406184
847 R. LHCb Collaboration, Determination of the quark coupling strength |Vub| using baryonic decays, Nat. Phys. 11, 743 (2015), arXiv: 1504.01568
848 M. BESIII Collaboration, Measurements of absolute hadronic branching fractions of Λc + baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380
849 R. LHCb Collaboration, First observation of the decay B s0 → Kμ+vμ and measurement of |Vub| / |Vcb|, Phys. Rev. Lett. 126, 081804 (2021), arXiv: 2012.05143
850 R. LHCb Collaboration, Measurement of |Vcb| with B0 → D(*)sμ+v decays, Phys. Rev. D 101, 072004 (2020), arXiv: 2001.03225
851 I. Caprini, L. Lellouch, and M. Neubert, Dispersive bounds on the shape of BD(*)ℓv form factors, Nucl. Phys. B 530, 153 (1998), arXiv: hep-ph/9712417
852 C. G. Boyd, B. Grinstein, and R. F. Lebed, Constraints on form factors for exclusive semileptonic heavy to light meson decays, Phys. Rev. Lett. 74, 4603 (1995), arXiv: hep-ph/9412324
853 C. G. Boyd, B. Grinstein, and R. F. Lebed, Precision corrections to dispersive bounds on form factors, Phys. Rev. D 56, 6895 (1997), arXiv: hep-ph/9705252
854 R. LHCb Collaboration, A precise measurement of the B0 meson oscillation frequency, Eur. Phys. J. C 76, 412 (2016), arXiv: 1604.03475
855 R. LHCb Collaboration, Precise determination of the B s0− B¯s0 oscillation frequency, Nat. Phys. 18, 1 (2022), arXiv: 2104.04421
856 S. Flavour Lattice Averaging Group, FLAG review 2019, Eur. Phys. J. C 80, 113 (2020), arXiv: 1902.08191
857 A. J. Buras, M. E. Lautenbacher, and G. Ostermaier, Waiting for the top quark mass, K+ → π+v v¯, Bs0−B¯s0 mixing and CP asymmetries in B-decays, Phys. Rev. D 50, 3433 (1994), arXiv: hep-ph/9403384
858 B. BaBar Collaboration, Evidence for D0−D¯0 mixing, Phys. Rev. Lett. 98, 211802 (2007), arXiv: hep-ex/0703020
859 M. BELLE Collaboration, Evidence for D0−D¯0 mixing, Phys. Rev. Lett. 98, 211803 (2007), arXiv: hep-ex/0703036
860 T. CDF Collaboration, Evidence for D0−D¯0 mixing using the CDF II detector, Phys. Rev. Lett. 100, 121802 (2008), arXiv: 0712.1567
861 B. BaBar Collaboration, Measurement of D0−D¯0 mixing from a time-dependent amplitude analysis of D0 → K+π−π0 decays, Phys. Rev. Lett. 103, 211801 (2009), arXiv: 0807.4544
862 B. BaBar Collaboration, Measurement of D0−D¯0 mixing using the ratio of lifetimes for the decays D0 →K−π+ and K+K−, Phys. Rev. D 80, 071103 (2009), arXiv: 0908.0761
863 R. LHCb Collaboration, Observation of D0−D¯0 oscillations, Phys. Rev. Lett. 110, 101802 (2013), arXiv: 1211.1230
864 S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, A Cicerone for the physics of charm, Riv. Nuovo Cim. 26, 1 (2003), arXiv: hep-ex/0309021
865 R. LHCb Collaboration, Measurement of D0−D¯0 mixing parameters and search for CP violation using D0 →K+π− decays, Phys. Rev. Lett. 111, 251801 (2013), arXiv: 1309.6534
866 R. Aaij,. LHCb Collaboration, et al.., Measurements of charm mixing and CP violation using D0 → K±π∓ decays, Phys. Rev. D 95, 052004 (2017), Erratum: Phys. Rev. D 96, 099907 (2017), arXiv: 1611.06143
867 R. LHCb Collaboration, Updated determination of D0−D¯0 mixing and CP violation parameters with D0 →K+π− decays, Phys. Rev. D 97, 031101 (2018), arXiv: 1712.03220
868 R. LHCb Collaboration, Model-independent measurement of mixing parameters in D0 →KS0π+π− decays, J. High Energy Phys. 04, 033 (2016), arXiv: 1510.01664
869 R. LHCb Collaboration, Measurement of the mass difference between neutral charm-meson eigenstates, Phys. Rev. Lett. 122, 231802 (2019), arXiv: 1903.03074
870 R. LHCb Collaboration, Observation of the mass difference between neutral charm-meson eigenstates, Phys. Rev. Lett. 127, 111801 (2021), arXiv: 2106.03744
871 R. LHCb Collaboration, Measurement of CP asymmetry in D0 → KK+ and D0 → π−π+ decays, J. High Energy Phys. 07, 041 (2014), arXiv: 1405.2797
872 R. LHCb Collaboration, Measurement of the difference of time-integrated CP asymmetries in D0 → KK+ and D0 → π−π+ decays, Phys. Rev. Lett. 116, 191601 (2016), arXiv: 1602.03160
873 R. LHCb Collaboration, Measurement of the charm-mixing parameter yCP, Phys. Rev. Lett. 122, 011802 (2019), arXiv: 1810.06874
874 R. LHCb Collaboration, Measurement of indirect CP asymmetries in D0 → KK+ and D0 → π−π+ decays using semileptonic B decays, J. High Energy Phys. 04, 043 (2015), arXiv: 1501.06777
875 R. LHCb Collaboration, Measurement of the CP violation parameter AΓ in D0 → K+K− and D0 → π+π− decays, Phys. Rev. Lett. 118, 261803 (2017), arXiv: 1702.06490
876 R. LHCb Collaboration, Updated measurement of decay-time-dependent CP asymmetries in D0 → K+K− and D0 → π+π− decays, Phys. Rev. D 101, 012005 (2020), arXiv: 1911.01114
877 R. LHCb Collaboration, Search for time-dependent CP violation in D0 → K+K− and D0 → π+π− decays, Phys. Rev. D 104, 072010 (2021), arXiv: 2105.09889
878 R. LHCb Collaboration, First observation of D0 → D¯0 oscillations in D0 → K+π+π−π−decays and a measurement of the associated coherence parameters, Phys. Rev. Lett. 116, 241801 (2016), arXiv: 1602.07224
879 R. LHCb Collaboration, Evidence for CP violation in time-integrated D0 → hh+ decay rates, Phys. Rev. Lett. 108, 111602 (2012), arXiv: 1112.0938
880 R. LHCb Collaboration, Search for direct CP violation in D0 → hh+ modes using semileptonic B decays, Phys. Lett. B 723, 33 (2013), arXiv: 1303.2614
881 R. LHCb Collaboration, Search for CP violation in D+ → ϕπ+ and Ds+ → KS0π+ decays, J. High Energy Phys. 06, 112 (2013), arXiv: 1303.4906
882 R. LHCb Collaboration, Search for CP violation in D± → KS0K± and Ds± → KS0π± decays, J. High Energy Phys. 10, 025 (2014), arXiv: 1406.2624
883 R. LHCb Collaboration, Measurement of the time-integrated CP asymmetry in D0 → KS0 KS0 decays, J. High Energy Phys. 10, 055 (2015), arXiv: 1508.06087
884 R. LHCb Collaboration, Measurement of CP asymmetries in D± → η′π± and D s± → η′π± decays, Phys. Lett. B 771, 21 (2017), arXiv: 1701.01871
885 R. LHCb Collaboration, Measurement of the time-integrated CP asymmetry in D0 → KS0 KS0 decays, J. High Energy Phys. 11, 048 (2018), arXiv: 1806.01642
886 R. LHCb Collaboration, Search for CP violation in Ds+ → KS0π+, D+ → KS0K+ and D+ → ϕπ+ decays, Phys. Rev. Lett. 122, 191803 (2019), arXiv: 1903.01150
887 R. LHCb Collaboration, Measurement of CP asymmetry in D0 → KS0 KS0 decays, Phys. Rev. D 104, L031102 (2021), arXiv: 2105.01565
888 R. LHCb Collaboration, Search for CP violation in D(s)+ → h+π0 and D(s)+ → h+η decays, J. High Energy Phys. 06, 019 (2021), arXiv: 2103.11058
889 R. LHCb Collaboration, Measurement of CP asymmetries in D(s)+ → η′π+ and D(s)+ → η′π+ decays, arXiv: 2204.12228 (to be published in J. High Energy Phys.)
890 R. Aaij,. LHCb Collaboration, et al.., Measurement of the time-integrated CP asymmetry in D0 → KK+ decays, arXiv: 2209.03179 (submitted to Phys. Rev. Lett.)
891 R. LHCb Collaboration, Search for CP violation through an amplitude analysis of D0 → K+K−π+π− decays, J. High Energy Phys. 02, 126 (2019), arXiv: 1811.08304
892 R. LHCb Collaboration, Search for CP violation in D+ → KK+π+ decays, Phys. Rev. D 84, 112008 (2011), arXiv: 1110.3970
893 R. LHCb Collaboration, Model-independent search for CP violation in D0 → KK+π+π− and D0 → π−π+π−π+ decays, Phys. Lett. B 726, 623 (2013), arXiv: 1308.3189
894 R. LHCb Collaboration, Search for CP violation in the decay D+ → π−π+π+, Phys. Lett. B 728, 585 (2014), arXiv: 1310.7953
895 R. LHCb Collaboration, Search for CP violation using T-odd correlations in D0 →K+K−π+π− decays, J. High Energy Phys. 10, 005 (2014), arXiv: 1408.1299
896 R. LHCb Collaboration, Search for CP violation in Ξc+ → pK−π+ decays with model-independent techniques, Eur. Phys. J. C 80, 986 (2020), arXiv: 2006.03145
897 R. LHCb Collaboration, Search for CP violation in D0 → π−π+π0 decays with the energy test, Phys. Lett. B 740, 158 (2015), arXiv: 1410.4170
898 R. LHCb Collaboration, Search for CP violation in the phase space of D0 → π+π−π+π−decays, Phys. Lett. B 769, 345 (2017), arXiv: 1612.03207
899 M. Williams, Observing CP violation in many-body decays, Phys. Rev. D 84, 054015 (2011), arXiv: 1105.5338
900 C, On model-independent searches for direct CP violation in multi-body decays, J. Phys. G 44, 085001 (2017), arXiv: 1612.04705
901 R. LHCb Collaboration, Search for CP violation in Λ c+ → pKK+ and Λc + → pπ−π+decays, J. High Energy Phys. 03, 182 (2018), arXiv: 1712.07051
902 R. LHCb Collaboration, Measurement of mixing and CP violation parameters in two-body charm decays, J. High Energy Phys. 04, 129 (2012), arXiv: 1112.4698
903 R. LHCb Collaboration, Measurements of indirect CP asymmetries in D0 → KK+ and D0 → π−π+ decays, Phys. Rev. Lett. 112, 041801 (2014), arXiv: 1310.7201
904 R. LHCb Collaboration, Measurement of the charm mixing parameter yCP−y CP Kπ using two-body D0 meson decays, Phys. Rev. D 105, 092013 (2022), arXiv: 2202.09106
905 T. Pajero and M. J. Morello, Mixing and CP violation in D0 → K−π+ decays, J. High Energy Phys. 03, 162 (2022), arXiv: 2106.02014
906
907 Aberle O., et al.., High-Luminosity Large Hadron Collider (HL-LHC): Technical design report, CERN Yellow Reports: Monographs, CERN, Geneva, 10 (2020)
908
909 Hashimoto S., et al.., Letter of intent for KEK super B factory KEK-REPORT-2004-4, 2004
910 Ohnishi Y.. et al.. Accelerator design at SuperKEKB. Prog. Theor. Exp. Phys., 2013, 2013: 03A011
https://doi.org/10.1093/ptep/pts083
911 M. Dong,. CEPC Study Group, et al.., CEPC Conceptual Design Report: Volume 2, Physics & Detector, arXiv: 1811.10545 (2018)
912 A. FCC Collaboration, FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2, Eur. Phys. J. ST 228, 261 (2019)
913 M. BESIII Collaboration, Design and construction of the BESIII Detector, Nucl. Instrum. Meth. A 614, 345 (2010), arXiv: 0911.4960
914 M. BESIII Collaboration, Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983
915 G. Wilkinson, Charming synergies: The role of charm-threshold studies in the search for physics beyond the Standard Model, Sci. Bull. 66, 2251 (2021), arXiv: 2107.08414
916 D. A. Epifanov. SCTF Collaboration. Project of super charm-tau factory. Phys. Atom. Nucl., 2020, 83: 944
https://doi.org/10.1134/S1063778820060137
917 P. Peng H., H. Zheng Y., R. Zhou X.. Super tau-charm facility of China. Physics, 2020, 49: 513
https://doi.org/10.7693/wl20200803
918
919
920
921
922
923
924
925
926 Efthymiopoulos I., et al.., LHCb Upgrades and operation at 1034 cm−2·s−1 luminosity — a first study, CERN-ACC-NOTE-2018-0038, 2018
927
928 R. LHCb Collaboration, Implications of LHCb measurements and future prospects, Eur. Phys. J. C 73, 2373 (2013), arXiv: 1208.3355
929
930 Collaboration Belle-IIAltmannshofer W., et al.., The Belle II physics book, Prog. Theor. Exp. Phys. 2019, 123C01 (2019), Erratum: Prog. Theor. Exp. Phys. 2020, 029201 (2020), arXiv: 1808.10567
931
932 R. LHCb Collaboration, Measurement of CP violation in B0 → J/ ψKS0 and B0 → ψ(2S)KS0 decays, J. High Energy Phys. 11, 170 (2017), arXiv: 1709.03944
933 LHCb Collaboration, R. Aaij et al., Precision measurement of CP violation in B s0 → J/ψK+K— decays, Phys. Rev. Lett. 114, 041801 (2015), arXiv: 1411.3104
934 ATLAS Collaboration, ATLAS B-physics studies at increased LHC luminosity, potential for CP-violation measurement in the Bs0 → J/ψϕ decay, ATL-PHYS-PUB-2013-010, 2013
935 CMS Collaboration, CP-violation studies at the HL-LHC with CMS using Bs0 decays to J/ψϕ (1020), CMS-PAS-FTR-18-041, 2018
936 R. LHCb Collaboration, Measurement of CP violation in B s0 → ϕϕ decays, Phys. Rev. D 90, 052011 (2014), arXiv: 1407.2222
937
938 R. LHCb Collaboration, Measurement of the CP asymmetry in B s0− B¯s0 mising, Phys. Rev. Lett. 117, 061803 (2016), arXiv: 1605.09768
939
940 CMS Collaboration, Measurement of rare Bµ+µ−decays with the Phase-2 upgraded CMS detector at the HL-LHC, CMS-PAS-FTR-18-013, 2018
941 R. Aaij,. LHCb Collaboration, et al.., Measurement of the ratio of branching fractions B( B¯0 → D∗+τ−ν ¯τ)/B(B¯0 → D∗+μ− ν¯μ), Phys. Rev. Lett. 115, 111803 (2015) Publisher’s Note, Phys. Rev. Lett. 115, 159901, (2015), arXiv: 1506.08614
942 R. LHCb Collaboration, Test of lepton flavor universality by the measurement of the B0 → D∗−τ+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97, 072013 (2018), arXiv: 1711.02505
943 R. LHCb Collaboration, Measurement of the ratio of branching fractions B( Bc+ → J/ψτ+ντ)/B(Bc+ → J/ψµ+νµ), Phys. Rev. Lett 120, 121801 (2018), arXiv: 1711.05623
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed