Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (2): 21308   https://doi.org/10.1007/s11467-022-1249-z
  本期目录
Noisy intermediate-scale quantum computers
Bin Cheng1,2,3, Xiu-Hao Deng1,2,3, Xiu Gu1,2,3, Yu He1,2,3, Guangchong Hu1,2,3, Peihao Huang1,2,3, Jun Li1,2,3, Ben-Chuan Lin1,2,3, Dawei Lu1,2,3,4, Yao Lu1,2,3, Chudan Qiu1,2,3,4, Hui Wang5,6,7, Tao Xin1,2,3, Shi Yu1,2,3, Man-Hong Yung1,2,3, Junkai Zeng1,2,3, Song Zhang1,2,3, Youpeng Zhong1,2,3, Xinhua Peng6,7,8, Franco Nori9,10, Dapeng Yu1,2,3,4()
1. Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2. International Quantum Academy, Shenzhen 518048, China
3. Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
4. Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
5. Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
6. CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
7. Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
8. CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
9. Quantum Computing Center and Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
10. Physics Department, University of Michigan, Ann Arbor, MI 48109-1040, USA
 全文: PDF(11280 KB)   HTML
Abstract

Quantum computers have made extraordinary progress over the past decade, and significant milestones have been achieved along the path of pursuing universal fault-tolerant quantum computers. Quantum advantage, the tipping point heralding the quantum era, has been accomplished along with several waves of breakthroughs. Quantum hardware has become more integrated and architectural compared to its toddler days. The controlling precision of various physical systems is pushed beyond the fault-tolerant threshold. Meanwhile, quantum computation research has established a new norm by embracing industrialization and commercialization. The joint power of governments, private investors, and tech companies has significantly shaped a new vibrant environment that accelerates the development of this field, now at the beginning of the noisy intermediate-scale quantum era. Here, we first discuss the progress achieved in the field of quantum computation by reviewing the most important algorithms and advances in the most promising technical routes, and then summarizing the next-stage challenges. Furthermore, we illustrate our confidence that solid foundations have been built for the fault-tolerant quantum computer and our optimism that the emergence of quantum killer applications essential for human society shall happen in the future.

Key wordsquantum computer    quantum algorithm    quantum chip
收稿日期: 2022-12-18      出版日期: 2023-01-17
Corresponding Author(s): Dapeng Yu   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(2): 21308.
Bin Cheng, Xiu-Hao Deng, Xiu Gu, Yu He, Guangchong Hu, Peihao Huang, Jun Li, Ben-Chuan Lin, Dawei Lu, Yao Lu, Chudan Qiu, Hui Wang, Tao Xin, Shi Yu, Man-Hong Yung, Junkai Zeng, Song Zhang, Youpeng Zhong, Xinhua Peng, Franco Nori, Dapeng Yu. Noisy intermediate-scale quantum computers. Front. Phys. , 2023, 18(2): 21308.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1249-z
https://academic.hep.com.cn/fop/CN/Y2023/V18/I2/21308
Fig.1  
Fig.2  
Fig.3  
No. of qubits T1 (μs) T2? (μs) t1q (ns) Err1q(10?3) t2q (ns) Err2q(10?3) tr (μs) Errr (10?2) Fridge Size
53,66 [13, 128] 16?30.6 5.3 25 1.4 12 5 1 [281] 3.1 [281] 20mK 1 mm2
<10 [273280] 15?76 12?105 30 1 10?200 1.5
Tab.1  
Fig.4  
Qubit type Hyperfine qubit Optical qubit
T2 50 s [372] 5500 s [374]b 0.2 s [410]
SPAM error 6.9×10?4 [376] 8.7×10?5 [401]
1Q gate Duration 1?10 μs typical 1?10 μs typical
Fidelity 0.99996 [377] 0.99995 [410]
2Q gate Duration 10?100 μs typical 10?100 μs typical
Fidelityc 0.9991 [379] 0.999 [378] 0.9994 [379]
Maximally entangled qubits 24 [381]
Environment Ultra-high vacuum <10?11 Torr
Tab.2  
Fig.5  
Qubit type Si-MOS Si-SiGe P donor n P donor e
T1 2.6 s [522] 160 ms [523] 39 min [490] 30 s [490]
T2? 120 μs [524] 20 μs [525] 600 ms [490] 268 μs [490]
T2Hahn 1.2 ms [524] 100 μs [525] 1.75 s [490] 0.95 ms[490]
Tsingle 2.4 μs [524] 20 ns [525] 24 μs [494] 150 ns [526]
Ttwo 1.4 μs [486] 103 ns [493] 1.89 μs [494] 0.8 ns [491]
F1RB (%) 99.957(4) [527] 99.861(5) [525] 99.99 [528] 99.95 [528]
F2RB (%) 98.0(3) [486] 99.51(2) [493] 99.37(11)a [494] 86.7(2)b [491]
Q1c 50 1000 25000 1800
Q2c 86 194 302d 3.4×105
NQe 2 [486] 6 [529] 2 [494] 2 [491]
NEf 2 [486] 3 [529] 2 [494] 2 [491]
Env B1.4 T B0.5 T B1 T B1 T
T<1.5 K T<1.5 K T<1.5 K T<1.5 K
Flying qubit N/A N/A N/A N/A
Footprint size 100 nm 100 nm 3 nm 100 nm
Tab.3  
Fig.6  
Property Parameter Qubit Value Condition Reference
Coherence T2? e 36 μs 506 G, 300 K Ref. [638]
N 25.1 ms 403 G, 3.7 K Ref. [629]
13C 17.2 ms
13C?13C pair 1.9 min Ref. [600]
T2 (echo) e 1.8 ms 690 G, 300 K Ref. [622]
N 2.3 s 403 G, 3.7 K Ref. [629]
13C 770 ms
T1 e >1 h 403 G, 3.7 K Ref. [599]
13C >6 min Ref. [629]
Gate time Single-qubit e <10 ns 850 G, 300 K Ref. [619]
Two-qubit e-N 700 ns 513 G, 300 K Ref. [618]
Gate fidelity Single-qubit e 99.995% 513 G, 300 K Ref. [618]
Two-qubit e-N 99.2%
Tab.4  
Fig.7  
Fig.8  
Property Alkali atom Alkaline-earth(-like) atom
Electronic spin Nuclear spin
85,87Rb/133Cs 87Sr 171Yb
Coherence T1 4s [783, 792] ?10s [795] 10?100s [767]
T2? 4ms [783, 792] 21s [795] 3.7 s [767]
T2 1sa [783, 792] 40sb [795] 7.9 sb [767]
Gate time t1 0.1?10μs 0.7μs [767]
t2 0.4?2μs 0.9μs [789]
Gate fidelity F1 99.97%c [783] 99.48%d [767]
F2 97.4%e [788] 83%e [789]
Qubit number Nd 6f [792], 24g [783]
Na 289 [796]
Environment Ultra-high vacuum P10?11Torr, magnetic field B10G
Tab.5  
Fig.9  
1 Benioff P. . The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys., 1980, 22(5): 563
https://doi.org/10.1007/BF01011339
2 P. Feynman R. . Simulating physics with computers. Int. J. Theor. Phys., 1982, 21(6−7): 467
https://doi.org/10.1007/BF02650179
3 I. Manin Y., Vychislimoe i nevychislimoe [Computable and Noncomputable], Sov. Radio, 13 (1980) (in Russian)
4 Shor P., Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, Santa Fe, NM, USA, 1994, pp 124–134
5 A. Nielsen M.L. Chuang I., Quantum Computation and Quantum Information, Cambridge University Press, 2000
6 I. Cirac J. , Zoller P. . Quantum computations with cold trapped ions. Phys. Rev. Lett., 1995, 74(20): 4091
https://doi.org/10.1103/PhysRevLett.74.4091
7 G. Cory D. , F. Fahmy A. , F. Havel T. . Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 1997, 94(5): 1634
https://doi.org/10.1073/pnas.94.5.1634
8 A. Gershenfeld N. , L. Chuang I. . Bulk spinresonance quantum computation. Science, 1997, 275(5298): 350
https://doi.org/10.1126/science.275.5298.350
9 G. Cory D. , D. Price M. , F. Havel T. . Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing. Physica D, 1998, 120(1−2): 82
https://doi.org/10.1016/S0167-2789(98)00046-3
10 E. Kane B. . A silicon-based nuclear spin quantum computer. Nature, 1998, 393(6681): 133
https://doi.org/10.1038/30156
11 Loss D. , P. DiVincenzo D. . Quantum computation with quantum dots. Phys. Rev. A, 1998, 57(1): 120
https://doi.org/10.1103/PhysRevA.57.120
12 Nakamura Y. , A. Pashkin Y. , S. Tsai J. . Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 1999, 398(6730): 786
https://doi.org/10.1038/19718
13 Arute F. , Arya K. , Babbush R. , Bacon D. , C. Bardin J. . et al.. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505
https://doi.org/10.1038/s41586-019-1666-5
14 Wu Y. , S. Bao W. , Cao S. , Chen F. , C. Chen M. . et al.. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(18): 180501
https://doi.org/10.1103/PhysRevLett.127.180501
15 Zhu Q. , Cao S. , Chen F. , C. Chen M. , Chen X. . et al.. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. (Beijing), 2022, 67(3): 240
https://doi.org/10.1016/j.scib.2021.10.017
16 S. Zhong H. , Wang H. , H. Deng Y. , C. Chen M. , C. Peng L. . et al.. Quantum computational advantage using photons. Science, 2020, 370(6523): 1460
https://doi.org/10.1126/science.abe8770
17 S. Zhong H. , H. Deng Y. , Qin J. , Wang H. , C. Chen M. . et al.. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett., 2021, 127(18): 180502
https://doi.org/10.1103/PhysRevLett.127.180502
18 S. Madsen L. , Laudenbach F. , F. Askarani M. , Rortais F. , Vincent T. . et al.. Quantum computational advantage with a programmable photonic processor. Nature, 2022, 606(7912): 75
https://doi.org/10.1038/s41586-022-04725-x
19 W. Johnson M. , H. Amin M. , Gildert S. , Lanting T. , Hamze F. . et al.. Quantum annealing with manufactured spins. Nature, 2011, 473(7346): 194
https://doi.org/10.1038/nature10012
20 Krinner S. , Lacroix N. , Remm A. , Di Paolo A. , Genois E. , Leroux C. , Hellings C. , Lazar S. , Swiadek F. , Herrmann J. , J. Norris G. , K. Andersen C. , Müller M. , Blais A. , Eichler C. , Wallraff A. . Realizing repeated quantum error correction in a distance-three surface code. Nature, 2022, 605(7911): 669
https://doi.org/10.1038/s41586-022-04566-8
21 Chen Z. , J. Satzinger K. , Atalaya J. , N. Korotkov A. , Dunsworth A. . et al.. Exponential suppression of bit or phase errors with cyclic error correction. Nature, 2021, 595(7867): 383
https://doi.org/10.1038/s41586-021-03588-y
22 K. Andersen C. , Remm A. , Lazar S. , Krinner S. , Lacroix N. , J. Norris G. , Gabureac M. , Eichler C. , Wallraff A. . Repeated quantum error detection in a surface code. Nat. Phys., 2020, 16(8): 875
https://doi.org/10.1038/s41567-020-0920-y
23 Zhao Y. , Ye Y. , L. Huang H. , Zhang Y. , Wu D. . et al.. Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett., 2022, 129(3): 030501
https://doi.org/10.1103/PhysRevLett.129.030501
24 F. Marques J. , M. Varbanov B. , S. Moreira M. , Ali H. , Muthusubramanian N. , Zachariadis C. , Battistel F. , Beekman M. , Haider N. , Vlothuizen W. , Bruno A. , M. Terhal B. , DiCarlo L. . Logical-qubit operations in an error-detecting surface code. Nat. Phys., 2022, 18(1): 80
https://doi.org/10.1038/s41567-021-01423-9
25 van Riggelen F. , I. L. Lawrie W. , Russ M. , W. Hendrickx N. , Sammak A. , Rispler M. , M. Terhal B. , Scappucci G. , Veldhorst M. . Phase flip code with semiconductor spin qubits. npj Quantum Inf., 2022, 8: 124
https://doi.org/10.1038/s41534-022-00639-8
26 Takeda K. , Noiri A. , Nakajima T. , Kobayashi T. , Tarucha S. . Quantum error correction with silicon spin qubits. Nature, 2022, 608(7924): 682
https://doi.org/10.1038/s41586-022-04986-6
27 Waldherr G. , Wang Y. , Zaiser S. , Jamali M. , Schulte-Herbruggen T. , Abe H. , Ohshima T. , Isoya J. , F. Du J. , Neumann P. , Wrachtrup J. . Quantum error correction in a solid-state hybrid spin register. Nature, 2014, 506(7487): 204
https://doi.org/10.1038/nature12919
28 H. Taminiau T. , Cramer J. , van der Sar T. , V. Dobrovitski V. , Hanson R. . Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol., 2014, 9(3): 171
https://doi.org/10.1038/nnano.2014.2
29 Abobeih M. , Wang Y. , Randall J. , Loenen S. , Bradley C. , Markham M. , Twitchen D. , Terhal B. , Taminiau T. . Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature, 2022, 606(7916): 884
https://doi.org/10.1038/s41586-022-04819-6
30 Buluta I. , Nori F. . Quantum simulators. Science, 2009, 326(5949): 108
https://doi.org/10.1126/science.1177838
31 M. Georgescu I. , Ashhab S. , Nori F. . Quantum simulation. Rev. Mod. Phys., 2014, 86(1): 153
https://doi.org/10.1103/RevModPhys.86.153
32 Argüello-Luengo J. , Gonzalez-Tudela A. , Shi T. , Zoller P. , I. Cirac J. . Analogue quantum chemistry simulation. Nature, 2019, 574(7777): 215
https://doi.org/10.1038/s41586-019-1614-4
33 Hofstetter W. , Qin T. . Quantum simulation of strongly correlated condensed matter systems. J. Phys. At. Mol. Opt. Phys., 2018, 51(8): 082001
https://doi.org/10.1088/1361-6455/aaa31b
34 Barends R. , Kelly J. , Megrant A. , Veitia A. , Sank D. . et al.. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 2014, 508(7497): 500
https://doi.org/10.1038/nature13171
35 Bharti K. , Cervera-Lierta A. , H. Kyaw T. , Haug T. , Alperin-Lea S. , Anand A. , Degroote M. , Heimonen H. , S. Kottmann J. , Menke T. , Mok W.-K. , Sim S. , Kwek L.-C. , Aspuru-Guzik A. . Noisy intermediate-scale quantum (NISQ) algorithms. Rev. Mod. Phys., 2022, 94: 015004
https://doi.org/10.1103/RevModPhys.94.015004
36 Peruzzo A. , McClean J. , Shadbolt P. , H. Yung M. , Q. Zhou X. , J. Love P. , Aspuru-Guzik A. , L. O’Brien J. . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
https://doi.org/10.1038/ncomms5213
37 Bharti K. , Cervera-Lierta A. , H. Kyaw T. , Haug T. , Alperin-Lea S. , Anand A. , Degroote M. , Heimonen H. , S. Kottmann J. , Menke T. , K. Mok W. , Sim S. , C. Kwek L. , Aspuru-Guzik A. . Noisy intermediatescale quantum algorithms. Rev. Mod. Phys., 2022, 94(1): 015004
https://doi.org/10.1103/RevModPhys.94.015004
38 W. Harrow A. , Hassidim A. , Lloyd S. . Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
https://doi.org/10.1103/PhysRevLett.103.150502
39 H. Chia N.Gilyen A.Li T.H. Lin H.Tang E.Wang C., Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning, in: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Association for Computing Machinery, New York, NY, USA, 2020, pp 387–400
40 R. MacQuarrie E. , Simon C. , Simmons S. , Maine E. . The emerging commercial landscape of quantum computing. Nat. Rev. Phys., 2020, 2(11): 596
https://doi.org/10.1038/s42254-020-00247-5
41 Donati G. . A look at the full stack. Nat. Rev. Phys., 2021, 3(4): 226
https://doi.org/10.1038/s42254-021-00301-w
42 Alexeev Y. , Bacon D. , R. Brown K. , Calderbank R. , D. Carr L. . et al.. Quantum computer systems for scientific discovery. PRX Quantum, 2021, 2(1): 017001
https://doi.org/10.1103/PRXQuantum.2.017001
43 P. DiVincenzo D. , Bacon D. , Kempe J. , Burkard G. , B. Whaley K. . Universal quantum computation with the exchange interaction. Nature, 2000, 408(6810): 339
https://doi.org/10.1038/35042541
44 Das A. , K. Chakrabarti B. . Colloquium: Quantum annealing and analog quantum computation. Rev. Mod. Phys., 2008, 80(3): 1061
https://doi.org/10.1103/RevModPhys.80.1061
45 R. Elliott S. , Franz M. . Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys., 2015, 87(1): 137
https://doi.org/10.1103/RevModPhys.87.137
46 Prada E. , San-Jose P. , W. A. de Moor M. , Geresdi A. , J. H. Lee E. , Klinovaja J. , Loss D. , Nygard J. , Aguado R. , P. Kouwenhoven L. . From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys., 2020, 2(10): 575
https://doi.org/10.1038/s42254-020-0228-y
47 Deutsch D. . Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A, 1985, 400(1818): 97
https://doi.org/10.1098/rspa.1985.0070
48 Deutsch D. , Jozsa R. . Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A, 1992, 439(1907): 553
https://doi.org/10.1098/rspa.1992.0167
49 Bernstein E.Vazirani U., Quantum complexity theory, in: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93, Association for Computing Machinery, New York, NY, USA, 1993, pp 11–20
50 Simon D., On the power of quantum computation, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, Santa Fe, NM, USA, 1994, pp 116–123
51 Cleve R. , Ekert A. , Macchiavello C. , Mosca M. . Quantum algorithms revisited. Proc. R. Soc. Lond. A, 1998, 454(1969): 339
https://doi.org/10.1098/rspa.1998.0164
52 Y. Kitaev A., Quantum measurements and the Abelian stabilizer problem, arXiv: quant-ph/9511026 (1995)
53 Jozsa R. . Quantum algorithms and the Fourier transform. Proc. R. Soc. Lond. A, 1998, 454(1969): 323
https://doi.org/10.1098/rspa.1998.0163
54 K. Grover L., A fast quantum mechanical algorithm for database search, in: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, 1996, pp 212–219
55 K. Grover L. . Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
https://doi.org/10.1103/PhysRevLett.79.325
56 H. Bennett C. , Bernstein E. , Brassard G. , Vazirani U. . Strengths and weaknesses of quantum computing. SIAM J. Comput., 1997, 26(5): 1510
https://doi.org/10.1137/S0097539796300933
57 Brassard G.Hoyer P., An exact quantum polynomial-time algorithm for Simon’s problem, in Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems, IEEE Comput. Soc, Ramat-Gan, Israel, 1997, pp 12–23
58 Bϕyer M. , Brassard G. , Høyer P. , Tapp A. . Tight bounds on quantum searching. Fortschr. Phys., 1998, 46(4−5): 493
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
59 Brassard G.Hϕyer P.Mosca M.Tapp A., Quantum amplitude amplification and estimation, in: Contemporary Mathematics, Vol. 305, edited by S. J. Lomonaco and H. E. Brandt, American Mathematical Society, Providence, Rhode Island, 2002, pp 53–74
60 K. Grover L. . Fixed-point quantum search. Phys. Rev. Lett., 2005, 95(15): 150501
https://doi.org/10.1103/PhysRevLett.95.150501
61 K. Grover L.Patel A.Tulsi T., Quantum algorithms with fixed points: The case of databas search, arXiv: quant-ph/0603132 (2006)
62 J. Yoder T. , H. Low G. , L. Chuang I. . Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett., 2014, 113(21): 210501
https://doi.org/10.1103/PhysRevLett.113.210501
63 Durr C.Hϕyer P., A quantum algorithm for finding the minimum, arXiv: quant-ph/9607014 (1996)
64 Novak E. . Quantum complexity of integration. J. Complexity, 2001, 17(1): 2
https://doi.org/10.1006/jcom.2000.0566
65 Brassard G.Hϕyer P.Tapp A., Quantum counting, in: International Colloquium on Automata, Languages, and Programming, Springer, 1998, pp 820–831
66 Dürr C. , Heiligman M. , Hϕyer P. , Mhalla M. . Quantum query complexity of some graph problems. SIAM J. Comput., 2006, 35(6): 1310
https://doi.org/10.1137/050644719
67 Ambainis A.Špalek R., Quantum algorithms for matching and network flows, in: Annual Symposium on Theoretical Aspects of Computer Science, Springer, 2006, pp 172–183
68 Farhi E. , Gutmann S. . Quantum computation and decision trees. Phys. Rev. A, 1998, 58(2): 915
https://doi.org/10.1103/PhysRevA.58.915
69 M. Childs A. , Farhi E. , Gutmann S. . An example of the difference between quantum and classical random walks. Quantum Inf. Process., 2002, 1(1/2): 35
https://doi.org/10.1023/A:1019609420309
70 M. Childs A.Cleve R.Deotto E.Farhi E.Gutmann S.A. Spielman D., Exponential algorithmic speedup by a quantum walk, in: Proceedings of the Thirty-fifth ACM Symposium on Theory of Computing - STOC ’03, ACM Press, San Diego, CA, USA, 2003, p. 59
71 Aharonov Y. , Davidovich L. , Zagury N. . Quantum random walks. Phys. Rev. A, 1993, 48(2): 1687
https://doi.org/10.1103/PhysRevA.48.1687
72 A. Meyer D. . From quantum cellular automata to quantum lattice gases. J. Stat. Phys., 1996, 85(5−6): 551
https://doi.org/10.1007/BF02199356
73 A. Meyer D. . On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A, 1996, 223(5): 337
https://doi.org/10.1016/S0375-9601(96)00745-1
74 Watrous J., Quantum simulations of classical random walks and undirected graph connectivity, in: Proceedings of Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No. 99CB36317), IEEE Comput. Soc, Atlanta, GA, USA, 1999, pp 180–187
75 Ashwin N.Ashvin V., Quantum walk on the line, arXiv: quant-ph/0010117 (2000)
76 Ambainis A.Bach E.Nayak A.Vishwanath A.Watrous J., One-dimensional quantum walks, in: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing - STOC ’01, ACM Press, Hersonissos, Greece, 2001, pp 37–49
77 Aharonov D.Ambainis A.Kempe J.Vazirani U., Quantum walks on graphs, in: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing - STOC ’01, ACM Press, Hersonissos, Greece, 2001, pp 50–59
78 Shenvi N. , Kempe J. , B. Whaley K. . Quantum random-walk search algorithm. Phys. Rev. A, 2003, 67(5): 052307
https://doi.org/10.1103/PhysRevA.67.052307
79 Ambainis A., Quantum walk algorithm for elementdistinctness, in: 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Rome, Italy, 2004, pp 22–31
80 Yaoyun S., Quantum lower bounds for the collision and the element distinctness problems, in: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, IEEE Comput. Soc, Vancouver, BC, Canada, 2002, pp 513–519
81 Ambainis A.Kempe J.Rivosh A., Coins make quantum walks faster, in: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, Society for Industrial and Applied Mathematics, Vancouver, British Columbia, 2005, pp 1099–1108
82 Szegedy M., Quantum speed-up of Markov chain based algorithms, in: 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Rome, Italy, 2004, pp 32–41
83 Magniez F.Nayak A.Roland J.Santha M., Search via quantum walk, in: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing - STOC ’07, ACM Press, San Diego, California, USA, 2007, p. 575
84 Ambainis A. . Quantum walks and their algorithmic applications. Int. J. Quant. Inf., 2003, 1(4): 507
https://doi.org/10.1142/S0219749903000383
85 Santha M., Quantum walk based search algorithms, in: Proceedings of the 5th International Conference on Theory and Applications of Models of Computation, TAMC’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp 31–46
86 Magniez F.Santha M.Szegedy M., Quantum algorithms for the triangle problem, in: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, Society for Industrial and Applied Mathematics, USA, 2005, pp 1109–1117
87 F. Magniez and A. Nayak, Quantum complexity of testing group commutativity, in: Proceedings of the 32nd International Conference on Automata, Languages and Programming, ICALP’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp 1312–1324
88 Lloyd S. . Universal quantum simulators. Science, 1996, 273(5278): 1073
https://doi.org/10.1126/science.273.5278.1073
89 Suzuki M. . Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A, 1990, 146(6): 319
https://doi.org/10.1016/0375-9601(90)90962-N
90 Suzuki M. . General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys., 1991, 32(2): 400
https://doi.org/10.1063/1.529425
91 Aharonov D.Ta-Shma A., Adiabatic quantum state generation and statistical zero knowledge, in: Proceedings of the Thirty-fifth ACM Symposium on Theory of Computing - STOC ’03, ACM Press, San Diego, CA, USA, 2003, p. 20
92 W. Berry D. , Ahokas G. , Cleve R. , C. Sanders B. . Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys., 2007, 270(2): 359
https://doi.org/10.1007/s00220-006-0150-x
93 M. Childs A.Kothari R., Simulating sparse Hamiltonians with star decompositions, in: Theory of Quantum Computation, Communication, and Cryptography, Vol. 6519, Springer, Berlin, Heidelberg, 2011, pp 94–103
94 M. Childs A. . On the relationship between continuous and discrete time quantum walk. Commun. Math. Phys., 2010, 294(2): 581
https://doi.org/10.1007/s00220-009-0930-1
95 M. Childs A. , W. Berry D. . Black-box Hamiltonian simulation and unitary implementation. Quantum Inf. Comput., 2012, 12(1&2): 29
https://doi.org/10.26421/QIC12.1-2-4
96 M. Childs A. , Wiebe N. . Hamiltonian simulation using linear combinations of unitary operations. Quantum Inf. Comput., 2012, 12(11&12): 901
https://doi.org/10.26421/QIC12.11-12-1
97 W. Berry D.M. Childs A.Cleve R.Kothari R.D. Somma R., Exponential improvement in precision for simulating sparse Hamiltonians, in: Proceedings of the 46th Annual ACM Symposium on Theory of Computing - STOC ’14, ACM Press, 2014, pp 283–292
98 W. Berry D. , M. Childs A. , Cleve R. , Kothari R. , D. Somma R. . Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett., 2015, 114(9): 090502
https://doi.org/10.1103/PhysRevLett.114.090502
99 W. Berry D.M. Childs A.Kothari R., Hamiltonian simulation with nearly optimal dependence on all parameters, in: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, IEEE, Berkeley, CA, USA, 2015, pp 792–809
100 H. Low G. , J. Yoder T. , L. Chuang I. . Methodology of resonant equiangular composite quantum gates. Phys. Rev. X, 2016, 6(4): 041067
https://doi.org/10.1103/PhysRevX.6.041067
101 H. Low G. , L. Chuang I. . Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett., 2017, 118(1): 010501
https://doi.org/10.1103/PhysRevLett.118.010501
102 H. Low G. , L. Chuang I. . Hamiltonian simulation by qubitization. Quantum, 2019, 3: 163
https://doi.org/10.22331/q-2019-07-12-163
103 H. Low G.L. Chuang I., Hamiltonian simulation by uniform spectral amplification, arXiv: 1707.05391 (2017)
104 Gilyen A.Su Y.H. Low G.Wiebe N., Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics, in: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp 193–204
105 M. Martyn J. , M. Rossi Z. , K. Tan A. , L. Chuang I. . Grand unification of quantum algorithms. PRX Quantum, 2021, 2(4): 040203
https://doi.org/10.1103/PRXQuantum.2.040203
106 M. Childs A. , Su Y. , C. Tran M. , Wiebe N. , Zhu S. . Theory of Trotter error with commutator scaling. Phys. Rev. X, 2021, 11(1): 011020
https://doi.org/10.1103/PhysRevX.11.011020
107 Lloyd S.Mohseni M.Rebentrost P., Quantum algorithms for supervised and unsupervised machine learning, arXiv: 1307.0411 (2013)
108 Lloyd S. , Mohseni M. , Rebentrost P. . Quantum principal component analysis. Nat. Phys., 2014, 10(9): 631
https://doi.org/10.1038/nphys3029
109 Rebentrost P. , Mohseni M. , Lloyd S. . Quantum support vector machine for big data classification. Phys. Rev. Lett., 2014, 113(13): 130503
https://doi.org/10.1103/PhysRevLett.113.130503
110 Wiebe N. , Braun D. , Lloyd S. . Quantum algorithm for data fitting. Phys. Rev. Lett., 2012, 109(5): 050505
https://doi.org/10.1103/PhysRevLett.109.050505
111 Biamonte J. , Wittek P. , Pancotti N. , Rebentrost P. , Wiebe N. , Lloyd S. . Quantum machine learning. Nature, 2017, 549(7671): 195
https://doi.org/10.1038/nature23474
112 Aaronson S. . Read the fine print. Nat. Phys., 2015, 11(4): 291
https://doi.org/10.1038/nphys3272
113 Tang E., A quantum-inspired classical algorithm for recommendation systems, in: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, ACM, Phoenix AZ USA, 2019, pp 217–228
114 Kerenidis I.Prakash A., Quantum recommendation systems, in: 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), Schloss Dagstuhl-Leibniz−Zentrum fuer Informatik, 2017
115 Tang E. . Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions. Phys. Rev. Lett., 2021, 127(6): 060503
https://doi.org/10.1103/PhysRevLett.127.060503
116 Gilyen A.Lloyd S.Tang E., Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension, arXiv: 1811.04909 (2018)
117 H. Chia N.H. Lin H.Wang C., Quantum-inspired sublinear classical algorithms for solving low-rank linear systems, arXiv: 1811.04852 (2018)
118 H. Chia N.Li T.H. Lin H.Wang C., Quantuminspired classical sublinear-time algorithm for solving low-rank semidefinite programming via sampling approaches, arXiv: 1901.03254 (2019)
119 S. Abrams D. , Lloyd S. . Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett., 1997, 79(13): 2586
https://doi.org/10.1103/PhysRevLett.79.2586
120 S. Abrams D. , Lloyd S. . Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett., 1999, 83(24): 5162
https://doi.org/10.1103/PhysRevLett.83.5162
121 Preskill J. . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
https://doi.org/10.22331/q-2018-08-06-79
122 Farhi E.Goldstone J.Gutmann S.Sipser M., Quantum computation by adiabatic evolution, arXiv: quant-ph/0001106 (2000)
123 Farhi E.Goldstone J.Gutmann S., A quantum approximate optimization algorithm, arXiv: 1411.4028 (2014)
124 Farhi E.Neven H., Classification with quantum neural networks on near term processors, arXiv: 1802.06002 (2018)
125 Havlíček V. , D. Corcoles A. , Temme K. , W. Harrow A. , Kandala A. , M. Chow J. , M. Gambetta J. . Supervised learning with quantum-enhanced feature spaces. Nature, 2019, 567(7747): 209
https://doi.org/10.1038/s41586-019-0980-2
126 Lloyd S. , Weedbrook C. . Quantum generative adversarial learning. Phys. Rev. Lett., 2018, 121(4): 040502
https://doi.org/10.1103/PhysRevLett.121.040502
127 L. Dallaire-Demers P. , Killoran N. . Quantum generative adversarial networks. Phys. Rev. A, 2018, 98(1): 012324
https://doi.org/10.1103/PhysRevA.98.012324
128 Wu Y. , S. Bao W. , Cao S. , Chen F. , C. Chen M. . et al.. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(18): 180501
https://doi.org/10.1103/PhysRevLett.127.180501
129 S. Zhong H. , Wang H. , H. Deng Y. , C. Chen M. , C. Peng L. . et al.. Quantum computational advantage using photons. Science, 2020, 370(6523): 1460
https://doi.org/10.1126/science.abe8770
130 Bauer B. , Bravyi S. , Motta M. , K. L. Chan G. . Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev., 2020, 120(22): 12685
https://doi.org/10.1021/acs.chemrev.9b00829
131 S. Emani P. , Warrell J. , Anticevic A. , Bekiranov S. , Gandal M. . et al.. Quantum computing at the frontiers of biological sciences. Nat. Methods, 2021, 18(7): 701
https://doi.org/10.1038/s41592-020-01004-3
132 Khoshaman A. , Vinci W. , Denis B. , Andriyash E. , Sadeghi H. , H. Amin M. . Quantum variational autoencoder. Quantum Sci. Technol., 2018, 4(1): 014001
https://doi.org/10.1088/2058-9565/aada1f
133 Temme K. , Bravyi S. , M. Gambetta J. . Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 2017, 119(18): 180509
https://doi.org/10.1103/PhysRevLett.119.180509
134 Li Y. , C. Benjamin S. . Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 2017, 7(2): 021050
https://doi.org/10.1103/PhysRevX.7.021050
135 Endo S. , Cai Z. , C. Benjamin S. , Yuan X. . Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn., 2021, 90(3): 032001
https://doi.org/10.7566/JPSJ.90.032001
136 Endo S. , C. Benjamin S. , Li Y. . Practical quantum error mitigation for near-future applications. Phys. Rev. X, 2018, 8(3): 031027
https://doi.org/10.1103/PhysRevX.8.031027
137 Strikis A. , Qin D. , Chen Y. , C. Benjamin S. , Li Y. . Learning-based quantum error mitigation. PRX Quantum, 2021, 2(4): 040330
https://doi.org/10.1103/PRXQuantum.2.040330
138 Buluta I. , Ashhab S. , Nori F. . Natural and artificial atoms for quantum computation. Rep. Prog. Phys., 2011, 74(10): 104401
https://doi.org/10.1088/0034-4885/74/10/104401
139 Hu L. , H. Wu S. , Cai W. , Ma Y. , Mu X. , Xu Y. , Wang H. , Song Y. , L. Deng D. , L. Zou C. , Sun L. . Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv., 2019, 5(1): eaav2761
https://doi.org/10.1126/sciadv.aav2761
140 P. Harrigan M. , J. Sung K. , Neeley M. , J. Satzinger K. , Arute F. . et al.. Quantum approximate optimization of nonplanar graph problems on a planar superconducting processor. Nat. Phys., 2021, 17(3): 332
https://doi.org/10.1038/s41567-020-01105-y
141 Yan B.Tan Z.Wei S.Jiang H.Wang W.Wang H.Luo L.Duan Q.Liu Y.Shi W.Fei Y.Meng X.Han Y.Shan Z.Chen J.Zhu X.Zhang C.Jin F.Li H.Song C.Wang Z.Ma Z.Wang H.L. Long G., Factoring integers with sublinear resources on a superconducting quantum processor, arXiv: 2212.12372 (2022)
142 A. Houck A. , E. Tureci H. , Koch J. . On-chip quantum simulation with superconducting circuits. Nat. Phys., 2012, 8(4): 292
https://doi.org/10.1038/nphys2251
143 D. Nation P. , R. Johansson J. , P. Blencowe M. , Nori F. . Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys., 2012, 84(1): 1
https://doi.org/10.1103/RevModPhys.84.1
144 Barends R. , Lamata L. , Kelly J. , Garcia-Alvarez L. , G. Fowler A. . et al.. Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun., 2015, 6(1): 7654
https://doi.org/10.1038/ncomms8654
145 Salathé Y. , Mondal M. , Oppliger M. , Heinsoo J. , Kurpiers P. , Potočnik A. , Mezzacapo A. , Las Heras U. , Lamata L. , Solano E. , Filipp S. , Wallraff A. . Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X, 2015, 5(2): 021027
https://doi.org/10.1103/PhysRevX.5.021027
146 K. Langford N. , Sagastizabal R. , Kounalakis M. , Dickel C. , Bruno A. , Luthi F. , J. Thoen D. , Endo A. , DiCarlo L. . Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling. Nat. Commun., 2017, 8(1): 1715
https://doi.org/10.1038/s41467-017-01061-x
147 W. Wang D. , Song C. , Feng W. , Cai H. , Xu D. , Deng H. , Li H. , Zheng D. , Zhu X. , Wang H. , Y. Zhu S. , O. Scully M. . Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits. Nat. Phys., 2019, 15(4): 382
https://doi.org/10.1038/s41567-018-0400-9
148 J. Kollár A. , Fitzpatrick M. , A. Houck A. . Hyperbolic lattices in circuit quantum electrodynamics. Nature, 2019, 571(7763): 45
https://doi.org/10.1038/s41586-019-1348-3
149 S. Wang C. , C. Curtis J. , J. Lester B. , Zhang Y. , Y. Gao Y. , Freeze J. , S. Batista V. , H. Vaccaro P. , L. Chuang I. , Frunzio L. , Jiang L. , M. Girvin S. , J. Schoelkopf R. . Efficient multiphoton sampling of molecular vibronic spectra on a superconducting bosonic processor. Phys. Rev. X, 2020, 10(2): 021060
https://doi.org/10.1103/PhysRevX.10.021060
150 Gong M. , Wang S. , Zha C. , C. Chen M. , L. Huang H. . et al.. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science, 2021, 372(6545): 948
https://doi.org/10.1126/science.abg7812
151 D. King A. , Suzuki S. , Raymond J. , Zucca A. , Lanting T. . et al.. Coherent quantum annealing in a programmable 2000 qubit Ising chain. Nat. Phys., 2022, 18(11): 1324
https://doi.org/10.1038/s41567-022-01741-6
152 J. J. O’Malley P. , Babbush R. , D. Kivlichan I. , Romero J. , R. McClean J. . et al.. Scalable quantum simulation of molecular energies. Phys. Rev. X, 2016, 6(3): 031007
https://doi.org/10.1103/PhysRevX.6.031007
153 Kandala A. , Mezzacapo A. , Temme K. , Takita M. , Brink M. , M. Chow J. , M. Gambetta J. . Hardware efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
https://doi.org/10.1038/nature23879
154 I. Colless J. , V. Ramasesh V. , Dahlen D. , S. Blok M. , E. Kimchi-Schwartz M. , R. McClean J. , Carter J. , A. De Jong W. , Siddiqi I. . Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 2018, 8(1): 011021
https://doi.org/10.1103/PhysRevX.8.011021
155 Arute F. , Arya K. , Babbush R. , Bacon D. , C. Bardin J. . et al.. Hartree−Fock on a superconducting qubit quantum computer. Science, 2020, 369(6507): 1084
https://doi.org/10.1126/science.abb9811
156 Roushan P. , Neill C. , Tangpanitanon J. , M. Bastidas V. , Megrant A. . et al.. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science, 2017, 358(6367): 1175
https://doi.org/10.1126/science.aao1401
157 Ma R. , Saxberg B. , Owens C. , Leung N. , Lu Y. , Simon J. , I. Schuster D. . A dissipatively stabilized Mott insulator of photons. Nature, 2019, 566(7742):
https://doi.org/10.1038/s41586-019-0897-9
158 Xu K. , H. Sun Z. , Liu W. , R. Zhang Y. , Li H. , Dong H. , Ren W. , Zhang P. , Nori F. , Zheng D. , Fan H. , Wang H. . Probing dynamical phase transitions with a superconducting quantum simulator. Sci. Adv., 2020, 6(25): eaba4935
https://doi.org/10.1126/sciadv.aba4935
159 Guo Q. , Cheng C. , H. Sun Z. , Song Z. , Li H. , Wang Z. , Ren W. , Dong H. , Zheng D. , R. Zhang Y. , Mondaini R. , Fan H. , Wang H. . Observation of energy-resolved many-body localization. Nat. Phys., 2021, 17(2): 234
https://doi.org/10.1038/s41567-020-1035-1
160 Mi X. , Ippoliti M. , Quintana C. , Greene A. , Chen Z. . et al.. Time-crystalline eigenstate order on a quantum processor. Nature, 2022, 601(7894): 531
https://doi.org/10.1038/s41586-021-04257-w
161 Zhang X. , Jiang W. , Deng J. , Wang K. , Chen J. , Zhang P. , Ren W. , Dong H. , Xu S. , Gao Y. , Jin F. , Zhu X. , Guo Q. , Li H. , Song C. , V. Gorshkov A. , Iadecola T. , Liu F. , X. Gong Z. , Wang Z. , L. Deng D. , Wang H. . Digital quantum simulation of Floquet symmetry-protected topological phases. Nature, 2022, 607(7919): 468
https://doi.org/10.1038/s41586-022-04854-3
162 Forn-Díaz P. , J. Garcia-Ripoll J. , Peropadre B. , L. Orgiazzi J. , A. Yurtalan M. , Belyansky R. , M. Wilson C. , Lupascu A. . Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys., 2017, 13(1): 39
https://doi.org/10.1038/nphys3905
163 Yoshihara F. , Fuse T. , Ashhab S. , Kakuyanagi K. , Saito S. , Semba K. . Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys., 2017, 13(1): 44
https://doi.org/10.1038/nphys3906
164 J. Bosman S. , F. Gely M. , Singh V. , Bruno A. , Bothner D. , A. Steele G. . Multi-mode ultra-strong coupling in circuit quantum electrodynamics. npj Quantum Inf., 2017, 3: 46
https://doi.org/10.1038/s41534-017-0046-y
165 Frisk Kockum A. , Miranowicz A. , De Liberato S. , Savasta S. , Nori F. . Ultrastrong coupling between light and matter. Nat. Rev. Phys., 2019, 1(1): 19
https://doi.org/10.1038/s42254-018-0006-2
166 Wang W. , Wu Y. , Ma Y. , Cai W. , Hu L. , Mu X. , Xu Y. , J. Chen Z. , Wang H. , P. Song Y. , Yuan H. , L. Zou C. , M. Duan L. , Sun L. . Heisenberg-limited singlemode quantum metrology in a superconducting circuit. Nat. Commun., 2019, 10(1): 4382
https://doi.org/10.1038/s41467-019-12290-7
167 Xu K. , R. Zhang Y. , H. Sun Z. , Li H. , Song P. , Xiang Z. , Huang K. , Li H. , H. Shi Y. , T. Chen C. , Song X. , Zheng D. , Nori F. , Wang H. , Fan H. . Metrological characterization of non-Gaussian entangled states of superconducting qubits. Phys. Rev. Lett., 2022, 128(15): 150501
https://doi.org/10.1103/PhysRevLett.128.150501
168 Potočnik A. , Bargerbos A. , A. Y. N. Schroder F. , A. Khan S. , C. Collodo M. , Gasparinetti S. , Salathe Y. , Creatore C. , Eichler C. , E. Türeci H. , W. Chin A. , Wallraff A. . Studying light-harvesting models with superconducting circuits. Nat. Commun., 2018, 9(1): 904
https://doi.org/10.1038/s41467-018-03312-x
169 Q. You J. , Nori F. . Atomic physics and quantum optics using superconducting circuits. Nature, 2011, 474(7353): 589
https://doi.org/10.1038/nature10122
170 Paik H. , I. Schuster D. , S. Bishop L. , Kirchmair G. , Catelani G. , P. Sears A. , R. Johnson B. , J. Reagor M. , Frunzio L. , I. Glazman L. , M. Girvin S. , H. Devoret M. , J. Schoelkopf R. . Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett., 2011, 107(24): 240501
https://doi.org/10.1103/PhysRevLett.107.240501
171 Barends R. , Kelly J. , Megrant A. , Sank D. , Jeffrey E. , Chen Y. , Yin Y. , Chiaro B. , Mutus J. , Neill C. , O’Malley P. , Roushan P. , Wenner J. , C. White T. , N. Cleland A. , M. Martinis J. . Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett., 2013, 111(8): 080502
https://doi.org/10.1103/PhysRevLett.111.080502
172 Zhong Y. , S. Chang H. , Bienfait A. , Dumur E. , H. Chou M. , R. Conner C. , Grebel J. , G. Povey R. , Yan H. , I. Schuster D. , N. Cleland A. . Deterministic multi-qubit entanglement in a quantum network. Nature, 2021, 590(7847): 571
https://doi.org/10.1038/s41586-021-03288-7
173 H. Devoret M. , M. Martinis J. . Implementing qubits with superconducting integrated circuits. Quantum Inf. Process., 2004, 3(1−5): 163
https://doi.org/10.1007/s11128-004-3101-5
174 Q. You J. , Nori F. . Superconducting circuits and quantum information. Phys. Today, 2005, 58(11): 42
https://doi.org/10.1063/1.2155757
175 Clarke J. , K. Wilhelm F. . Superconducting quantum bits. Nature, 2008, 453(7198): 1031
https://doi.org/10.1038/nature07128
176 J. Schoelkopf R. , M. Girvin S. . Wiring up quantum systems. Nature, 2008, 451(7179): 664
https://doi.org/10.1038/451664a
177 L. Xiang Z. , Ashhab S. , Q. You J. , Nori F. . Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 2013, 85(2): 623
https://doi.org/10.1103/RevModPhys.85.623
178 M. Girvin S., Circuit QED: Superconducting Qubits Coupled to Microwave Photons, Oxford University Press, 2014
179 Vool U. , Devoret M. . Introduction to quantum electromagnetic circuits. Int. J. Circuit Theory Appl., 2017, 45(7): 897
https://doi.org/10.1002/cta.2359
180 Gu X. , F. Kockum A. , Miranowicz A. , Liu Y. , Nori F. . Microwave photonics with superconducting quantum circuits. Phys. Rep., 2017, 718−719: 1
https://doi.org/10.1016/j.physrep.2017.10.002
181 M. Gambetta J. , M. Chow J. , Steffen M. . Building logical qubits in a superconducting quantum computing system. npj Quantum Inf., 2017, 3: 2
https://doi.org/10.1038/s41534-016-0004-0
182 Wendin G. . Quantum information processing with superconducting circuits: A review. Rep. Prog. Phys., 2017, 80(10): 106001
https://doi.org/10.1088/1361-6633/aa7e1a
183 Krantz P. , Kjaergaard M. , Yan F. , P. Orlando T. , Gustavsson S. , D. Oliver W. . A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev., 2019, 6(2): 021318
https://doi.org/10.1063/1.5089550
184 F. Kockum A.Nori F., Quantum bits with Josephson junctions, in: Fundamentals and Frontiers of the Josephson Effect, edited by F. Tafuri, Springer International Publishing, Cham, 2019, pp 703–741
185 Kjaergaard M. , E. Schwartz M. , Braumuller J. , Krantz P. , I. J. Wang J. , Gustavsson S. , D. Oliver W. . Superconducting qubits: Current state of play. Annu. Rev. Condens. Matter Phys., 2020, 11(1): 369
https://doi.org/10.1146/annurev-conmatphys-031119-050605
186 L. Huang H. , Wu D. , Fan D. , Zhu X. . Superconducting quantum computing: A review. Sci. China Inf. Sci., 2020, 63(8): 180501
https://doi.org/10.1007/s11432-020-2881-9
187 Blais A. , L. Grimsmo A. , Girvin S. , Wallraff A. . Circuit quantum electrodynamics. Rev. Mod. Phys., 2021, 93(2): 025005
https://doi.org/10.1103/RevModPhys.93.025005
188 E. Rasmussen S. , S. Christensen K. , P. Pedersen S. , B. Kristensen L. , Bækkegaard T. . N. J. S. Loft, and N. T. Zinner, Superconducting circuit companion — An introduction with worked examples. PRX Quantum, 2021, 2(4): 040204
https://doi.org/10.1103/PRXQuantum.2.040204
189 P. De Leon N. , M. Itoh K. , Kim D. , K. Mehta K. , E. Northup T. , Paik H. , S. Palmer B. , Samarth N. , Sangtawesin S. , W. Steuerman D. . Materials challenges and opportunities for quantum computing hardware. Science, 2021, 372(6539): eabb2823
https://doi.org/10.1126/science.abb2823
190 Kwon S. , Tomonaga A. , L. Bhai G. , J. Devitt S. , Tsai J.-S. . Gate-based superconducting quantum computing. J. Appl. Phys., 2021, 129(4): 041102
https://doi.org/10.1063/5.0029735
191 H. Devoret M., Quantum Fluctuations in Electrical Circuits, Les Houches Session LXIII, Oxford University Press, 1997
192 Tinkham M., Introduction to Superconductivity, Courier Corporation, 2004
193 Bouchiat V. , Vion D. , Joyez P. , Esteve D. , H. Devoret M. . Quantum coherence with a single Cooper pair. Phys. Scr., 1998, T76(1): 165
https://doi.org/10.1238/Physica.Topical.076a00165
194 P. Orlando T. , E. Mooij J. , Tian L. , H. van der Wal C. , S. Levitov L. , Lloyd S. , J. Mazo J. . Superconducting persistent-current qubit. Phys. Rev. B, 1999, 60(22): 15398
https://doi.org/10.1103/PhysRevB.60.15398
195 E. Mooij J. , P. Orlando T. , Levitov L. , Tian L. , H. van der Wal C. , Lloyd S. . Josephson persistent-current qubit. Science, 1999, 285(5430): 1036
https://doi.org/10.1126/science.285.5430.1036
196 M. Martinis J. . Superconducting phase qubits. Quantum Inf. Process., 2009, 8(2−3): 81
https://doi.org/10.1007/s11128-009-0105-1
197 H. van der Wal C. , C. J. ter Haar A. , K. Wilhelm F. , N. Schouten R. , J. P. M. Harmans C. , P. Orlando T. , Lloyd S. , E. Mooij J. . Quantum superposition of macroscopic persistent-current states. Science, 2000, 290(5492): 773
https://doi.org/10.1126/science.290.5492.773
198 R. Friedman J. , Patel V. , Chen W. , K. Tolpygo S. , E. Lukens J. . Quantum superposition of distinct macroscopic states. Nature, 2000, 406(6791): 43
https://doi.org/10.1038/35017505
199 M. Martinis J. , Nam S. , Aumentado J. , Urbina C. . Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett., 2002, 89(11): 117901
https://doi.org/10.1103/PhysRevLett.89.117901
200 Yu Y. , Han S. , Chu X. , I. Chu S. , Wang Z. . Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science, 2002, 296(5569): 889
https://doi.org/10.1126/science.1069452
201 Yamamoto T. , A. Pashkin Y. , Astafiev O. , Nakamura Y. , S. Tsai J. . Demonstration of conditional gate operation using superconducting charge qubits. Nature, 2003, 425(6961): 941
https://doi.org/10.1038/nature02015
202 Chiorescu I. , Nakamura Y. , J. P. M. Harmans C. , E. Mooij J. . Coherent quantum dynamics of a superconducting flux qubit. Science, 2003, 299(5614): 1869
https://doi.org/10.1126/science.1081045
203 J. Berkley A. , Xu H. , C. Ramos R. , A. Gubrud M. , W. Strauch F. , R. Johnson P. , R. Anderson J. , J. Dragt A. , J. Lobb C. , C. Wellstood F. . Entangled macroscopic quantum states in two superconducting qubits. Science, 2003, 300(5625): 1548
https://doi.org/10.1126/science.1084528
204 Wallraff A. , I. Schuster D. , Blais A. , Frunzio L. , S. Huang R. , Majer J. , Kumar S. , M. Girvin S. , J. Schoelkopf R. . Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 2004, 431(7005): 162
https://doi.org/10.1038/nature02851
205 D. Oliver W. , Yu Y. , C. Lee J. , K. Berggren K. , S. Levitov L. , P. Orlando T. . Mach−Zehnder interferometry in a strongly driven superconducting qubit. Science, 2005, 310(5754): 1653
https://doi.org/10.1126/science.1119678
206 Steffen M. , Ansmann M. , C. Bialczak R. , Katz N. , Lucero E. , McDermott R. , Neeley M. , M. Weig E. , N. Cleland A. , M. Martinis J. . Measurement of the entanglement of two superconducting qubits via state tomography. Science, 2006, 313(5792): 1423
https://doi.org/10.1126/science.1130886
207 I. Schuster D. , A. Houck A. , A. Schreier J. , Wallraff A. , M. Gambetta J. , Blais A. , Frunzio L. , Majer J. , Johnson B. , H. Devoret M. , M. Girvin S. , J. Schoelkopf R. . Resolving photon number states in a superconducting circuit. Nature, 2007, 445(7127): 515
https://doi.org/10.1038/nature05461
208 A. Sillanpää M. , I. Park J. , W. Simmonds R. . Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature, 2007, 449(7161): 438
https://doi.org/10.1038/nature06124
209 Koch J. , M. Yu T. , Gambetta J. , A. Houck A. , I. Schuster D. , Majer J. , Blais A. , H. Devoret M. , M. Girvin S. , J. Schoelkopf R. . Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4): 042319
https://doi.org/10.1103/PhysRevA.76.042319
210 Q. You J. , Hu X. , Ashhab S. , Nori F. . Low-decoherence flux qubit. Phys. Rev. B, 2007, 75(14): 140515
https://doi.org/10.1103/PhysRevB.75.140515
211 A. Schreier J. , A. Houck A. , Koch J. , I. Schuster D. , R. Johnson B. , M. Chow J. , M. Gambetta J. , Majer J. , Frunzio L. , H. Devoret M. , M. Girvin S. , J. Schoelkopf R. . Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B, 2008, 77(18): 180502
https://doi.org/10.1103/PhysRevB.77.180502
212 Braumüller J. , Sandberg M. , R. Vissers M. , Schneider A. , Schlor S. , Grunhaupt L. , Rotzinger H. , Marthaler M. , Lukashenko A. , Dieter A. , V. Ustinov A. , Weides M. , P. Pappas D. . Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment. Appl. Phys. Lett., 2016, 108(3): 032601
https://doi.org/10.1063/1.4940230
213 Hutchings M. , Hertzberg J. , Liu Y. , Bronn N. , Keefe G. , Brink M. , M. Chow J. , Plourde B. . Tunable superconducting qubits with flux-independent coherence. Phys. Rev. Appl., 2017, 8(4): 044003
https://doi.org/10.1103/PhysRevApplied.8.044003
214 E. Manucharyan V. , Koch J. , I. Glazman L. , H. Devoret M. . Fluxonium: Single Cooper-pair circuit free of charge offsets. Science, 2009, 326(5949): 113
https://doi.org/10.1126/science.1175552
215 B. Nguyen L. , H. Lin Y. , Somoroff A. , Mencia R. , Grabon N. , E. Manucharyan V. . High-coherence fluxonium qubit. Phys. Rev. X, 2019, 9(4): 041041
https://doi.org/10.1103/PhysRevX.9.041041
216 Zhang H. , Chakram S. , Roy T. , Earnest N. , Lu Y. , Huang Z. , Weiss D. , Koch J. , I. Schuster D. . Universal fast-flux control of a coherent, low-frequency qubit. Phys. Rev. X, 2021, 11(1): 011010
https://doi.org/10.1103/PhysRevX.11.011010
217 Bao F. , Deng H. , Ding D. , Gao R. , Gao X. . et al.. Fluxonium: An alternative qubit platform for high-fidelity operations. Phys. Rev. Lett., 2022, 129(1): 010502
https://doi.org/10.1103/PhysRevLett.129.010502
218 Steffen M. , Kumar S. , P. DiVincenzo D. , R. Rozen J. , A. Keefe G. , B. Rothwell M. , B. Ketchen M. . High-coherence hybrid superconducting qubit. Phys. Rev. Lett., 2010, 105(10): 100502
https://doi.org/10.1103/PhysRevLett.105.100502
219 Yan F. , Gustavsson S. , Kamal A. , Birenbaum J. , P. Sears A. . et al.. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun., 2016, 7(1): 12964
https://doi.org/10.1038/ncomms12964
220 Ku J. , Xu X. , Brink M. , C. McKay D. , B. Hertzberg J. , H. Ansari M. , Plourde B. . Suppression of unwanted ZZ interactions in a hybrid two-qubit system. Phys. Rev. Lett., 2020, 125(20): 200504
https://doi.org/10.1103/PhysRevLett.125.200504
221 Yan F.Sung Y.Krantz P.Kamal A.K. Kim D.L. Yoder J.P. Orlando T.Gustavsson S.D. Oliver W., Engineering framework for optimizing superconducting qubit designs, arXiv: 2006.04130 (2020)
222 Gyenis A. , S. Mundada P. , Di Paolo A. , M. Hazard T. , You X. , I. Schuster D. , Koch J. , Blais A. , A. Houck A. . Experimental realization of a protected superconducting circuit derived from the 0−π qubit. PRX Quantum, 2021, 2(1): 010339
https://doi.org/10.1103/PRXQuantum.2.010339
223 Q. You J. , Nori F. . Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B, 2003, 68: 064509
https://doi.org/10.1103/PhysRevB.68.064509
224 Blais A. , S. Huang R. , Wallraff A. , M. Girvin S. , J. Schoelkopf R. . Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
https://doi.org/10.1103/PhysRevA.69.062320
225 D. Reed M. , R. Johnson B. , A. Houck A. , Di-Carlo L. , M. Chow J. , I. Schuster D. , Frunzio L. , J. Schoelkopf R. . Fast reset and suppressing spontaneous emission of a superconducting qubit. Appl. Phys. Lett., 2010, 96(20): 203110
https://doi.org/10.1063/1.3435463
226 Jeffrey E. , Sank D. , Mutus J. , White T. , Kelly J. , Barends R. , Chen Y. , Chen Z. , Chiaro B. , Dunsworth A. , Megrant A. , J. J. O’Malley P. , Neill C. , Roushan P. , Vainsencher A. , Wenner J. , N. Cleland A. , M. Martinis J. . Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett., 2014, 112(19): 190504
https://doi.org/10.1103/PhysRevLett.112.190504
227 T. Bronn N. , Liu Y. , B. Hertzberg J. , D. Corcoles A. , A. Houck A. , M. Gambetta J. , M. Chow J. . Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics. Appl. Phys. Lett., 2015, 107(17): 172601
https://doi.org/10.1063/1.4934867
228 Walter T. , Kurpiers P. , Gasparinetti S. , Magnard P. , Potočnik A. , Salathe Y. , Pechal M. , Mondal M. , Oppliger M. , Eichler C. , Wallraff A. . Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl., 2017, 7(5): 054020
https://doi.org/10.1103/PhysRevApplied.7.054020
229 Yurke B. , R. Corruccini L. , G. Kaminsky P. , W. Rupp L. , D. Smith A. , H. Silver A. , W. Simon R. , A. Whittaker E. . Observation of parametric amplification and deamplification in a Josephson parametric amplifier. Phys. Rev. A, 1989, 39(5): 2519
https://doi.org/10.1103/PhysRevA.39.2519
230 Vijay R. , H. Devoret M. , Siddiqi I. . The Josephson bifurcation amplifier. Rev. Sci. Instrum., 2009, 80(11): 111101
https://doi.org/10.1063/1.3224703
231 Roy A. , Devoret M. . Introduction to parametric amplification of quantum signals with Josephson circuits. C. R. Phys., 2016, 17(7): 740
https://doi.org/10.1016/j.crhy.2016.07.012
232 Siddiqi I. , Vijay R. , Pierre F. , M. Wilson C. , Metcalfe M. , Rigetti C. , Frunzio L. , H. Devoret M. . RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett., 2004, 93(20): 207002
https://doi.org/10.1103/PhysRevLett.93.207002
233 A. Castellanos-Beltran M. , D. Irwin K. , C. Hilton G. , R. Vale L. , W. Lehnert K. . Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys., 2008, 4(12): 929
https://doi.org/10.1038/nphys1090
234 Yamamoto T. , Inomata K. , Watanabe M. , Matsuba K. , Miyazaki T. , D. Oliver W. , Nakamura Y. , S. Tsai J. . Flux-driven Josephson parametric amplifier. Appl. Phys. Lett., 2008, 93(4): 042510
https://doi.org/10.1063/1.2964182
235 R. Johansson J. , Johansson G. , M. Wilson C. , Nori F. . Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett., 2009, 103(14): 147003
https://doi.org/10.1103/PhysRevLett.103.147003
236 Bergeal N. , Schackert F. , Metcalfe M. , Vijay R. , E. Manucharyan V. , Frunzio L. , E. Prober D. , J. Schoelkopf R. , M. Girvin S. , H. Devoret M. . Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature, 2010, 465(7294): 64
https://doi.org/10.1038/nature09035
237 Macklin C. , O’Brien K. , Hover D. , E. Schwartz M. , Bolkhovsky V. , Zhang X. , D. Oliver W. , Siddiqi I. . A near-quantum-limited Josephson traveling-wave parametric amplifier. Science, 2015, 350(6258): 307
https://doi.org/10.1126/science.aaa8525
238 Chen Y. , Sank D. , O’Malley P. , White T. , Barends R. . et al.. Multiplexed dispersive readout of superconducting phase qubits. Appl. Phys. Lett., 2012, 101(18): 182601
https://doi.org/10.1063/1.4764940
239 S. Elder S. , S. Wang C. , Reinhold P. , T. Hann C. , S. Chou K. , J. Lester B. , Rosenblum S. , Frunzio L. , Jiang L. , J. Schoelkopf R. . High-fidelity measurement of qubits encoded in multilevel superconducting circuits. Phys. Rev. X, 2020, 10(1): 011001
https://doi.org/10.1103/PhysRevX.10.011001
240 Opremcak A. , V. Pechenezhskiy I. , Howington C. , G. Christensen B. , A. Beck M. . et al.. Measurement of a superconducting qubit with a microwave photon counter. Science, 2018, 361(6408): 1239
https://doi.org/10.1126/science.aat4625
241 Ristè D. , G. van Leeuwen J. , S. Ku H. , W. Lehnert K. , DiCarlo L. . Initialization by measurement of a superconducting quantum bit circuit. Phys. Rev. Lett., 2012, 109(5): 050507
https://doi.org/10.1103/PhysRevLett.109.050507
242 Geerlings K. , Leghtas Z. , M. Pop I. , Shankar S. , Frunzio L. , J. Schoelkopf R. , Mirrahimi M. , H. Devoret M. . Demonstrating a driven reset protocol for a superconducting qubit. Phys. Rev. Lett., 2013, 110(12): 120501
https://doi.org/10.1103/PhysRevLett.110.120501
243 Magnard P. , Kurpiers P. , Royer B. , Walter T. , C. Besse J. , Gasparinetti S. , Pechal M. , Heinsoo J. , Storz S. , Blais A. , Wallraff A. . Fast and unconditional all-microwave reset of a superconducting qubit. Phys. Rev. Lett., 2018, 121(6): 060502
https://doi.org/10.1103/PhysRevLett.121.060502
244 McEwen M. , Kafri D. , Chen Z. , Atalaya J. , Satzinger K. . et al.. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun., 2021, 12(1): 1761
https://doi.org/10.1038/s41467-021-21982-y
245 Zhou Y. , Zhang Z. , Yin Z. , Huai S. , Gu X. , Xu X. , Allcock J. , Liu F. , Xi G. , Yu Q. , Zhang H. , Zhang M. , Li H. , Song X. , Wang Z. , Zheng D. , An S. , Zheng Y. , Zhang S. . Rapid and unconditional parametric reset protocol for tunable superconducting qubits. Nat. Commun., 2021, 12(1): 5924
https://doi.org/10.1038/s41467-021-26205-y
246 Motzoi F. , M. Gambetta J. , Rebentrost P. , K. Wilhelm F. . Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett., 2009, 103(11): 110501
https://doi.org/10.1103/PhysRevLett.103.110501
247 M. Gambetta J. , Motzoi F. , T. Merkel S. , K. Wilhelm F. . Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A, 2011, 83(1): 012308
https://doi.org/10.1103/PhysRevA.83.012308
248 C. McKay D. , J. Wood C. , Sheldon S. , M. Chow J. , M. Gambetta J. . Efficient Z gates for quantum computing. Phys. Rev. A, 2017, 96(2): 022330
https://doi.org/10.1103/PhysRevA.96.022330
249 Leonard E. , A. Beck M. , Nelson J. , Christensen B. , Thorbeck T. . et al.. Digital coherent control of a superconducting qubit. Phys. Rev. Appl., 2019, 11(1): 014009
https://doi.org/10.1103/PhysRevApplied.11.014009
250 Majer J. , M. Chow J. , M. Gambetta J. , Koch J. , R. Johnson B. , A. Schreier J. , Frunzio L. , I. Schuster D. , A. Houck A. , Wallraff A. , Blais A. , H. Devoret M. , M. Girvin S. , J. Schoelkopf R. . Coupling superconducting qubits via a cavity bus. Nature, 2007, 449(7161): 443
https://doi.org/10.1038/nature06184
251 C. Bialczak R. , Ansmann M. , Hofheinz M. , Lucero E. , Neeley M. , D. O’Connell A. , Sank D. , Wang H. , Wenner J. , Steffen M. , N. Cleland A. , M. Martinis J. . Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys., 2010, 6(6): 409
https://doi.org/10.1038/nphys1639
252 W. Strauch F. , R. Johnson P. , J. Dragt A. , J. Lobb C. , R. Anderson J. , C. Wellstood F. . Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett., 2003, 91(16): 167005
https://doi.org/10.1103/PhysRevLett.91.167005
253 DiCarlo L. , M. Chow J. , M. Gambetta J. , S. Bishop L. , R. Johnson B. , I. Schuster D. , Majer J. , Blais A. , Frunzio L. , M. Girvin S. , J. Schoelkopf R. . Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 2009, 460(7252): 240
https://doi.org/10.1038/nature08121
254 M. Martinis J. , R. Geller M. . Fast adiabatic qubit gates using only σz control. Phys. Rev. A, 2014, 90(2): 022307
https://doi.org/10.1103/PhysRevA.90.022307
255 Barends R. , Quintana C. , Petukhov A. , Chen Y. , Kafri D. . et al.. Diabatic gates for frequency-tunable superconducting qubits. Phys. Rev. Lett., 2019, 123(21): 210501
https://doi.org/10.1103/PhysRevLett.123.210501
256 Li S. , D. Castellano A. , Wang S. , Wu Y. , Gong M. . et al.. Realisation of highfidelity nonadiabatic CZ gates with superconducting qubits. npj Quantum Inf., 2019, 5: 84
https://doi.org/10.1038/s41534-019-0202-7
257 Rol M. , Battistel F. , Malinowski F. , Bultink C. , Tarasinski B. , Vollmer R. , Haider N. , Muthusubramanian N. , Bruno A. , M. Terhal B. , DiCarlo L. . Fast, high-fidelity conditionalphase gate exploiting leakage interference in weakly anharmonic superconducting qubits. Phys. Rev. Lett., 2019, 123(12): 120502
https://doi.org/10.1103/PhysRevLett.123.120502
258 M. Chow J. , D. Corcoles A. , M. Gambetta J. , Rigetti C. , R. Johnson B. , A. Smolin J. , R. Rozen J. , A. Keefe G. , B. Rothwell M. , B. Ketchen M. , Steffen M. . Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys. Rev. Lett., 2011, 107(8): 080502
https://doi.org/10.1103/PhysRevLett.107.080502
259 Sheldon S. , Magesan E. , M. Chow J. , M. Gambetta J. . Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A, 2016, 93(6): 060302
https://doi.org/10.1103/PhysRevA.93.060302
260 Paik H. , Mezzacapo A. , Sandberg M. , McClure D. , Abdo B. , Corcoles A. , Dial O. , Bogorin D. , Plourde B. , Steffen M. , W. Cross A. , M. Gambetta J. , M. Chow J. . Experimental demonstration of a resonatorinduced phase gate in a multiqubit circuit-QED system. Phys. Rev. Lett., 2016, 117(25): 250502
https://doi.org/10.1103/PhysRevLett.117.250502
261 C. McKay D. , Filipp S. , Mezzacapo A. , Magesan E. , M. Chow J. , M. Gambetta J. . Universal gate for fixed-frequency qubits via a tunable bus. Phys. Rev. Appl., 2016, 6(6): 064007
https://doi.org/10.1103/PhysRevApplied.6.064007
262 A. Caldwell S. , Didier N. , A. Ryan C. , A. Sete E. , Hudson A. . et al.. Parametrically activated entangling gates using transmon qubits. Phys. Rev. Appl., 2018, 10(3): 034050
https://doi.org/10.1103/PhysRevApplied.10.034050
263 Song C. , Xu K. , Li H. , R. Zhang Y. , Zhang X. , Liu W. , Guo Q. , Wang Z. , Ren W. , Hao J. , Feng H. , Fan H. , Zheng D. , W. Wang D. , Wang H. , Y. Zhu S. . Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science, 2019, 365(6453): 574
https://doi.org/10.1126/science.aay0600
264 Hime T. , A. Reichardt P. , L. T. Plourde B. , L. Robertson T. , E. Wu C. , V. Ustinov A. , Clarke J. . Solid-state qubits with current-controlled coupling. Science, 2006, 314(5804): 1427
https://doi.org/10.1126/science.1134388
265 O. Niskanen A. , Harrabi K. , Yoshihara F. , Nakamura Y. , Lloyd S. , S. Tsai J. . Quantum coherent tunable coupling of superconducting qubits. Science, 2007, 316(5825): 723
https://doi.org/10.1126/science.1141324
266 H. W. van der Ploeg S. , Izmalkov A. , M. van den Brink A. , Hubner U. , Grajcar M. , Il’ichev E. , G. Meyer H. , M. Zagoskin A. . Controllable coupling of superconducting flux qubits. Phys. Rev. Lett., 2007, 98(5): 057004
https://doi.org/10.1103/PhysRevLett.98.057004
267 Harris R. , J. Berkley A. , W. Johnson M. , Bunyk P. , Govorkov S. , C. Thom M. , Uchaikin S. , B. Wilson A. , Chung J. , Holtham E. , D. Biamonte J. , Y. Smirnov A. , H. S. Amin M. , M. van den Brink A. . Sign- and magnitude-tunable coupler for superconducting flux qubits. Phys. Rev. Lett., 2007, 98(17): 177001
https://doi.org/10.1103/PhysRevLett.98.177001
268 Yamamoto T. , Watanabe M. , Q. You J. , A. Pashkin Y. , Astafiev O. , Nakamura Y. , Nori F. , S. Tsai J. . Spectroscopy of superconducting charge qubits coupled by a Josephson inductance. Phys. Rev. B, 2008, 77(6): 064505
https://doi.org/10.1103/PhysRevB.77.064505
269 Chen Y. , Neill C. , Roushan P. , Leung N. , Fang M. . et al.. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett., 2014, 113(22): 220502
https://doi.org/10.1103/PhysRevLett.113.220502
270 J. Weber S. , O. Samach G. , Hover D. , Gustavsson S. , K. Kim D. , Melville A. , Rosenberg D. , P. Sears A. , Yan F. , L. Yoder J. , D. Oliver W. , J. Kerman A. . Coherent coupled qubits for quantum annealing. Phys. Rev. Appl., 2017, 8(1): 014004
https://doi.org/10.1103/PhysRevApplied.8.014004
271 Lu Y. , Chakram S. , Leung N. , Earnest N. , Naik R. , Huang Z. , Groszkowski P. , Kapit E. , Koch J. , I. Schuster D. . Universal stabilization of a parametrically coupled qubit. Phys. Rev. Lett., 2017, 119(15): 150502
https://doi.org/10.1103/PhysRevLett.119.150502
272 Yan F. , Krantz P. , Sung Y. , Kjaergaard M. , L. Campbell D. , P. Orlando T. , Gustavsson S. , D. Oliver W. . Tunable coupling scheme for implementing highfidelity two-qubit gates. Phys. Rev. Appl., 2018, 10(5): 054062
https://doi.org/10.1103/PhysRevApplied.10.054062
273 Mundada P. , Zhang G. , Hazard T. , Houck A. . Suppression of qubit crosstalk in a tunable coupling superconducting circuit. Phys. Rev. Appl., 2019, 12(5): 054023
https://doi.org/10.1103/PhysRevApplied.12.054023
274 Negîrneac V. , Ali H. , Muthusubramanian N. , Battistel F. , Sagastizabal R. , S. Moreira M. , F. Marques J. , J. Vlothuizen W. , Beekman M. , Zachariadis C. , Haider N. , Bruno A. , DiCarlo L. . High-fidelity controlled-z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor. Phys. Rev. Lett., 2021, 126(22): 220502
https://doi.org/10.1103/PhysRevLett.126.220502
275 Foxen B. , Neill C. , Dunsworth A. , Roushan P. , Chiaro B. . et al.. Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. Phys. Rev. Lett., 2020, 125(12): 120504
https://doi.org/10.1103/PhysRevLett.125.120504
276 Li X. , Cai T. , Yan H. , Wang Z. , Pan X. , Ma Y. , Cai W. , Han J. , Hua Z. , Han X. , Wu Y. , Zhang H. , Wang H. , Song Y. , Duan L. , Sun L. . Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit. Phys. Rev. Appl., 2020, 14(2): 024070
https://doi.org/10.1103/PhysRevApplied.14.024070
277 C. Collodo M. , Herrmann J. , Lacroix N. , K. Andersen C. , Remm A. , Lazar S. , C. Besse J. , Walter T. , Wallraff A. , Eichler C. . Implementation of conditional phase gates based on tunable ZZ interactions. Phys. Rev. Lett., 2020, 125(24): 240502
https://doi.org/10.1103/PhysRevLett.125.240502
278 Xu Y. , Chu J. , Yuan J. , Qiu J. , Zhou Y. , Zhang L. , Tan X. , Yu Y. , Liu S. , Li J. , Yan F. , Yu D. . High-fidelity, highscalability two-qubit gate scheme for superconducting qubits. Phys. Rev. Lett., 2020, 125(24): 240503
https://doi.org/10.1103/PhysRevLett.125.240503
279 Sung Y. , Ding L. , Braumuller J. , Vepsalainen A. , Kannan B. . et al.. Realization of high-fidelity CZ and ZZ-free iswap gates with a tunable coupler. Phys. Rev. X, 2021, 11(2): 021058
https://doi.org/10.1103/PhysRevX.11.021058
280 Stehlik J. , Zajac D. , Underwood D. , Phung T. , Blair J. , Carnevale S. , Klaus D. , Keefe G. , Carniol A. , Kumph M. , Steffen M. , E. Dial O. . Tunable coupling architecture for fixed-frequency transmon superconducting qubits. Phys. Rev. Lett., 2021, 127(8): 080505
https://doi.org/10.1103/PhysRevLett.127.080505
281 C. Bultink C. , Tarasinski B. , Haandbæk N. , Poletto S. , Haider N. , J. Michalak D. , Bruno A. , DiCarlo L. . General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. Appl. Phys. Lett., 2018, 112(9): 092601
https://doi.org/10.1063/1.5015954
282 P. M. Place A. , V. H. Rodgers L. , Mundada P. , M. Smitham B. , Fitzpatrick M. . et al.. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun., 2021, 12(1): 1779
https://doi.org/10.1038/s41467-021-22030-5
283 Somoroff A.Ficheux Q.A. Mencia R.Xiong H.V. Kuzmin R.E. Manucharyan V., Millisecond coherence in a superconducting qubit, arXiv: 2103.08578 (2021)
284 Wang C. , Li X. , Xu H. , Li Z. , Wang J. . et al.. Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf., 2022, 8: 3
https://doi.org/10.1038/s41534-021-00510-2
285 Müller C. , H. Cole J. , Lisenfeld J. . Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits. Rep. Prog. Phys., 2019, 82(12): 124501
https://doi.org/10.1088/1361-6633/ab3a7e
286 Klimov P. , Kelly J. , Chen Z. , Neeley M. , Megrant A. . et al.. Fluctuations of energy-relaxation times in superconducting qubits. Phys. Rev. Lett., 2018, 121(9): 090502
https://doi.org/10.1103/PhysRevLett.121.090502
287 Schlör S. , Lisenfeld J. , Muller C. , Bilmes A. , Schneider A. , P. Pappas D. , V. Ustinov A. , Weides M. . Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators. Phys. Rev. Lett., 2019, 123(19): 190502
https://doi.org/10.1103/PhysRevLett.123.190502
288 J. Burnett J. , Bengtsson A. , Scigliuzzo M. , Niepce D. , Kudra M. , Delsing P. , Bylander J. . Decoherence benchmarking of superconducting qubits. npj Quantum Inf., 2019, 5: 54
https://doi.org/10.1038/s41534-019-0168-5
289 Proctor T. , Revelle M. , Nielsen E. , Rudinger K. , Lobser D. , Maunz P. , Blume-Kohout R. , Young K. . Detecting and tracking drift in quantum information processors. Nat. Commun., 2020, 11(1): 5396
https://doi.org/10.1038/s41467-020-19074-4
290 E. de Graaf S. , Faoro L. , B. Ioffe L. , Mahashabde S. , J. Burnett J. , Lindstrom T. , E. Kubatkin S. , V. Danilov A. , Y. Tzalenchuk A. . Two-level systems in superconducting quantum devices due to trapped quasiparticles. Sci. Adv., 2020, 6(51): eabc5055
https://doi.org/10.1126/sciadv.abc5055
291 Suter D. , A. Alvarez G. . Colloquium: Protecting quantum information against environmental noise. Rev. Mod. Phys., 2016, 88(4): 041001
https://doi.org/10.1103/RevModPhys.88.041001
292 Paladino E. , Galperin Y. , Falci G. , Altshuler B. . 1/f noise: Implications for solid-state quantum information. Rev. Mod. Phys., 2014, 86(2): 361
https://doi.org/10.1103/RevModPhys.86.361
293 Bylander J. , Gustavsson S. , Yan F. , Yoshihara F. , Harrabi K. , Fitch G. , G. Cory D. , Nakamura Y. , S. Tsai J. , D. Oliver W. . Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys., 2011, 7(7): 565
https://doi.org/10.1038/nphys1994
294 Yan F. , Bylander J. , Gustavsson S. , Yoshihara F. , Harrabi K. , G. Cory D. , P. Orlando T. , Nakamura Y. , S. Tsai J. , D. Oliver W. . Spectroscopy of lowfrequency noise and its temperature dependence in a superconducting qubit. Phys. Rev. B, 2012, 85(17): 174521
https://doi.org/10.1103/PhysRevB.85.174521
295 Yan F. , Gustavsson S. , Bylander J. , Jin X. , Yoshihara F. , G. Cory D. , Nakamura Y. , P. Orlando T. , D. Oliver W. . Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution. Nat. Commun., 2013, 4(1): 2337
https://doi.org/10.1038/ncomms3337
296 Yoshihara F. , Nakamura Y. , Yan F. , Gustavsson S. , Bylander J. , D. Oliver W. , S. Tsai J. . Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions. Phys. Rev. B, 2014, 89(2): 020503
https://doi.org/10.1103/PhysRevB.89.020503
297 Quintana C. , Chen Y. , Sank D. , Petukhov A. , White T. . et al.. Observation of classical-quantum crossover of 1/f flux noise and its paramagnetic temperature dependence. Phys. Rev. Lett., 2017, 118(5): 057702
https://doi.org/10.1103/PhysRevLett.118.057702
298 Sung Y. , Beaudoin F. , M. Norris L. , Yan F. , K. Kim D. , Y. Qiu J. , von Lupke U. , L. Yoder J. , P. Orlando T. , Gustavsson S. , Viola L. , D. Oliver W. . Non-Gaussian noise spectroscopy with a superconducting qubit sensor. Nat. Commun., 2019, 10(1): 3715
https://doi.org/10.1038/s41467-019-11699-4
299 T. Chong F. , Franklin D. , Martonosi M. . Programming languages and compiler design for realistic quantum hardware. Nature, 2017, 549(7671): 180
https://doi.org/10.1038/nature23459
300 M. Abrams D. , Didier N. , R. Johnson B. , P. Silva M. , A. Ryan C. . Implementation of XY entangling gates with a single calibrated pulse. Nat. Electron., 2020, 3(12): 744
https://doi.org/10.1038/s41928-020-00498-1
301 Gu X. , Fernandez-Pendas J. , Vikstal P. , Abad T. , Warren C. , Bengtsson A. , Tancredi G. , Shumeiko V. , Bylander J. , Johansson G. , F. Kockum A. . Fast multiqubit gates through simultaneous two-qubit gates. PRX Quantum, 2021, 2(4): 040348
https://doi.org/10.1103/PRXQuantum.2.040348
302 Song C. , B. Zheng S. , Zhang P. , Xu K. , Zhang L. , Guo Q. , Liu W. , Xu D. , Deng H. , Huang K. , Zheng D. , Zhu X. , Wang H. . Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nat. Commun., 2017, 8(1): 1061
https://doi.org/10.1038/s41467-017-01156-5
303 Kim Y. , Morvan A. , B. Nguyen L. , K. Naik R. , Junger C. , Chen L. , M. Kreikebaum J. , I. Santiago D. , Siddiqi I. . High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits. Nat. Phys., 2022, 18(7): 783
https://doi.org/10.1038/s41567-022-01590-3
304 Chu J.He X.Zhou Y.Yuan J.Zhang L., et al.., Scalable algorithm simplification using quantum AND logic, arXiv: 2112.14922 (2021)
305 G. Fowler A. , Mariantoni M. , M. Martinis J. , N. Cleland A. . Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 2012, 86(3): 032324
https://doi.org/10.1103/PhysRevA.86.032324
306 Cleland A. . An introduction to the surface code. SciPost Phys. Lect. Notes, 2022, 49: 49
https://doi.org/10.21468/scipostphyslectnotes.49
307 Krinner S. , Lacroix N. , Remm A. , Di Paolo A. , Genois E. , Leroux C. , Hellings C. , Lazar S. , Swiadek F. , Herrmann J. , J. Norris G. , K. Andersen C. , Müller M. , Blais A. , Eichler C. , Wallraff A. . Realizing repeated quantum error correction in a distance-three surface code. Nature, 2022, 605(7911): 669
https://doi.org/10.1038/s41586-022-04566-8
308 Zhao Y. , Ye Y. , L. Huang H. , Zhang Y. , Wu D. . et al.. Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett., 2022, 129(3): 030501
https://doi.org/10.1103/PhysRevLett.129.030501
309 Acharya R.Aleiner I.Allen R.I. Andersen T.Ansmann M., et al.., Suppressing quantum errors by scaling a surface code logical qubit, arXiv: 2207.06431 (2022)
310 P. Vepsäläinen A. , H. Karamlou A. , L. Orrell J. , S. Dogra A. , Loer B. , Vasconcelos F. , K. Kim D. , J. Melville A. , M. Niedzielski B. , L. Yoder J. , Gustavsson S. , A. Formaggio J. , A. VanDevender B. , D. Oliver W. . Impact of ionizing radiation on superconducting qubit coherence. Nature, 2020, 584(7822): 551
https://doi.org/10.1038/s41586-020-2619-8
311 McEwen M. , Faoro L. , Arya K. , Dunsworth A. , Huang T. . et al.. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. Nat. Phys., 2022, 18(1): 107
https://doi.org/10.1038/s41567-021-01432-8
312 D. Wilen C. , Abdullah S. , A. Kurinsky N. , Stanford C. , Cardani L. , D’Imperio G. , Tomei C. , Faoro L. , B. Ioffe L. , H. Liu C. , Opremcak A. , G. Christensen B. , L. DuBois J. , McDermott R. . Correlated charge noise and relaxation errors in superconducting qubits. Nature, 2021, 594(7863): 369
https://doi.org/10.1038/s41586-021-03557-5
313 M. Terhal B. , Conrad J. , Vuillot C. . Towards scalable bosonic quantum error correction. Quantum Sci. Technol., 2020, 5(4): 043001
https://doi.org/10.1088/2058-9565/ab98a5
314 Joshi A. , Noh K. , Y. Gao Y. . Quantum information processing with bosonic qubits in circuit QED. Quantum Sci. Technol., 2021, 6(3): 033001
https://doi.org/10.1088/2058-9565/abe989
315 Cai W. , Ma Y. , Wang W. , L. Zou C. , Sun L. . Bosonic quantum error correction codes in superconducting quantum circuits. Fundam. Res., 2021, 1(1): 50
https://doi.org/10.1016/j.fmre.2020.12.006
316 Wang C. , Y. Gao Y. , Reinhold P. , W. Heeres R. , Ofek N. , Chou K. , Axline C. , Reagor M. , Blumoff J. , M. Sliwa K. , Frunzio L. , M. Girvin S. , Jiang L. , Mirrahimi M. , H. Devoret M. , J. Schoelkopf R. . A Schrodinger cat living in two boxes. Science, 2016, 352(6289): 1087
https://doi.org/10.1126/science.aaf2941
317 Ofek N. , Petrenko A. , Heeres R. , Reinhold P. , Leghtas Z. , Vlastakis B. , Liu Y. , Frunzio L. , M. Girvin S. , Jiang L. , Mirrahimi M. , H. Devoret M. , J. Schoelkopf R. . Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature, 2016, 536(7617): 441
https://doi.org/10.1038/nature18949
318 Puri S. , St-Jean L. , A. Gross J. , Grimm A. , E. Frattini N. , S. Iyer P. , Krishna A. , Touzard S. , Jiang L. , Blais A. , T. Flammia S. , M. Girvin S. . Bias-preserving gates with stabilized cat qubits. Sci. Adv., 2020, 6(34): eaay5901
https://doi.org/10.1126/sciadv.aay5901
319 Grimm A. , E. Frattini N. , Puri S. , O. Mundhada S. , Touzard S. , Mirrahimi M. , M. Girvin S. , Shankar S. , H. Devoret M. . Stabilization and operation of a Kerr-cat qubit. Nature, 2020, 584(7820): 205
https://doi.org/10.1038/s41586-020-2587-z
320 M. Gertler J. , Baker B. , Li J. , Shirol S. , Koch J. , Wang C. . Protecting a bosonic qubit with autonomous quantum error correction. Nature, 2021, 590(7845): 243
https://doi.org/10.1038/s41586-021-03257-0
321 H. Michael M. , Silveri M. , T. Brierley R. , V. Albert V. , Salmilehto J. , Jiang L. , M. Girvin S. . New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X, 2016, 6(3): 031006
https://doi.org/10.1103/PhysRevX.6.031006
322 Hu L. , Ma Y. , Cai W. , Mu X. , Xu Y. , Wang W. , Wu Y. , Wang H. , P. Song Y. , L. Zou C. , M. Girvin S. , M. Duan L. , Sun L. . Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys., 2019, 15(5): 503
https://doi.org/10.1038/s41567-018-0414-3
323 Gottesman D. , Kitaev A. , Preskill J. . Encoding a qubit in an oscillator. Phys. Rev. A, 2001, 64(1): 012310
https://doi.org/10.1103/PhysRevA.64.012310
324 L. Grimsmo A. , Puri S. . Quantum error correction with the Gottesman−Kitaev−Preskill code. PRX Quantum, 2021, 2(2): 020101
https://doi.org/10.1103/PRXQuantum.2.020101
325 Campagne-Ibarcq P. , Eickbusch A. , Touzard S. , Zalys-Geller E. , E. Frattini N. , V. Sivak V. , Reinhold P. , Puri S. , Shankar S. , J. Schoelkopf R. , Frunzio L. , Mirrahimi M. , H. Devoret M. . Quantum error correction of a qubit encoded in grid states of an oscillator. Nature, 2020, 584(7821): 368
https://doi.org/10.1038/s41586-020-2603-3
326 de Neeve B. , L. Nguyen T. , Behrle T. , P. Home J. . Error correction of a logical grid state qubit by dissipative pumping. Nat. Phys., 2022, 18(3): 296
https://doi.org/10.1038/s41567-021-01487-7
327 Royer B. , Singh S. , M. Girvin S. . Stabilization of finite-energy Gottesman−Kitaev−Preskill states. Phys. Rev. Lett., 2020, 125(26): 260509
https://doi.org/10.1103/PhysRevLett.125.260509
328 I. J. Wang J. , A. Yamoah M. , Li Q. , H. Karamlou A. , Dinh T. . et al.. Hexagonal boron nitride as a lowloss dielectric for superconducting quantum circuits and qubits. Nat. Mater., 2022, 21(4): 398
https://doi.org/10.1038/s41563-021-01187-w
329 Mamin H. , Huang E. , Carnevale S. , Rettner C. , Arellano N. , Sherwood M. , Kurter C. , Trimm B. , Sandberg M. , M. Shelby R. , A. Mueed M. , A. Madon B. , Pushp A. , Steffen M. , Rugar D. . Merged-element transmons: Design and qubit performance. Phys. Rev. Appl., 2021, 16(2): 024023
https://doi.org/10.1103/PhysRevApplied.16.024023
330 Zhao R. , Park S. , Zhao T. , Bal M. , McRae C. , Long J. , Pappas D. . Merged-element transmon. Phys. Rev. Appl., 2020, 14(6): 064006
https://doi.org/10.1103/PhysRevApplied.14.064006
331 Rosenberg D. , Kim D. , Das R. , Yost D. , Gustavsson S. . et al.. 3D integrated superconducting qubits. npj Quantum Inf., 2017, 3: 42
https://doi.org/10.1038/s41534-017-0044-0
332 Foxen B. , Y. Mutus J. , Lucero E. , Graff R. , Megrant A. . et al.. Qubit compatible superconducting interconnects. Quantum Sci. Technol., 2018, 3(1): 014005
https://doi.org/10.1088/2058-9565/aa94fc
333 Rahamim J. , Behrle T. , J. Peterer M. , Patterson A. , A. Spring P. , Tsunoda T. , Manenti R. , Tancredi G. , J. Leek P. . Double-sided coaxial circuit QED with outof-plane wiring. Appl. Phys. Lett., 2017, 110(22): 222602
https://doi.org/10.1063/1.4984299
334 R. Conner C. , Bienfait A. , S. Chang H. , H. Chou M. , Dumur E. , Grebel J. , A. Peairs G. , G. Povey R. , Yan H. , P. Zhong Y. , N. Cleland A. . Superconducting qubits in a flip-chip architecture. Appl. Phys. Lett., 2021, 118(23): 232602
https://doi.org/10.1063/5.0050173
335 Kosen S. , X. Li H. , Rommel M. , Shiri D. , Warren C. . et al.. Building blocks of a flip-chip integrated superconducting quantum processor. Quantum Sci. Technol., 2022, 7(3): 035018
https://doi.org/10.1088/2058-9565/ac734b
336 Vahidpour M.O’Brien W.T. Whyland J.Angeles J.Marshall J., et al.., Superconducting throughsilicon vias for quantum integrated circuits, arXiv: 1708.02226 (2017)
337 R. W. Yost D. , E. Schwartz M. , Mallek J. , Rosenberg D. , Stull C. . et al.. Solid-state qubits integrated with superconducting through-silicon vias. npj Quantum Inf., 2020, 6: 59
https://doi.org/10.1038/s41534-020-00289-8
338 Grigoras K. , Yurttagul N. , P. Kaikkonen J. , Mannila E. , Eskelinen P. . et al.. Qubit-compatible substrates with superconducting through-silicon vias. IEEE Trans. Quantum Eng., 2022, 3: 5100310
https://doi.org/10.1109/TQE.2022.3209881
339 Asaad S. , Dickel C. , K. Langford N. , Poletto S. , Bruno A. , A. Rol M. , Deurloo D. , DiCarlo L. . Independent, extensible control of same-frequency superconducting qubits by selective broadcasting. npj Quantum Inf., 2016, 2: 16029
https://doi.org/10.1038/npjqi.2016.29
340 Manenti R. , A. Sete E. , Q. Chen A. , Kulshreshtha S. , H. Yeh J. , Oruc F. , Bestwick A. , Field M. , Jackson K. , Poletto S. . Full control of superconducting qubits with combined on-chip microwave and flux lines. Appl. Phys. Lett., 2021, 119(14): 144001
https://doi.org/10.1063/5.0065517
341 Awschalom D. , K. Berggren K. , Bernien H. , Bhave S. , D. Carr L. . et al.. Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum, 2021, 2(1): 017002
https://doi.org/10.1103/PRXQuantum.2.017002
342 Jiang L. , M. Taylor J. , S. Sorensen A. , D. Lukin M. . Distributed quantum computation based on small quantum registers. Phys. Rev. A, 2007, 76(6): 062323
https://doi.org/10.1103/PhysRevA.76.062323
343 J. Kimble H. . The quantum internet. Nature, 2008, 453(7198): 1023
https://doi.org/10.1038/nature07127
344 S. Chou K. , Z. Blumoff J. , S. Wang C. , C. Reinhold P. , J. Axline C. , Y. Gao Y. , Frunzio L. , H. Devoret M. , Jiang L. , J. Schoelkopf R. . Deterministic teleportation of a quantum gate between two logical qubits. Nature, 2018, 561(7723): 368
https://doi.org/10.1038/s41586-018-0470-y
345 LaRacuente N.N. Smith K.Imany P.L. Silverman K.T. Chong F., Short-range microwave networks to scale superconducting quantum computation, arXiv: 2201.08825 (2022)
346 Kurpiers P. , Magnard P. , Walter T. , Royer B. , Pechal M. , Heinsoo J. , Salathe Y. , Akin A. , Storz S. , C. Besse J. , Gasparinetti S. , Blais A. , Wallraff A. . Deterministic quantum state transfer and remote entanglement using microwave photons. Nature, 2018, 558(7709): 264
https://doi.org/10.1038/s41586-018-0195-y
347 J. Axline C. , D. Burkhart L. , Pfaff W. , Zhang M. , Chou K. , Campagne-Ibarcq P. , Reinhold P. , Frunzio L. , M. Girvin S. , Jiang L. , H. Devoret M. , J. Schoelkopf R. . On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys., 2018, 14(7): 705
https://doi.org/10.1038/s41567-018-0115-y
348 Campagne-Ibarcq P. , Zalys-Geller E. , Narla A. , Shankar S. , Reinhold P. , Burkhart L. , Axline C. , Pfaff W. , Frunzio L. , J. Schoelkopf R. , H. Devoret M. . Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Phys. Rev. Lett., 2018, 120(20): 200501
https://doi.org/10.1103/PhysRevLett.120.200501
349 Leung N. , Lu Y. , Chakram S. , K. Naik R. , Earnest N. , Ma R. , Jacobs K. , N. Cleland A. , I. Schuster D. . Deterministic bidirectional communication and remote entanglement generation between superconducting qubits. npj Quantum Inf., 2019, 5: 18
https://doi.org/10.1038/s41534-019-0128-0
350 Magnard P. , Storz S. , Kurpiers P. , Schar J. , Marxer F. , Lutolf J. , Walter T. , C. Besse J. , Gabureac M. , Reuer K. , Akin A. , Royer B. , Blais A. , Wallraff A. . Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett., 2020, 125(26): 260502
https://doi.org/10.1103/PhysRevLett.125.260502
351 D. Burkhart L. , D. Teoh J. , Zhang Y. , J. Axline C. , Frunzio L. , Devoret M. , Jiang L. , Girvin S. , Schoelkopf R. . Error-detected state transfer and entanglement in a superconducting quantum network. PRX Quantum, 2021, 2(3): 030321
https://doi.org/10.1103/PRXQuantum.2.030321
352 Gold A. , P. Paquette J. , Stockklauser A. , J. Reagor M. , S. Alam M. . et al.. Entanglement across separate silicon dies in a modular superconducting qubit device. npj Quantum Inf., 2021, 7: 142
https://doi.org/10.1038/s41534-021-00484-1
353 M. Kreikebaum J. , P. O’Brien K. , Morvan A. , Siddiqi I. . Improving wafer-scale Josephson junction resistance variation in superconducting quantum coherent circuits. Supercond. Sci. Technol., 2020, 33(6): 06LT02
https://doi.org/10.1088/1361-6668/ab8617
354 B. Hertzberg J. , J. Zhang E. , Rosenblatt S. , Magesan E. , A. Smolin J. . et al.. Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors. npj Quantum Inf., 2021, 7: 129
https://doi.org/10.1038/s41534-021-00464-5
355 J. Zhang E. , Srinivasan S. , Sundaresan N. , F. Bogorin D. , Martin Y. . et al.. High-performance superconducting quantum processors via laser annealing of transmon qubits. Sci. Adv., 2022, 8(19): eabi6690
https://doi.org/10.1126/sciadv.abi6690
356 Kim H.Junger C.Morvan A.S. Barnard E.P. Livingston W., et al.., Effects of laser-annealing on fixedfrequency superconducting qubits, arXiv: 2206.03099 (2022)
357 Krinner S. , Storz S. , Kurpiers P. , Magnard P. , Heinsoo J. , Keller R. , Lutolf J. , Eichler C. , Wallraff A. . Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol., 2019, 6(1): 2
https://doi.org/10.1140/epjqt/s40507-019-0072-0
358 C. Bardin J. , Jeffrey E. , Lucero E. , Huang T. , Das S. . et al.. Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K. IEEE J. Solid-State Circuits, 2019, 54(11): 3043
https://doi.org/10.1109/JSSC.2019.2937234
359 Patra B.P. G. van Dijk J.Subramanian S.Corna A.Xue X., et al.., 19.1 A scalable cryo-CMOS 2-to-20 GHz digitally intensive controller for 4×32 frequency multiplexed spin qubits/transmons in 22 nm FinFET technology for quantum computers, in: IEEE Int. Solid-State Circuits Conf., 2020, pp 304–306
360 J. Pauka S. , Das K. , Kalra R. , Moini A. , Yang Y. , Trainer M. , Bousquet A. , Cantaloube C. , Dick N. , C. Gardner G. , J. Manfra M. , J. Reilly D. . A cryogenic CMOS chip for generating control signals for multiple qubits. Nat. Electron., 2021, 4(1): 64
https://doi.org/10.1038/s41928-020-00528-y
361 A. Sete E. , Q. Chen A. , Manenti R. , Kulshreshtha S. , Poletto S. . Floating tunable coupler for scalable quantum computing architectures. Phys. Rev. Appl., 2021, 15(6): 064063
https://doi.org/10.1103/PhysRevApplied.15.064063
362 Dunsworth A. , Barends R. , Chen Y. , Chen Z. , Chiaro B. . et al.. A method for building low loss multi-layer wiring for superconducting microwave devices. Appl. Phys. Lett., 2018, 112(6): 063502
https://doi.org/10.1063/1.5014033
363 Zhao P. , Xu P. , Lan D. , Chu J. , Tan X. , Yu H. , Yu Y. . High-contrast ZZ interaction using superconducting qubits with opposite-sign anharmonicity. Phys. Rev. Lett., 2020, 125(20): 200503
https://doi.org/10.1103/PhysRevLett.125.200503
364 Kandala A. , Wei K. , Srinivasan S. , Magesan E. , Carnevale S. , Keefe G. , Klaus D. , Dial O. , McKay D. . Demonstration of a high-fidelity cnot gate for fixed-frequency transmons with engineered ZZ suppression. Phys. Rev. Lett., 2021, 127(13): 130501
https://doi.org/10.1103/PhysRevLett.127.130501
365 Huang S. , Lienhard B. , Calusine G. , Vepsalainen A. , Braumuller J. , K. Kim D. , J. Melville A. , M. Niedzielski B. , L. Yoder J. , Kannan B. , P. Orlando T. , Gustavsson S. , D. Oliver W. . Microwave package design for superconducting quantum processors. PRX Quantum, 2021, 2(2): 020306
https://doi.org/10.1103/PRXQuantum.2.020306
366 Nuerbolati W. , Han Z. , Chu J. , Zhou Y. , Tan X. , Yu Y. , Liu S. , Yan F. . Canceling microwave crosstalk with fixed-frequency qubits. Appl. Phys. Lett., 2022, 120(17): 174001
https://doi.org/10.1063/5.0088094
367 K. Mitchell B. , K. Naik R. , Morvan A. , Hashim A. , M. Kreikebaum J. , Marinelli B. , Lavrijsen W. , Nowrouzi K. , I. Santiago D. , Siddiqi I. . Hardware-efficient microwave-activated tunable coupling between superconducting qubits. Phys. Rev. Lett., 2021, 127(20): 200502
https://doi.org/10.1103/PhysRevLett.127.200502
368 Q. Cai T. , Y. Han X. , K. Wu Y. , L. Ma Y. , H. Wang J. , L. Wang Z. , Y. Zhang H. , Y. Wang H. , P. Song Y. , M. Duan L. . Impact of spectators on a two-qubit gate in a tunable coupling superconducting circuit. Phys. Rev. Lett., 2021, 127(6): 060505
https://doi.org/10.1103/PhysRevLett.127.060505
369 Zajac D.Stehlik J.Underwood D.Phung T.Blair J., et al.., Spectator errors in tunable coupling architectures, arXiv: 2108.11221 (2021)
370 Wei K. , Magesan E. , Lauer I. , Srinivasan S. , Bogorin D. . et al.. Hamiltonian engineering with multicolor drives for fast entangling gates and quantum crosstalk cancellation. Phys. Rev. Lett., 2022, 129(6): 060501
https://doi.org/10.1103/PhysRevLett.129.060501
371 Ni Z. , Li S. , Zhang L. , Chu J. , Niu J. , Yan T. , Deng X. , Hu L. , Li J. , Zhong Y. , Liu S. , Yan F. , Xu Y. , Yu D. . Scalable method for eliminating residual ZZ interaction between superconducting qubits. Phys. Rev. Lett., 2022, 129(4): 040502
https://doi.org/10.1103/PhysRevLett.129.040502
372 Harty T. , Allcock D. , J. Ballance C. , Guidoni L. , Janacek H. , Linke N. , Stacey D. , Lucas D. . High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett., 2014, 113(22): 220501
https://doi.org/10.1103/PhysRevLett.113.220501
373 Wang Y. , Um M. , Zhang J. , An S. , Lyu M. , N. Zhang J. , M. Duan L. , Yum D. , Kim K. . Single-qubit quantum memory exceeding ten-minute coherence time. Nat. Photonics, 2017, 11(10): 646
https://doi.org/10.1038/s41566-017-0007-1
374 Wang P. , Y. Luan C. , Qiao M. , Um M. , Zhang J. , Wang Y. , Yuan X. , Gu M. , Zhang J. , Kim K. . Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun., 2021, 12(1): 233
https://doi.org/10.1038/s41467-020-20330-w
375 Noek R. , Vrijsen G. , Gaultney D. , Mount E. , Kim T. , Maunz P. , Kim J. . High speed, high fidelity detection of an atomic hyperfine qubit. Opt. Lett., 2013, 38(22): 4735
https://doi.org/10.1364/OL.38.004735
376 Crain S. , Cahall C. , Vrijsen G. , E. Wollman E. , D. Shaw M. , B. Verma V. , W. Nam S. , Kim J. . High-speed low-crosstalk detection of a 171Yb+ qubit using superconducting nanowire single photon detectors. Commun. Phys., 2019, 2(1): 97
https://doi.org/10.1038/s42005-019-0195-8
377 P. Gaebler J. , R. Tan T. , Lin Y. , Wan Y. , Bowler R. , C. Keith A. , Glancy S. , Coakley K. , Knill E. , Leibfried D. , J. Wineland D. . High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett., 2016, 117(6): 060505
https://doi.org/10.1103/PhysRevLett.117.060505
378 Ballance C. , Harty T. , Linke N. , Sepiol M. , Lucas D. . High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett., 2016, 117(6): 060504
https://doi.org/10.1103/PhysRevLett.117.060504
379 R. Clark C. , N. Tinkey H. , C. Sawyer B. , M. Meier A. , A. Burkhardt K. , M. Seck C. , M. Shappert C. , D. Guise N. , E. Volin C. , D. Fallek S. , T. Hayden H. , G. Rellergert W. , R. Brown K. . High-fidelity Bell-state preparation with 40Ca+ optical qubits. Phys. Rev. Lett., 2021, 127(13): 130505
https://doi.org/10.1103/PhysRevLett.127.130505
380 Wright K. , M. Beck K. , Debnath S. , Amini J. , Nam Y. . et al.. Benchmarking an 11-qubit quantum computer. Nat. Commun., 2019, 10(1): 5464
https://doi.org/10.1038/s41467-019-13534-2
381 Pogorelov I. , Feldker T. , D. Marciniak C. , Postler L. , Jacob G. , Krieglsteiner O. , Podlesnic V. , Meth M. , Negnevitsky V. , Stadler M. , Höfer B. , Wächter C. , Lakhmanskiy K. , Blatt R. , Schindler P. , Monz T. . Compact ion-trap quantum computing demonstrator. PRX Quantum, 2021, 2(2): 020343
https://doi.org/10.1103/PRXQuantum.2.020343
382 Monz T. , Nigg D. , A. Martinez E. , F. Brandl M. , Schindler P. , Rines R. , X. Wang S. , L. Chuang I. , Blatt R. . Realization of a scalable Shor algorithm. Science, 2016, 351(6277): 1068
https://doi.org/10.1126/science.aad9480
383 Figgatt C. , Maslov D. , A. Landsman K. , M. Linke N. , Debnath S. , Monroe C. . Complete 3-qubit Grover search on a programmable quantum computer. Nat. Commun., 2017, 8(1): 1918
https://doi.org/10.1038/s41467-017-01904-7
384 Kim K. , S. Chang M. , Korenblit S. , Islam R. , E. Edwards E. , K. Freericks J. , D. Lin G. , M. Duan L. , Monroe C. . Quantum simulation of frustrated ising spins with trapped ions. Nature, 2010, 465(7298): 590
https://doi.org/10.1038/nature09071
385 Jurcevic P. , P. Lanyon B. , Hauke P. , Hempel C. , Zoller P. , Blatt R. , F. Roos C. . Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature, 2014, 511(7508): 202
https://doi.org/10.1038/nature13461
386 Richerme P. , X. Gong Z. , Lee A. , Senko C. , Smith J. , Foss-Feig M. , Michalakis S. , V. Gorshkov A. , Monroe C. . Non-local propagation of correlations in quantum systems with long-range interactions. Nature, 2014, 511(7508): 198
https://doi.org/10.1038/nature13450
387 Senko C. , Smith J. , Richerme P. , Lee A. , Campbell W. , Monroe C. . Coherent imaging spectroscopy of a quantum many-body spin system. Science, 2014, 345(6195): 430
https://doi.org/10.1126/science.1251422
388 Gärttner M. , G. Bohnet J. , Safavi-Naini A. , L. Wall M. , J. Bollinger J. , M. Rey A. . Measuring out-oftime-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys., 2017, 13(8): 781
https://doi.org/10.1038/nphys4119
389 Zhang J. , W. Hess P. , Kyprianidis A. , Becker P. , Lee A. , Smith J. , Pagano G. , D. Potirniche I. , C. Potter A. , Vishwanath A. , Y. Yao N. , Monroe C. . Observation of a discrete time crystal. Nature, 2017, 543(7644): 217
https://doi.org/10.1038/nature21413
390 Brydges T. , Elben A. , Jurcevic P. , Vermersch B. , Maier C. , P. Lanyon B. , Zoller P. , Blatt R. , F. Roos C. . Probing Renyi entanglement entropy via randomized measurements. Science, 2019, 364(6437): 260
https://doi.org/10.1126/science.aau4963
391 Maier C. , Brydges T. , Jurcevic P. , Trautmann N. , Hempel C. , P. Lanyon B. , Hauke P. , Blatt R. , F. Roos C. . Environment-assisted quantum transport in a 10-qubit network. Phys. Rev. Lett., 2019, 122(5): 050501
https://doi.org/10.1103/PhysRevLett.122.050501
392 Monroe C. , C. Campbell W. , M. Duan L. , X. Gong Z. , V. Gorshkov A. , Hess P. , Islam R. , Kim K. , M. Linke N. , Pagano G. , Richerme P. , Senko C. , Y. Yao N. . Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys., 2021, 93(2): 025001
https://doi.org/10.1103/RevModPhys.93.025001
393 Srinivas R. , Burd S. , Knaack H. , Sutherland R. , Kwiatkowski A. , Glancy S. , Knill E. , Wineland D. , Leibfried D. , C. Wilson A. , T. C. Allcock D. , H. Slichter D. . High-fidelity laser-free universal control of trapped ion qubits. Nature, 2021, 597(7875): 209
https://doi.org/10.1038/s41586-021-03809-4
394 Kaufmann H. , Ruster T. , T. Schmiegelow C. , A. Luda M. , Kaushal V. , Schulz J. , Von Lindenfels D. , Schmidt-Kaler F. , Poschinger U. . Scalable creation of long-lived multipartite entanglement. Phys. Rev. Lett., 2017, 119(15): 150503
https://doi.org/10.1103/PhysRevLett.119.150503
395 Manovitz T. , Shapira Y. , Gazit L. , Akerman N. , Ozeri R. . Trapped-ion quantum computer with robust entangling gates and quantum coherent feedback. PRX Quantum, 2022, 3: 010347
https://doi.org/10.1103/PRXQuantum.3.010347
396 Dietrich M. , Kurz N. , Noel T. , Shu G. , Blinov B. . Hyperfine and optical barium ion qubits. Phys. Rev. A, 2010, 81(5): 052328
https://doi.org/10.1103/PhysRevA.81.052328
397 Hucul D. , E. Christensen J. , R. Hudson E. , C. Campbell W. . Spectroscopy of a synthetic trapped ion qubit. Phys. Rev. Lett., 2017, 119(10): 100501
https://doi.org/10.1103/PhysRevLett.119.100501
398 Weidt S. , Randall J. , Webster S. , Lake K. , Webb A. , Cohen I. , Navickas T. , Lekitsch B. , Retzker A. , Hensinger W. . Trapped-ion quantum logic with global radiation fields. Phys. Rev. Lett., 2016, 117(22): 220501
https://doi.org/10.1103/PhysRevLett.117.220501
399 Lu Y. , Zhang S. , Zhang K. , Chen W. , Shen Y. , Zhang J. , N. Zhang J. , Kim K. . Global entangling gates on arbitrary ion qubits. Nature, 2019, 572(7769): 363
https://doi.org/10.1038/s41586-019-1428-4
400 Wang Y. , Crain S. , Fang C. , Zhang B. , Huang S. , Liang Q. , H. Leung P. , R. Brown K. , Kim J. . High-fidelity two-qubit gates using a microelectromechanicalsystem-based beam steering system for individual qubit addressing. Phys. Rev. Lett., 2020, 125(15): 150505
https://doi.org/10.1103/PhysRevLett.125.150505
401 Myerson A. , Szwer D. , Webster S. , Allcock D. , Curtis M. , Imreh G. , Sherman J. , Stacey D. , Steane A. , Lucas D. . High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett., 2008, 100(20): 200502
https://doi.org/10.1103/PhysRevLett.100.200502
402 Wölk S. , Piltz C. , Sriarunothai T. , Wunderlich C. . State selective detection of hyperfine qubits. J. Phys. At. Mol. Opt. Phys., 2015, 48(7): 075101
https://doi.org/10.1088/0953-4075/48/7/075101
403 Seif A. , A. Landsman K. , M. Linke N. , Figgatt C. , Monroe C. , Hafezi M. . Machine learning assisted readout of trapped-ion qubits. J. Phys. At. Mol. Opt. Phys., 2018, 51(17): 174006
https://doi.org/10.1088/1361-6455/aad62b
404 H. Ding Z. , M. Cui J. , F. Huang Y. , F. Li C. , Tu T. , C. Guo G. . Fast high-fidelity readout of a single trapped-ion qubit via machine-learning methods. Phys. Rev. Appl., 2019, 12(1): 014038
https://doi.org/10.1103/PhysRevApplied.12.014038
405 R. Brown K. , Kim J. , Monroe C. . Co-designing a scalable quantum computer with trapped atomic ions. npj Quantum Inf., 2016, 2: 16034
https://doi.org/10.1038/npjqi.2016.34
406 J. Niffenegger R. , Stuart J. , Sorace-Agaskar C. , Kharas D. , Bramhavar S. , D. Bruzewicz C. , Loh W. , T. Maxson R. , McConnell R. , Reens D. , N. West G. , M. Sage J. , Chiaverini J. . Integrated multi-wavelength control of an ion qubit. Nature, 2020, 586(7830): 538
https://doi.org/10.1038/s41586-020-2811-x
407 L. Todaro S. , Verma V. , C. McCormick K. , Allcock D. , Mirin R. , J. Wineland D. , W. Nam S. , C. Wilson A. , Leibfried D. , Slichter D. . State readout of a trapped ion qubit using a trap-integrated superconducting photon detector. Phys. Rev. Lett., 2021, 126(1): 010501
https://doi.org/10.1103/PhysRevLett.126.010501
408 Setzer W. , Ivory M. , Slobodyan O. , Van Der Wall J. , Parazzoli L. , Stick D. , Gehl M. , Blain M. , Kay R. , J. McGuinness H. . Fluorescence detection of a trapped ion with a monolithically integrated single-photon-counting avalanche diode. Appl. Phys. Lett., 2021, 119(15): 154002
https://doi.org/10.1063/5.0055999
409 Reens D. , Collins M. , Ciampi J. , Kharas D. , F. Aull B. , Donlon K. , D. Bruzewicz C. , Felton B. , Stuart J. , J. Niffenegger R. , Rich P. , Braje D. , K. Ryu K. , Chiaverini J. , McConnell R. . High-fidelity ion state detection using trap-integrated avalanche photodiodes. Phys. Rev. Lett., 2022, 129(10): 100502
https://doi.org/10.1103/PhysRevLett.129.100502
410 Bermudez A. , Xu X. , Nigmatullin R. , O’Gorman J. , Negnevitsky V. , Schindler P. , Monz T. , Poschinger U. , Hempel C. , Home J. , Schmidt-Kaler F. , Biercuk M. , Blatt R. , Benjamin S. , Müller M. . Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation. Phys. Rev. X, 2017, 7(4): 041061
https://doi.org/10.1103/PhysRevX.7.041061
411 Sørensen A. , Molmer K. . Quantum computation with ions in thermal motion. Phys. Rev. Lett., 1999, 82(9): 1971
https://doi.org/10.1103/PhysRevLett.82.1971
412 Sørensen A. , Molmer K. . Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A, 2000, 62(2): 022311
https://doi.org/10.1103/PhysRevA.62.022311
413 Jonathan D. , B. Plenio M. . Light-shift-induced quantum gates for ions in thermal motion. Phys. Rev. Lett., 2001, 87(12): 127901
https://doi.org/10.1103/PhysRevLett.87.127901
414 Leibfried D. , DeMarco B. , Meyer V. , Lucas D. , Barrett M. , Britton J. , M. Itano W. , Jelenković B. , Langer C. , Rosenband T. , J. Wineland D. . Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature, 2003, 422(6930): 412
https://doi.org/10.1038/nature01492
415 C. Sawyer B. , R. Brown K. . Wavelength-insensitive, multispecies entangling gate for group-2 atomic ions. Phys. Rev. A, 2021, 103(2): 022427
https://doi.org/10.1103/PhysRevA.103.022427
416 Mintert F. , Wunderlich C. . Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett., 2001, 87(25): 257904
https://doi.org/10.1103/PhysRevLett.87.257904
417 Ospelkaus C. , E. Langer C. , M. Amini J. , R. Brown K. , Leibfried D. , J. Wineland D. . Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett., 2008, 101(9): 090502
https://doi.org/10.1103/PhysRevLett.101.090502
418 Timoney N. , Baumgart I. , Johanning M. , Varon A. , B. Plenio M. , Retzker A. , Wunderlich C. . Quantum gates and memory using microwave-dressed states. Nature, 2011, 476(7359): 185
https://doi.org/10.1038/nature10319
419 Webster S. , Weidt S. , Lake K. , McLoughlin J. , Hensinger W. . Simple manipulation of a microwave dressed-state ion qubit. Phys. Rev. Lett., 2013, 111(14): 140501
https://doi.org/10.1103/PhysRevLett.111.140501
420 Harty T. , Sepiol M. , Allcock D. , Ballance C. , Tarlton J. , Lucas D. . High-fidelity trapped-ion quantum logic using near-field microwaves. Phys. Rev. Lett., 2016, 117(14): 140501
https://doi.org/10.1103/PhysRevLett.117.140501
421 Zarantonello G. , Hahn H. , Morgner J. , Schulte M. , Bautista-Salvador A. , Werner R. , Hammerer K. , Ospelkaus C. . Robust and resource-efficient microwave near-field entangling 9Be+ gate. Phys. Rev. Lett., 2019, 123(26): 260503
https://doi.org/10.1103/PhysRevLett.123.260503
422 Lekitsch B. , Weidt S. , G. Fowler A. , Molmer K. , J. Devitt S. , Wunderlich C. , K. Hensinger W. . Blueprint for a microwave trapped ion quantum computer. Sci. Adv., 2017, 3(2): e1601540
https://doi.org/10.1126/sciadv.1601540
423 Schäfer V. , Ballance C. , Thirumalai K. , Stephenson L. , Ballance T. , Steane A. , Lucas D. . Fast quantum logic gates with trapped-ion qubits. Nature, 2018, 555(7694): 75
https://doi.org/10.1038/nature25737
424 Sameti M. , Lishman J. , Mintert F. . Strong-coupling quantum logic of trapped ions. Phys. Rev. A, 2021, 103(5): 052603
https://doi.org/10.1103/PhysRevA.103.052603
425 J. García-Ripoll J. , Zoller P. , I. Cirac J. . Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett., 2003, 91(15): 157901
https://doi.org/10.1103/PhysRevLett.91.157901
426 M. Duan L. . Scaling ion trap quantum computation through fast quantum gates. Phys. Rev. Lett., 2004, 93(10): 100502
https://doi.org/10.1103/PhysRevLett.93.100502
427 Mizrahi J. , Senko C. , Neyenhuis B. , Johnson K. , Campbell W. , Conover C. , Monroe C. . Ultrafast spin-motion entanglement and interferometry with a single atom. Phys. Rev. Lett., 2013, 110(20): 203001
https://doi.org/10.1103/PhysRevLett.110.203001
428 Wong-Campos J. , Moses S. , Johnson K. , Monroe C. . Demonstration of two-atom entanglement with ultrafast optical pulses. Phys. Rev. Lett., 2017, 119(23): 230501
https://doi.org/10.1103/PhysRevLett.119.230501
429 I. Hussain M. , Heinrich D. , Guevara-Bertsch M. , Torrontegui E. , J. Garcia-Ripoll J. , F. Roos C. , Blatt R. . Ultraviolet laser pulses with multigigahertz repetition rate and multiwatt average power for fast trapped-ion entanglement operations. Phys. Rev. Appl., 2021, 15(2): 024054
https://doi.org/10.1103/PhysRevApplied.15.024054
430 L. Zhu S. , Monroe C. , M. Duan L. . Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams. Europhys. Lett., 2006, 73(4): 485
https://doi.org/10.1209/epl/i2005-10424-4
431 L. Zhu S. , Monroe C. , M. Duan L. . Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett., 2006, 97(5): 050505
https://doi.org/10.1103/PhysRevLett.97.050505
432 Choi T. , Debnath S. , Manning T. , Figgatt C. , X. Gong Z. , M. Duan L. , Monroe C. . Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. Phys. Rev. Lett., 2014, 112(19): 190502
https://doi.org/10.1103/PhysRevLett.112.190502
433 H. Leung P. , A. Landsman K. , Figgatt C. , M. Linke N. , Monroe C. , R. Brown K. . Robust 2-qubit gates in a linear ion crystal using a frequency-modulated driving force. Phys. Rev. Lett., 2018, 120(2): 020501
https://doi.org/10.1103/PhysRevLett.120.020501
434 J. Green T. , J. Biercuk M. . Phase-modulated decoupling and error suppression in qubit-oscillator systems. Phys. Rev. Lett., 2015, 114(12): 120502
https://doi.org/10.1103/PhysRevLett.114.120502
435 A. Landsman K. , Wu Y. , H. Leung P. , Zhu D. , M. Linke N. , R. Brown K. , Duan L. , Monroe C. . Two-qubit entangling gates within arbitrarily long chains of trapped ions. Phys. Rev. A, 2019, 100(2): 022332
https://doi.org/10.1103/PhysRevA.100.022332
436 R. Milne A. , L. Edmunds C. , Hempel C. , Roy F. , Mavadia S. , J. Biercuk M. . Phase-modulated entangling gates robust to static and time-varying errors. Phys. Rev. Appl., 2020, 13(2): 024022
https://doi.org/10.1103/PhysRevApplied.13.024022
437 Monz T. , Schindler P. , T. Barreiro J. , Chwalla M. , Nigg D. , A. Coish W. , Harlander M. , Hansel W. , Hennrich M. , Blatt R. . 14-qubit entanglement: Creation and coherence. Phys. Rev. Lett., 2011, 106(13): 130506
https://doi.org/10.1103/PhysRevLett.106.130506
438 Debnath S. , M. Linke N. , Figgatt C. , A. Landsman K. , Wright K. , Monroe C. . Demonstration of a small programmable quantum computer with atomic qubits. Nature, 2016, 536(7614): 63
https://doi.org/10.1038/nature18648
439 M. Linke N. , Maslov D. , Roetteler M. , Debnath S. , Figgatt C. , A. Landsman K. , Wright K. , Monroe C. . Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. USA, 2017, 114(13): 3305
https://doi.org/10.1073/pnas.1618020114
440 S. Ivanov S. , A. Ivanov P. , V. Vitanov N. . Efficient construction of three- and four-qubit quantum gates by global entangling gates. Phys. Rev. A, 2015, 91(3): 032311
https://doi.org/10.1103/PhysRevA.91.032311
441 A. Martinez E. , Monz T. , Nigg D. , Schindler P. , Blatt R. . Compiling quantum algorithms for architectures with multi-qubit gates. New J. Phys., 2016, 18(6): 063029
https://doi.org/10.1088/1367-2630/18/6/063029
442 Maslov D. , Nam Y. . Use of global interactions in efficient quantum circuit constructions. New J. Phys., 2018, 20(3): 033018
https://doi.org/10.1088/1367-2630/aaa398
443 Schwerdt D. , Shapira Y. , Manovitz T. , Ozeri R. . Comparing two-qubit and multiqubit gates within the toric code. Phys. Rev. A, 2022, 105(2): 022612
https://doi.org/10.1103/PhysRevA.105.022612
444 Figgatt C. , Ostrander A. , M. Linke N. , A. Landsman K. , Zhu D. , Maslov D. , Monroe C. . Parallel entangling operations on a universal ion-trap quantum computer. Nature, 2019, 572(7769): 368
https://doi.org/10.1038/s41586-019-1427-5
445 Kielpinski D. , Monroe C. , J. Wineland D. . Architecture for a large-scale ion-trap quantum computer. Nature, 2002, 417(6890): 709
https://doi.org/10.1038/nature00784
446 Kaushal V. , Lekitsch B. , Stahl A. , Hilder J. , Pijn D. , Schmiegelow C. , Bermudez A. , Muller M. , Schmidt-Kaler F. , Poschinger U. . Shuttling-based trapped-ion quantum information processing. AVS Quantum Science, 2020, 2(1): 014101
https://doi.org/10.1116/1.5126186
447 Bowler R. , Gaebler J. , Lin Y. , R. Tan T. , Hanneke D. , D. Jost J. , Home J. , Leibfried D. , J. Wineland D. . Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett., 2012, 109(8): 080502
https://doi.org/10.1103/PhysRevLett.109.080502
448 Walther A. , Ziesel F. , Ruster T. , T. Dawkins S. , Ott K. , Hettrich M. , Singer K. , Schmidt-Kaler F. , Poschinger U. . Controlling fast transport of cold trapped ions. Phys. Rev. Lett., 2012, 109(8): 080501
https://doi.org/10.1103/PhysRevLett.109.080501
449 Stick D. , Hensinger W. , Olmschenk S. , Madsen M. , Schwab K. , Monroe C. . Ion trap in a semiconductor chip. Nat. Phys., 2006, 2(1): 36
https://doi.org/10.1038/nphys171
450 Seidelin S. , Chiaverini J. , Reichle R. , J. Bollinger J. , Leibfried D. , Britton J. , Wesenberg J. , Blakestad R. , Epstein R. , Hume D. , Itano W. , Jost J. , Langer C. , Ozeri R. , Shiga N. , J. Wineland D. . Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett., 2006, 96(25): 253003
https://doi.org/10.1103/PhysRevLett.96.253003
451 Wright K. , M. Amini J. , L. Faircloth D. , Volin C. , Charles Doret S. , Hayden H. , S. Pai C. , W. Landgren D. , Denison D. , Killian T. , E. Slusher R. , W. Harter A. . Reliable transport through a microfabricated Xjunction surface-electrode ion trap. New J. Phys., 2013, 15(3): 033004
https://doi.org/10.1088/1367-2630/15/3/033004
452 M. Amini J. , Uys H. , H. Wesenberg J. , Seidelin S. , Britton J. , J. Bollinger J. , Leibfried D. , Ospelkaus C. , P. VanDevender A. , J. Wineland D. . Toward scalable ion traps for quantum information processing. New J. Phys., 2010, 12(3): 033031
https://doi.org/10.1088/1367-2630/12/3/033031
453 Hensinger W. , Olmschenk S. , Stick D. , Hucul D. , Yeo M. , Acton M. , Deslauriers L. , Monroe C. , Rabchuk J. . T-junction ion trap array for twodimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett., 2006, 88(3): 034101
https://doi.org/10.1063/1.2164910
454 Wan Y. , Kienzler D. , D. Erickson S. , H. Mayer K. , R. Tan T. , J. Wu J. , M. Vasconcelos H. , Glancy S. , Knill E. , J. Wineland D. , C. Wilson A. , Leibfried D. . Quantum gate teleportation between separated qubits in a trapped-ion processor. Science, 2019, 364(6443): 875
https://doi.org/10.1126/science.aaw9415
455 M. Pino J. , M. Dreiling J. , Figgatt C. , P. Gaebler J. , A. Moses S. , Allman M. , Baldwin C. , Foss-Feig M. , Hayes D. , Mayer K. , Ryan-Anderson C. , Neyenhuis B. . Demonstration of the trapped-ion quantum CCD computer architecture. Nature, 2021, 592(7853): 209
https://doi.org/10.1038/s41586-021-03318-4
456 A. Turchette Q. , Kielpinski D. , E. King B. , Leibfried D. , M. Meekhof D. , J. Myatt C. , A. Rowe M. , A. Sackett C. , S. Wood C. , M. Itano W. , Monroe C. , J. Wineland D. . Heating of trapped ions from the quantum ground state. Phys. Rev. A, 2000, 61(6): 063418
https://doi.org/10.1103/PhysRevA.61.063418
457 Deslauriers L. , Olmschenk S. , Stick D. , Hensinger W. , Sterk J. , Monroe C. . Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett., 2006, 97(10): 103007
https://doi.org/10.1103/PhysRevLett.97.103007
458 A. Boldin I. , Kraft A. , Wunderlich C. . Measuring anomalous heating in a planar ion trap with variable ion-surface separation. Phys. Rev. Lett., 2018, 120(2): 023201
https://doi.org/10.1103/PhysRevLett.120.023201
459 H. Wesenberg J. . Electrostatics of surface-electrode ion traps. Phys. Rev. A, 2008, 78(6): 063410
https://doi.org/10.1103/PhysRevA.78.063410
460 Monroe C. , Raussendorf R. , Ruthven A. , Brown K. , Maunz P. , M. Duan L. , Kim J. . Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A, 2014, 89(2): 022317
https://doi.org/10.1103/PhysRevA.89.022317
461 Hucul D. , V. Inlek I. , Vittorini G. , Crocker C. , Debnath S. , M. Clark S. , Monroe C. . Modular entanglement of atomic qubits using photons and phonons. Nat. Phys., 2015, 11(1): 37
https://doi.org/10.1038/nphys3150
462 Stephenson L. , Nadlinger D. , Nichol B. , An S. , Drmota P. , Ballance T. , Thirumalai K. , Goodwin J. , Lucas D. , J. Ballance C. . High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett., 2020, 124(11): 110501
https://doi.org/10.1103/PhysRevLett.124.110501
463 Kim T. , Maunz P. , Kim J. . Efficient collection of single photons emitted from a trapped ion into a singlemode fiber for scalable quantum-information processing. Phys. Rev. A, 2011, 84(6): 063423
https://doi.org/10.1103/PhysRevA.84.063423
464 Hannegan J. , Saha U. , D. Siverns J. , Cassell J. , Waks E. , Quraishi Q. . C-band single photons from a trapped ion via two-stage frequency conversion. Appl. Phys. Lett., 2021, 119(8): 084001
https://doi.org/10.1063/5.0059966
465 Ballance C. , Schafer V. , P. Home J. , Szwer D. , C. Webster S. , Allcock D. , M. Linke N. , Harty T. , Aude Craik D. , N. Stacey D. , M. Steane A. , M. Lucas D. . Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes. Nature, 2015, 528(7582): 384
https://doi.org/10.1038/nature16184
466 Hughes A. , Schafer V. , Thirumalai K. , Nadlinger D. , Woodrow S. , Lucas D. , Ballance C. . Benchmarking a high-fidelity mixed-species entangling gate. Phys. Rev. Lett., 2020, 125(8): 080504
https://doi.org/10.1103/PhysRevLett.125.080504
467 V. Inlek I. , Crocker C. , Lichtman M. , Sosnova K. , Monroe C. . Multispecies trapped-ion node for quantum networking. Phys. Rev. Lett., 2017, 118(25): 250502
https://doi.org/10.1103/PhysRevLett.118.250502
468 Wang P. , Zhang J. , Luan C.-Y. , Um M. , Wang Y. . et al.. Significant loophole-free test of Kochen−Specker contextuality using two species of atomic ions. Sci. Adv., 2022, 8: eabk1660
https://doi.org/10.1126/sciadv.abk1660
469 Negnevitsky V. , Marinelli M. , K. Mehta K. , Y. Lo H. , Fluhmann C. , P. Home J. . Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register. Nature, 2018, 563(7732): 527
https://doi.org/10.1038/s41586-018-0668-z
470 Kielpinski D. , King B. , Myatt C. , A. Sackett C. , Turchette Q. , M. Itano W. , Monroe C. , J. Wineland D. , H. Zurek W. . Sympathetic cooling of trapped ions for quantum logic. Phys. Rev. A, 2000, 61(3): 032310
https://doi.org/10.1103/PhysRevA.61.032310
471 D. Barrett M. , DeMarco B. , Schaetz T. , Meyer V. , Leibfried D. , Britton J. , Chiaverini J. , Itano W. , Jelenković B. , D. Jost J. , Langer C. , Rosenband T. , J. Wineland D. . Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic. Phys. Rev. A, 2003, 68(4): 042302
https://doi.org/10.1103/PhysRevA.68.042302
472 C. Mao Z. , Z. Xu Y. , X. Mei Q. , D. Zhao W. , Jiang Y. , Wang Y. , Y. Chang X. , He L. , Yao L. , C. Zhou Z. , K. Wu Y. , M. Duan L. . Experimental realization of multi-ion sympathetic cooling on a trapped ion crystal. Phys. Rev. Lett., 2021, 127(14): 143201
https://doi.org/10.1103/PhysRevLett.127.143201
473 Allcock D. , Campbell W. , Chiaverini J. , Chuang I. , Hudson E. , Moore I. , Ransford A. , Roman C. , Sage J. , J. Wineland D. . omg blueprint for trapped ion quantum computing with metastable states. Appl. Phys. Lett., 2021, 119(21): 214002
https://doi.org/10.1063/5.0069544
474 X. Yang H. , Y. Ma J. , K. Wu Y. , Wang Y. , M. Cao M. , X. Guo W. , Y. Huang Y. , Feng L. , C. Zhou Z. , M. Duan L. . Realizing coherently convertible dual-type qubits with the same ion species. Nat. Phys., 2022, 18(9): 1058
https://doi.org/10.1038/s41567-022-01661-5
475 K. Mehta K. , D. Bruzewicz C. , McConnell R. , J. Ram R. , M. Sage J. , Chiaverini J. . Integrated optical addressing of an ion qubit. Nat. Nanotechnol., 2016, 11(12): 1066
https://doi.org/10.1038/nnano.2016.139
476 K. Mehta K. , Zhang C. , Malinowski M. , L. Nguyen T. , Stadler M. , P. Home J. . Integrated optical multi-ion quantum logic. Nature, 2020, 586(7830): 533
https://doi.org/10.1038/s41586-020-2823-6
477 Stuart J. , Panock R. , Bruzewicz C. , Sedlacek J. , Mc-Connell R. , Chuang I. , Sage J. , Chiaverini J. . Chipintegrated voltage sources for control of trapped ions. Phys. Rev. Appl., 2019, 11(2): 024010
https://doi.org/10.1103/PhysRevApplied.11.024010
478 Flühmann C. , L. Nguyen T. , Marinelli M. , Negnevitsky V. , Mehta K. , Home J. . Encoding a qubit in a trapped-ion mechanical oscillator. Nature, 2019, 566(7745): 513
https://doi.org/10.1038/s41586-019-0960-6
479 Erhard A. , Poulsen Nautrup H. , Meth M. , Postler L. , Stricker R. , Stadler M. , Negnevitsky V. , Ringbauer M. , Schindler P. , J. Briegel H. , Blatt R. , Friis N. , Monz T. . Entangling logical qubits with lattice surgery. Nature, 2021, 589(7841): 220
https://doi.org/10.1038/s41586-020-03079-6
480 Egan L. , M. Debroy D. , Noel C. , Risinger A. , Zhu D. , Biswas D. , Newman M. , Li M. , R. Brown K. , Cetina M. , Monroe C. . Fault-tolerant control of an error-corrected qubit. Nature, 2021, 598(7880): 281
https://doi.org/10.1038/s41586-021-03928-y
481 Postler L. , Heuβen S. , Pogorelov I. , Rispler M. , Feldker T. , Meth M. , D. Marciniak C. , Stricker R. , Ringbauer M. , Blatt R. , Schindler P. , Müller M. , Monz T. . Demonstration of fault-tolerant universal quantum gate operations. Nature, 2022, 605(7911): 675
https://doi.org/10.1038/s41586-022-04721-1
482 D. Bruzewicz C. , Chiaverini J. , McConnell R. , M. Sage J. . Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Lett., 2019, 6: 021314
https://doi.org/10.1063/1.5088164
483 D. Romaszko Z. , Hong S. , Siegele M. , K. Puddy R. , R. Lebrun-Gallagher F. , Weidt S. , K. Hensinger W. . Engineering of microfabricated ion traps and integration of advanced on-chip features. Nat. Rev. Phys., 2020, 2(6): 285
https://doi.org/10.1038/s42254-020-0182-8
484 R. Brown K. , Chiaverini J. , M. Sage J. , Haffner H. . Materials challenges for trapped-ion quantum computers. Nat. Rev. Mater., 2021, 6: 892
https://doi.org/10.1038/s41578-021-00292-1
485 Huang W. , H. Yang C. , W. Chan K. , Tanttu T. , Hensen B. , C. C. Leon R. , A. Fogarty M. , C. C. Hwang J. , E. Hudson F. , M. Itoh K. , Morello A. , Laucht A. , S. Dzurak A. . Fidelity benchmarks for two-qubit gates in silicon. Nature, 2019, 569(7757): 532
https://doi.org/10.1038/s41586-019-1197-0
486 M. Zajac D. , J. Sigillito A. , Russ M. , Borjans F. , M. Taylor J. , Burkard G. , R. Petta J. . Resonantly driven CNOT gate for electron spins. Science, 2018, 359(6374): 439
https://doi.org/10.1126/science.aao5965
487 W. Hendrickx N. , P. Franke D. , Sammak A. , Scappucci G. , Veldhorst M. . Fast two-qubit logic with holes in germanium. Nature, 2020, 577(7791): 487
https://doi.org/10.1038/s41586-019-1919-3
488 Maurand R. , Jehl X. , Kotekar-Patil D. , Corna A. , Bohuslavskyi H. , Lavieville R. , Hutin L. , Barraud S. , Vinet M. , Sanquer M. , De Franceschi S. . A CMOS silicon spin qubit. Nat. Commun., 2016, 7(1): 13575
https://doi.org/10.1038/ncomms13575
489 T. Muhonen J. , P. Dehollain J. , Laucht A. , E. Hudson F. , Kalra R. , Sekiguchi T. , M. Itoh K. , N. Jamieson D. , C. McCallum J. , S. Dzurak A. , Morello A. . Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol., 2014, 9(12): 986
https://doi.org/10.1038/nnano.2014.211
490 He Y. , K. Gorman S. , Keith D. , Kranz L. , G. Keizer J. , Y. Simmons M. . A two-qubit gate between phosphorus donor electrons in silicon. Nature, 2019, 571(7765): 371
https://doi.org/10.1038/s41586-019-1381-2
491 M. K. Vandersypen L. , A. Eriksson M. . Quantum computing with semiconductor spins. Phys. Today, 2019, 72(8): 38
https://doi.org/10.1063/PT.3.4270
492 Noiri A. , Takeda K. , Nakajima T. , Kobayashi T. , Sammak A. , Scappucci G. , Tarucha S. . Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature, 2022, 601(7893): 338
https://doi.org/10.1038/s41586-021-04182-y
493 T. Mądzik M. , Asaad S. , Youssry A. , Joecker B. , M. Rudinger K. . et al.. Precision tomography of a three-qubit donor quantum processor in silicon. Nature, 2022, 601(7893): 348
https://doi.org/10.1038/s41586-021-04292-7
494 Xue X. , Russ M. , Samkharadze N. , Undseth B. , Sammak A. , Scappucci G. , M. K. Vandersypen L. . Quantum logic with spin qubits crossing the surface code threshold. Nature, 2022, 601(7893): 343
https://doi.org/10.1038/s41586-021-04273-w
495 West A. , Hensen B. , Jouan A. , Tanttu T. , H. Yang C. , Rossi A. , F. Gonzalez-Zalba M. , Hudson F. , Morello A. , J. Reilly D. , S. Dzurak A. . Gate-based single-shot readout of spins in silicon. Nat. Nanotechnol., 2019, 14(5): 437
https://doi.org/10.1038/s41565-019-0400-7
496 Pakkiam P. , V. Timofeev A. , G. House M. , R. Hogg M. , Kobayashi T. , Koch M. , Rogge S. , Y. Simmons M. . Single-shot single-gate RF spin readout in silicon. Phys. Rev. X, 2018, 8(4): 041032
https://doi.org/10.1103/PhysRevX.8.041032
497 Urdampilleta M. , J. Niegemann D. , Chanrion E. , Jadot B. , Spence C. , A. Mortemousque P. , Bauerle C. , Hutin L. , Bertrand B. , Barraud S. , Maurand R. , Sanquer M. , Jehl X. , De Franceschi S. , Vinet M. , Meunier T. . Gate-based high fidelity spin readout in a CMOS device. Nat. Nanotechnol., 2019, 14(8): 737
https://doi.org/10.1038/s41565-019-0443-9
498 Zheng G. , Samkharadze N. , L. Noordam M. , Kalhor N. , Brousse D. , Sammak A. , Scappucci G. , M. K. Vandersypen L. . Rapid gate-based spin read-out in silicon using an on-chip resonator. Nat. Nanotechnol., 2019, 14(8): 742
https://doi.org/10.1038/s41565-019-0488-9
499 Mi X. , Benito M. , Putz S. , M. Zajac D. , M. Taylor J. , Burkard G. , R. Petta J. . A coherent spin–photon interface in silicon. Nature, 2018, 555(7698): 599
https://doi.org/10.1038/nature25769
500 Samkharadze N. , Zheng G. , Kalhor N. , Brousse D. , Sammak A. , C. Mendes U. , Blais A. , Scappucci G. , M. K. Vandersypen L. . Strong spin−photon coupling in silicon. Science, 2018, 359(6380): 1123
https://doi.org/10.1126/science.aar4054
501 J. Landig A. , V. Koski J. , Scarlino P. , C. Mendes U. , Blais A. , Reichl C. , Wegscheider W. , Wallraff A. , Ensslin K. , Ihn T. . Coherent spin–photon coupling using a resonant exchange qubit. Nature, 2018, 560(7717): 179
https://doi.org/10.1038/s41586-018-0365-y
502 Borjans F. , G. Croot X. , Mi X. , J. Gullans M. , R. Petta J. . Resonant microwave-mediated interactions between distant electron spins. Nature, 2020, 577(7789): 195
https://doi.org/10.1038/s41586-019-1867-y
503 Harvey-Collard P. , Dijkema J. , Zheng G. , Sammak A. , Scappucci G. , M. K. Vandersypen L. . Coherent spin-spin coupling mediated by virtual microwave photons. Phys. Rev. X, 2022, 12(2): 021026
https://doi.org/10.1103/PhysRevX.12.021026
504 Petit L. , G. J. Eenink H. , Russ M. , I. L. Lawrie W. , W. Hendrickx N. , G. J. Philips S. , S. Clarke J. , M. K. Vandersypen L. , Veldhorst M. . Universal quantum logic in hot silicon qubits. Nature, 2020, 580(7803): 355
https://doi.org/10.1038/s41586-020-2170-7
505 H. Yang C. , C. C. Leon R. , C. C. Hwang J. , Saraiva A. , Tanttu T. , Huang W. , Camirand Lemyre J. , W. Chan K. , Y. Tan K. , E. Hudson F. , M. Itoh K. , Morello A. , Pioro-Ladrière M. , Laucht A. , S. Dzurak A. . Operation of a silicon quantum processor unit cell above one kelvin. Nature, 2020, 580(7803): 350
https://doi.org/10.1038/s41586-020-2171-6
506 C. Camenzind L. , Geyer S. , Fuhrer A. , J. Warburton R. , M. Zumbuhl D. , V. Kuhlmann A. . A hole spin qubit in a fin field-effect transistor above 4 kelvin. Nat. Electron., 2022, 5(3): 178
https://doi.org/10.1038/s41928-022-00722-0
507 Xue X. , Patra B. , P. G. van Dijk J. , Samkharadze N. , Subramanian S. . et al.. CMOS-based cryogenic control of silicon quantum circuits. Nature, 2021, 593(7858): 205
https://doi.org/10.1038/s41586-021-03469-4
508 J. Pauka S. , Das K. , Kalra R. , Moini A. , Yang Y. , Trainer M. , Bousquet A. , Cantaloube C. , Dick N. , C. Gardner G. , J. Manfra M. , J. Reilly D. . A cryogenic CMOS chip for generating control signals for multiple qubits. Nat. Electron., 2021, 4(1): 64
https://doi.org/10.1038/s41928-020-00528-y
509 Burkard G.T. Ladd T.M. Nichol J.Pan A.R. Petta J., Semiconductor spin qubits, arXiv: 2112.08863v1 (2022)
510 A. Zwanenburg F. , S. Dzurak A. , Morello A. , Y. Simmons M. , C. L. Hollenberg L. , Klimeck G. , Rogge S. , N. Coppersmith S. , A. Eriksson M. . Silicon quantum electronics. Rev. Mod. Phys., 2013, 85(3): 961
https://doi.org/10.1103/RevModPhys.85.961
511 Kim D. , R. Ward D. , B. Simmons C. , K. Gamble J. , Blume-Kohout R. , Nielsen E. , E. Savage D. , G. Lagally M. , Friesen M. , N. Coppersmith S. , A. Eriksson M. . Microwave-driven coherent operation of a semiconductor quantum dot charge qubit. Nat. Nanotechnol., 2015, 10(3): 243
https://doi.org/10.1038/nnano.2014.336
512 R. MacQuarrie E. , F. Neyens S. , P. Dodson J. , Corrigan J. , Thorgrimsson B. . et al.. Progress toward a capacitively mediated CNOT between two charge qubits in Si/SiGe. npj Quantum Inf., 2020, 6: 81
https://doi.org/10.1038/s41534-020-00314-w
513 Medford J. , Beil J. , M. Taylor J. , D. Bartlett S. , C. Doherty A. , I. Rashba E. , P. DiVincenzo D. , Lu H. , C. Gossard A. , M. Marcus C. . Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat. Nanotechnol., 2013, 8(9): 654
https://doi.org/10.1038/nnano.2013.168
514 J. Weinstein A.D. Reed M.M. Jones A.W. Andrews R.Barnes D., et al.., Universal logic with encoded spin qubits in silicon, arXiv: 2202.03605 (2022)
515 Kim D. , Shi Z. , B. Simmons C. , R. Ward D. , R. Prance J. , S. Koh T. , K. Gamble J. , E. Savage D. , G. Lagally M. , Friesen M. , N. Coppersmith S. , A. Eriksson M. . Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature, 2014, 511: 70
https://doi.org/10.1038/nature13407
516 R. Petta J. , C. Johnson A. , M. Taylor J. , A. Laird E. , Yacoby A. , D. Lukin M. , M. Marcus C. , P. Hanson M. , C. Gossard A. . Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 2005, 309(5744): 2180
https://doi.org/10.1126/science.1116955
517 Wu X. , Ward D. , Prance J. , Kim D. , K. Gamble J. , Mohr R. , Shi Z. , Savage D. , Lagally M. , Friesen M. , N. Coppersmith S. , A. Eriksson M. . Two-axis control of a singlet-triplet qubit with an integrated micromagnet. Proc. Natl. Acad. Sci. USA, 2014, 111(33): 11938
https://doi.org/10.1073/pnas.1412230111
518 Chatterjee A. , Stevenson P. , De Franceschi S. , Morello A. , P. de Leon N. , Kuemmeth F. . Semiconductor qubits in practice. Nat. Rev. Phys., 2021, 3(3): 157
https://doi.org/10.1038/s42254-021-00283-9
519 J. Heinrich A. , D. Oliver W. , M. K. Vandersypen L. , Ardavan A. , Sessoli R. , Loss D. , B. Jayich A. , Fernandez-Rossier J. , Laucht A. , Morello A. . Quantumcoherent nanoscience. Nat. Nanotechnol., 2021, 16(12): 1318
https://doi.org/10.1038/s41565-021-00994-1
520 Zhang X. , O. Li H. , Cao G. , Xiao M. , C. Guo G. , P. Guo G. . Semiconductor quantum computation. Natl. Sci. Rev., 2019, 6(1): 32
https://doi.org/10.1093/nsr/nwy153
521 H. Yang C. , Rossi A. , Ruskov R. , S. Lai N. , A. Mohiyaddin F. , Lee S. , Tahan C. , Klimeck G. , Morello A. , S. Dzurak A. . Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun., 2013, 4(1): 2069
https://doi.org/10.1038/ncomms3069
522 Borjans F. , Zajac D. , Hazard T. , Petta J. . Single-spin relaxation in a synthetic spin−orbit field. Phys. Rev. Appl., 2019, 11(4): 044063
https://doi.org/10.1103/PhysRevApplied.11.044063
523 Veldhorst M. , H. Yang C. , C. C. Hwang J. , Huang W. , P. Dehollain J. , T. Muhonen J. , Simmons S. , Laucht A. , E. Hudson F. , M. Itoh K. , Morello A. , S. Dzurak A. . A two-qubit logic gate in silicon. Nature, 2015, 526(7573): 410
https://doi.org/10.1038/nature15263
524 Yoneda J. , Takeda K. , Otsuka T. , Nakajima T. , R. Delbecq M. , Allison G. , Honda T. , Kodera T. , Oda S. , Hoshi Y. , Usami N. , M. Itoh K. , Tarucha S. . A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol., 2018, 13(2): 102
https://doi.org/10.1038/s41565-017-0014-x
525 J. Pla J. , Y. Tan K. , P. Dehollain J. , H. Lim W. , J. L. Morton J. , N. Jamieson D. , S. Dzurak A. , Morello A. . A single-atom electron spin qubit in silicon. Nature, 2012, 489(7417): 541
https://doi.org/10.1038/nature11449
526 H. Yang C. , W. Chan K. , Harper R. , Huang W. , Evans T. , C. C. Hwang J. , Hensen B. , Laucht A. , Tanttu T. , E. Hudson F. , T. Flammia S. , M. Itoh K. , Morello A. , D. Bartlett S. , S. Dzurak A. . Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron., 2019, 2(4): 151
https://doi.org/10.1038/s41928-019-0234-1
527 T. Muhonen J. , Laucht A. , Simmons S. , P. Dehollain J. , Kalra R. . et al.. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys.: Condens. Matter, 2015, 27(15): 154205
https://doi.org/10.1088/0953-8984/27/15/154205
528 G. J. Philips S. , T. Mądzik M. , V. Amitonov S. , L. de Snoo S. , Russ M. . et al.. Universal control of a six-qubit quantum processor in silicon. Nature, 2022, 609(7929): 919
https://doi.org/10.1038/s41586-022-05117-x
529 Hanson R. , P. Kouwenhoven L. , R. Petta J. , Tarucha S. , M. K. Vandersypen L. . Spins in few-electron quantum dots. Rev. Mod. Phys., 2007, 79(4): 1217
https://doi.org/10.1103/RevModPhys.79.1217
530 Hensgens T. , Fujita T. , Janssen L. , Li X. , J. Van Diepen C. , Reichl C. , Wegscheider W. , Das Sarma S. , M. K. Vandersypen L. . Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature, 2017, 548(7665): 70
https://doi.org/10.1038/nature23022
531 P. Dehollain J. , Mukhopadhyay U. , P. Michal V. , Wang Y. , Wunsch B. , Reichl C. , Wegscheider W. , S. Rudner M. , Demler E. , M. K. Vandersypen L. . Nagaoka ferromagnetism observed in a quantum dot plaquette. Nature, 2020, 579(7800): 528
https://doi.org/10.1038/s41586-020-2051-0
532 P. Kandel Y. , Qiao H. , Fallahi S. , C. Gardner G. , J. Manfra M. , M. Nichol J. . Coherent spin-state transfer via Heisenberg exchange. Nature, 2019, 573(7775): 553
https://doi.org/10.1038/s41586-019-1566-8
533 Qiao H. , P. Kandel Y. , Deng K. , Fallahi S. , C. Gardner G. , J. Manfra M. , Barnes E. , M. Nichol J. . Coherent multispin exchange coupling in a quantum-dot spin chain. Phys. Rev. X, 2020, 10(3): 031006
https://doi.org/10.1103/PhysRevX.10.031006
534 Crippa A. , Ezzouch R. , Apra A. , Amisse A. , Lavieville R. , Hutin L. , Bertrand B. , Vinet M. , Urdampilleta M. , Meunier T. , Sanquer M. , Jehl X. , Maurand R. , De Franceschi S. . Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon. Nat. Commun., 2019, 10(1): 2776
https://doi.org/10.1038/s41467-019-10848-z
535 Fricke L. , J. Hile S. , Kranz L. , Chung Y. , He Y. , Pakkiam P. , G. House M. , G. Keizer J. , Y. Simmons M. . Coherent control of a donor-molecule electron spin qubit in silicon. Nat. Commun., 2021, 12(1): 3323
https://doi.org/10.1038/s41467-021-23662-3
536 F. Watson T. , G. J. Philips S. , Kawakami E. , R. Ward D. , Scarlino P. , Veldhorst M. , E. Savage D. , G. Lagally M. , Friesen M. , N. Coppersmith S. , A. Eriksson M. , M. K. Vandersypen L. . A programmable two-qubit quantum processor in silicon. Nature, 2018, 555(7698): 633
https://doi.org/10.1038/nature25766
537 Zhang X. , Z. Hu R. , O. Li H. , M. Jing F. , Zhou Y. , L. Ma R. , Ni M. , Luo G. , Cao G. , L. Wang G. , Hu X. , W. Jiang H. , C. Guo G. , P. Guo G. . Giant anisotropy of spin relaxation and spin-valley mixing in a silicon quantum dot. Phys. Rev. Lett., 2020, 124(25): 257701
https://doi.org/10.1103/PhysRevLett.124.257701
538 W. Hendrickx N. , I. L. Lawrie W. , Petit L. , Sammak A. , Scappucci G. , Veldhorst M. . A single-hole spin qubit. Nat. Commun., 2020, 11(1): 3478
https://doi.org/10.1038/s41467-020-17211-7
539 W. Hendrickx N. , I. L. Lawrie W. , Russ M. , van Riggelen F. , L. de Snoo S. , N. Schouten R. , Sammak A. , Scappucci G. , Veldhorst M. . A four-qubit germanium quantum processor. Nature, 2021, 591(7851): 580
https://doi.org/10.1038/s41586-021-03332-6
540 Wang K. , Xu G. , Gao F. , Liu H. , L. Ma R. , Zhang X. , Wang Z. , Cao G. , Wang T. , J. Zhang J. , Culcer D. , Hu X. , W. Jiang H. , O. Li H. , C. Guo G. , P. Guo G. . Ultrafast coherent control of a hole spin qubit in a germanium quantum dot. Nat. Commun., 2022, 13(1): 206
https://doi.org/10.1038/s41467-021-27880-7
541 Jirovec D. , M. Mutter P. , Hofmann A. , Crippa A. , Rychetsky M. , L. Craig D. , Kukucka J. , Martins F. , Ballabio A. , Ares N. , Chrastina D. , Isella G. , Burkard G. , Katsaros G. . Dynamics of hole singlet-triplet qubits with large g-factor differences. Phys. Rev. Lett., 2022, 128(12): 126803
https://doi.org/10.1103/PhysRevLett.128.126803
542 F. Watson T. , Weber B. , L. Hsueh Y. , L. C. Hollenberg L. , Rahman R. , Y. Simmons M. . Atomically engineered electron spin lifetimes of 30 s in silicon. Sci. Adv., 2017, 3(3): e1602811
https://doi.org/10.1126/sciadv.1602811
543 Takeda K. , Noiri A. , Yoneda J. , Nakajima T. , Tarucha S. . Resonantly driven singlet−triplet spin qubit in silicon. Phys. Rev. Lett., 2020, 124(11): 117701
https://doi.org/10.1103/PhysRevLett.124.117701
544 H. L. Koppens F. , Buizert C. , J. Tielrooij K. , T. Vink I. , C. Nowack K. , Meunier T. , P. Kouwenhoven L. , M. K. Vandersypen L. . Driven coherent oscillations of a single electron spin in a quantum dot. Nature, 2006, 442(7104): 766
https://doi.org/10.1038/nature05065
545 Veldhorst M. , C. C. Hwang J. , H. Yang C. , W. Leenstra A. , de Ronde B. , P. Dehollain J. , T. Muhonen J. , E. Hudson F. , M. Itoh K. , Morello A. , S. Dzurak A. . An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol., 2014, 9(12): 981
https://doi.org/10.1038/nnano.2014.216
546 C. Nowack K. , H. Koppens F. , V. Nazarov Y. , M. Vandersypen L. . Coherent control of a single electron spin with electric fields. Science, 2007, 318(5855): 1430
https://doi.org/10.1126/science.1148092
547 Tokura Y. , G. van der Wiel W. , Obata T. , Tarucha S. . Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett., 2006, 96(4): 047202
https://doi.org/10.1103/PhysRevLett.96.047202
548 Xue X. , F. Watson T. , Helsen J. , R. Ward D. , E. Savage D. , G. Lagally M. , N. Coppersmith S. , A. Eriksson M. , Wehner S. , M. K. Vandersypen L. . Benchmarking gate fidelities in a Si/SiGe two-qubit device. Phys. Rev. X, 2019, 9(2): 021011
https://doi.org/10.1103/PhysRevX.9.021011
549 D. Shulman M. , E. Dial O. , P. Harvey S. , Bluhm H. , Umansky V. , Yacoby A. . Demonstration of entanglement of electrostatically coupled singlet−triplet qubits. Science, 2012, 336(6078): 202
https://doi.org/10.1126/science.1217692
550 M. Nichol J. , A. Orona L. , P. Harvey S. , Fallahi S. , C. Gardner G. , J. Manfra M. , Yacoby A. . High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf., 2017, 3: 3
https://doi.org/10.1038/s41534-016-0003-1
551 R. Mills A. , R. Guinn C. , J. Gullans M. , J. Sigillito A. , M. Feldman M. , Nielsen E. , R. Petta J. . Twoqubit silicon quantum processor with operation fidelity exceeding 99%. Sci. Adv., 2022, 8(14): eabn5130
https://doi.org/10.1126/sciadv.abn5130
552 Hu X. , Das Sarma S. . Charge-fluctuation-induced dephasing of exchange-coupled spin qubits. Phys. Rev. Lett., 2006, 96(10): 100501
https://doi.org/10.1103/PhysRevLett.96.100501
553 Kranz L. , K. Gorman S. , Thorgrimsson B. , He Y. , Keith D. , G. Keizer J. , Y. Simmons M. . Exploiting a single-crystal environment to minimize the charge noise on qubits in silicon. Adv. Mater., 2020, 32(40): 2003361
https://doi.org/10.1002/adma.202003361
554 Laucht A. , Kalra R. , Simmons S. , P. Dehollain J. , T. Muhonen J. , A. Mohiyaddin F. , Freer S. , E. Hudson F. , M. Itoh K. , N. Jamieson D. , C. McCallum J. , S. Dzurak A. , Morello A. . A dressed spin qubit in silicon. Nat. Nanotechnol., 2017, 12(1): 61
https://doi.org/10.1038/nnano.2016.178
555 E. Seedhouse A. , Hansen I. , Laucht A. , H. Yang C. , S. Dzurak A. , Saraiva A. . Quantum computation protocol for dressed spins in a global field. Phys. Rev. B, 2021, 104(23): 235411
https://doi.org/10.1103/PhysRevB.104.235411
556 Hansen I. , E. Seedhouse A. , Saraiva A. , Laucht A. , S. Dzurak A. , H. Yang C. . Pulse engineering of a global field for robust and universal quantum computation. Phys. Rev. A, 2021, 104(6): 062415
https://doi.org/10.1103/PhysRevA.104.062415
557 Tosi G. , A. Mohiyaddin F. , Schmitt V. , Tenberg S. , Rahman R. , Klimeck G. , Morello A. . Silicon quantum processor with robust long-distance qubit couplings. Nat. Commun., 2017, 8(1): 450
https://doi.org/10.1038/s41467-017-00378-x
558 Wang X. , S. Bishop L. , P. Kestner J. , Barnes E. , Sun K. , Das Sarma S. . Composite pulses for robust universal control of singlet–triplet qubits. Nat. Commun., 2012, 3(1): 997
https://doi.org/10.1038/ncomms2003
559 A. Broome M. , F. Watson T. , Keith D. , K. Gorman S. , G. House M. , G. Keizer J. , J. Hile S. , Baker W. , Y. Simmons M. . High-fidelity single-shot singlet−triplet readout of precision-placed donors in silicon. Phys. Rev. Lett., 2017, 119(4): 046802
https://doi.org/10.1103/PhysRevLett.119.046802
560 Harvey-Collard P. , D’Anjou B. , Rudolph M. , T. Jacobson N. , Dominguez J. , A. Ten Eyck G. , R. Wendt J. , Pluym T. , P. Lilly M. , A. Coish W. , Pioro-Ladrière M. , S. Carroll M. . High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism. Phys. Rev. X, 2018, 8(2): 021046
https://doi.org/10.1103/PhysRevX.8.021046
561 M. Elzerman J. , Hanson R. , H. Willems van Beveren L. , Witkamp B. , M. K. Vandersypen L. , P. Kouwenhoven L. . Single-shot read-out of an individual electron spin in a quantum dot. Nature, 2004, 430(6998): 431
https://doi.org/10.1038/nature02693
562 J. Pla J. , Y. Tan K. , P. Dehollain J. , H. Lim W. , J. L. Morton J. , A. Zwanenburg F. , N. Jamieson D. , S. Dzurak A. , Morello A. . High-fidelity readout and control of a nuclear spin qubit in silicon. Nature, 2013, 496(7445): 334
https://doi.org/10.1038/nature12011
563 Keith D. , K. Gorman S. , Kranz L. , He Y. , G. Keizer J. , A. Broome M. , Y. Simmons M. . Benchmarking high fidelity single-shot readout of semiconductor qubits. New J. Phys., 2019, 21(6): 063011
https://doi.org/10.1088/1367-2630/ab242c
564 Vigneau F.Fedele F.Chatterjee A.Reilly D.Kuemmeth F.Gonzalez-Zalba F.Laird E.Ares N., Probing quantum devices with radio-frequency reflectometry, arXiv: 2202.10516 (2022)
565 Y. Huang J. , H. Lim W. , C. C. Leon R. , H. Yang C. , E. Hudson F. , C. Escott C. , Saraiva A. , S. Dzurak A. , Laucht A. . A high-sensitivity charge sensor for silicon qubits above 1 K. Nano Lett., 2021, 21(14): 6328
https://doi.org/10.1021/acs.nanolett.1c01003
566 Schaal S. , Ahmed I. , A. Haigh J. , Hutin L. , Bertrand B. , Barraud S. , Vinet M. , M. Lee C. , Stelmashenko N. , W. A. Robinson J. , Y. Qiu J. , Hacohen-Gourgy S. , Siddiqi I. , F. Gonzalez-Zalba M. , J. L. Morton J. . Fast gate-based readout of silicon quantum dots using Josephson parametric amplification. Phys. Rev. Lett., 2020, 124(6): 067701
https://doi.org/10.1103/PhysRevLett.124.067701
567 R. Hogg M.Pakkiam P.K. Gorman S.V. Timofeev A.Chung Y.K. Gulati G.G. House M.Y. Simmons M., Single-shot readout of multiple donor electron spins with a gate-based sensor, arXiv: 2203.09248 (2022)
568 Ruffino A. , Y. Yang T. , Michniewicz J. , Peng Y. , Charbon E. , F. Gonzalez-Zalba M. . A cryo-CMOS chip that integrates silicon quantum dots and multiplexed dispersive readout electronics. Nat. Electron., 2021, 5(1): 53
https://doi.org/10.1038/s41928-021-00687-6
569 Xue X. , D’Anjou B. , F. Watson T. , R. Ward D. , E. Savage D. , G. Lagally M. , Friesen M. , N. Coppersmith S. , A. Eriksson M. , A. Coish W. , M. K. Vandersypen L. . Repetitive quantum nondemolition measurement and soft decoding of a silicon spin qubit. Phys. Rev. X, 2020, 10(2): 021006
https://doi.org/10.1103/PhysRevX.10.021006
570 Nakajima T. , Noiri A. , Yoneda J. , R. Delbecq M. , Stano P. , Otsuka T. , Takeda K. , Amaha S. , Allison G. , Kawasaki K. , Ludwig A. , D. Wieck A. , Loss D. , Tarucha S. . Quantum non-demolition measurement of an electron spin qubit. Nat. Nanotechnol., 2019, 14(6): 555
https://doi.org/10.1038/s41565-019-0426-x
571 J. van Diepen C. , K. Hsiao T. , Mukhopadhyay U. , Reichl C. , Wegscheider W. , M. K. Vandersypen L. . Electron cascade for distant spin readout. Nat. Commun., 2021, 12(1): 77
https://doi.org/10.1038/s41467-020-20388-6
572 Borjans F. , Mi X. , Petta J. . Spin digitizer for highfidelity readout of a cavity-coupled silicon triple quantum dot. Phys. Rev. Appl., 2021, 15(4): 044052
https://doi.org/10.1103/PhysRevApplied.15.044052
573 Keith D. , Chung Y. , Kranz L. , Thorgrimsson B. , K. Gorman S. , Y. Simmons M. . Ramped measurement technique for robust high-fidelity spin qubit readout. Sci. Adv., 2022, 8(36): eabq0455
https://doi.org/10.1126/sciadv.abq0455
574 Huang P. , Hu X. . Spin relaxation in a Si quantum dot due to spin-valley mixing. Phys. Rev. B, 2014, 90(23): 235315
https://doi.org/10.1103/PhysRevB.90.235315
575 F. Gonzalez-Zalba M. , de Franceschi S. , Charbon E. , Meunier T. , Vinet M. , S. Dzurak A. . Scaling silicon-based quantum computing using CMOS technology. Nat. Electron., 2021, 4(12): 872
https://doi.org/10.1038/s41928-021-00681-y
576 Ansaloni F. , Chatterjee A. , Bohuslavskyi H. , Bertrand B. , Hutin L. , Vinet M. , Kuemmeth F. . Single-electron operations in a foundry-fabricated array of quantum dots. Nat. Commun., 2020, 11(1): 6399
https://doi.org/10.1038/s41467-020-20280-3
577 Li R.I. D. Stuyck N.Kubicek S.Jussot J.T. Chan B., et al.., A flexible 300 mm integrated Si MOS platform for electron- and hole-spin qubits exploration, in: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2020, p. 38.3.1
578 M. J. Zwerver A. , Krahenmann T. , F. Watson T. , Lampert L. , C. George H. . et al.. Qubits made by advanced semiconductor manufacturing. Nat. Electron., 2022, 5(3): 184
https://doi.org/10.1038/s41928-022-00727-9
579 M. K. Vandersypen L. , Bluhm H. , S. Clarke J. , S. Dzurak A. , Ishihara R. , Morello A. , J. Reilly D. , R. Schreiber L. , Veldhorst M. . Interfacing spin qubits in quantum dots and donors — hot, dense, and coherent. npj Quantum Inf., 2017, 3: 34
https://doi.org/10.1038/s41534-017-0038-y
580 D. Hill C. , Peretz E. , J. Hile S. , G. House M. , Fuechsle M. , Rogge S. , Y. Simmons M. , C. L. Hollenberg L. . A surface code quantum computer in silicon. Sci. Adv., 2015, 1(9): e1500707
https://doi.org/10.1126/sciadv.1500707
581 M. Boter J.P. Dehollain J.P. G. van Dijk J.Xu Y.Hensgens T., et al.., The spider-web array — a sparse spin qubit array, arXiv: 2110.00189 (2021)
582 Veldhorst M. , G. J. Eenink H. , H. Yang C. , S. Dzurak A. . Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun., 2017, 8(1): 1766
https://doi.org/10.1038/s41467-017-01905-6
583 Li R. , Petit L. , P. Franke D. , P. Dehollain J. , Helsen J. , Steudtner M. , K. Thomas N. , R. Yoscovits Z. , J. Singh K. , Wehner S. , M. K. Vandersypen L. , S. Clarke J. , Veldhorst M. . A crossbar network for silicon quantum dot qubits. Sci. Adv., 2018, 4(7): eaar3960
https://doi.org/10.1126/sciadv.aar3960
584 Takeda K. , Noiri A. , Nakajima T. , Yoneda J. , Kobayashi T. , Tarucha S. . Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol., 2021, 16(9): 965
https://doi.org/10.1038/s41565-021-00925-0
585 R. Mills A. , M. Zajac D. , J. Gullans M. , J. Schupp F. , M. Hazard T. , R. Petta J. . Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat. Commun., 2019, 10(1): 1063
https://doi.org/10.1038/s41467-019-08970-z
586 P. Zwolak J.M. Taylor J., Colloquium: Advances in automation of quantum dot devices control, arXiv: 2112.09362 (2021)
587 P. Zwolak J. , McJunkin T. , S. Kalantre S. , Dodson J. , MacQuarrie E. , Savage D. , Lagally M. , Coppersmith S. , A. Eriksson M. , M. Taylor J. . Autotuning of double-dot devices in situ with machine learning. Phys. Rev. Appl., 2020, 13(3): 034075
https://doi.org/10.1103/PhysRevApplied.13.034075
588 Schaal S. , Rossi A. , N. Ciriano-Tejel V. , Y. Yang T. , Barraud S. , J. L. Morton J. , F. Gonzalez-Zalba M. . A CMOS dynamic random access architecture for radio-frequency readout of quantum devices. Nat. Electron., 2019, 2(6): 236
https://doi.org/10.1038/s41928-019-0259-5
589 K. Malinowski F. , Martins F. , B. Smith T. , D. Bartlett S. , C. Doherty A. , D. Nissen P. , Fallahi S. , C. Gardner G. , J. Manfra M. , M. Marcus C. , Kuemmeth F. . Fast spin exchange across a multielectron mediator. Nat. Commun., 2019, 10(1): 1196
https://doi.org/10.1038/s41467-019-09194-x
590 Bertrand B. , Hermelin S. , Takada S. , Yamamoto M. , Tarucha S. , Ludwig A. , D. Wieck A. , Bauerle C. , Meunier T. . Fast spin information transfer between distant quantum dots using individual electrons. Nat. Nanotechnol., 2016, 11(8): 672
https://doi.org/10.1038/nnano.2016.82
591 Mi X. , V. Cady J. , M. Zajac D. , W. Deelman P. , R. Petta J. . Strong coupling of a single electron in silicon to a microwave photon. Science, 2017, 355(6321): 156
https://doi.org/10.1126/science.aal2469
592 C. Maurer P. , Kucsko G. , Latta C. , Jiang L. , Y. Yao N. , D. Bennett S. , Pastawski F. , Hunger D. , Chisholm N. , Markham M. , J. Twitchen D. , I. Cirac J. , D. Lukin M. . Room-temperature quantum bit memory exceeding one second. Science, 2012, 336(6086): 1283
https://doi.org/10.1126/science.1220513
593 S. Cujia K. , Herb K. , Zopes J. , M. Abendroth J. , L. Degen C. . Parallel detection and spatial mapping of large nuclear spin clusters. Nat. Commun., 2022, 13(1): 1260
https://doi.org/10.1038/s41467-022-28935-z
594 H. Abobeih M. , Randall J. , E. Bradley C. , P. Bartling H. , A. Bakker M. , J. Degen M. , Markham M. , J. Twitchen D. , H. Taminiau T. . Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature, 2019, 576(7787): 411
https://doi.org/10.1038/s41586-019-1834-7
595 de Lange G. , van der Sar T. , Blok M. , H. Wang Z. , Dobrovitski V. , Hanson R. . Controlling the quantum dynamics of a mesoscopic spin bath in diamond. Sci. Rep., 2012, 2(1): 382
https://doi.org/10.1038/srep00382
596 S. Knowles H. , M. Kara D. , Atature M. . Demonstration of a coherent electronic spin cluster in diamond. Phys. Rev. Lett., 2016, 117(10): 100802
https://doi.org/10.1103/PhysRevLett.117.100802
597 J. Degen M. , J. H. Loenen S. , P. Bartling H. , E. Bradley C. , L. Meinsma A. , Markham M. , J. Twitchen D. , H. Taminiau T. . Entanglement of dark electronnuclear spin defects in diamond. Nat. Commun., 2021, 12(1): 3470
https://doi.org/10.1038/s41467-021-23454-9
598 H. Abobeih M. , Cramer J. , A. Bakker M. , Kalb N. , Markham M. , J. Twitchen D. , H. Taminiau T. . One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun., 2018, 9(1): 2552
https://doi.org/10.1038/s41467-018-04916-z
599 P. Bartling H. , H. Abobeih M. , Pingault B. , J. Degen M. , J. H. Loenen S. , E. Bradley C. , Randall J. , Markham M. , J. Twitchen D. , H. Taminiau T. . Entanglement of spin-pair qubits with intrinsic dephasing times exceeding a minute. Phys. Rev. X, 2022, 12(1): 011048
https://doi.org/10.1103/PhysRevX.12.011048
600 Bar-Gill N. , M. Pham L. , Jarmola A. , Budker D. , L. Walsworth R. . Solid-state electronic spin coherence time approaching one second. Nat. Commun., 2013, 4(1): 1743
https://doi.org/10.1038/ncomms2771
601 L. Goldman M. , Sipahigil A. , W. Doherty M. , Y. Yao N. , D. Bennett S. , Markham M. , J. Twitchen D. , B. Manson N. , Kubanek A. , D. Lukin M. . Phonon-induced population dynamics and intersystem crossing in nitrogen−vacancy centers. Phys. Rev. Lett., 2015, 114(14): 145502
https://doi.org/10.1103/PhysRevLett.114.145502
602 Thiering G. , Gali A. . Theory of the optical spinpolarization loop of the nitrogen−vacancy center in diamond. Phys. Rev. B, 2018, 98(8): 085207
https://doi.org/10.1103/PhysRevB.98.085207
603 Robledo L. , Childress L. , Bernien H. , Hensen B. , F. A. Alkemade P. , Hanson R. . High-fidelity projective read-out of a solid-state spin quantum register. Nature, 2011, 477(7366): 574
https://doi.org/10.1038/nature10401
604 Kalb N. , C. Humphreys P. , J. Slim J. , Hanson R. . Dephasing mechanisms of diamond-based nuclearspin memories for quantum networks. Phys. Rev. A, 2018, 97(6): 062330
https://doi.org/10.1103/PhysRevA.97.062330
605 Hensen B. , Bernien H. , E. Dreau A. , Reiserer A. , Kalb N. . et al.. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015, 526(7575): 682
https://doi.org/10.1038/nature15759
606 Smeltzer B. , Childress L. , Gali A. . 13C hyperfine interactions in the nitrogen−vacancy centre in diamond. New J. Phys., 2011, 13(2): 025021
https://doi.org/10.1088/1367-2630/13/2/025021
607 Dréau A. , R. Maze J. , Lesik M. , F. Roch J. , Jacques V. . High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond. Phys. Rev. B, 2012, 85(13): 134107
https://doi.org/10.1103/PhysRevB.85.134107
608 Jacques V. , Neumann P. , Beck J. , Markham M. , Twitchen D. , Meijer J. , Kaiser F. , Balasubramanian G. , Jelezko F. , Wrachtrup J. . Dynamic polarization of single nuclear spins by optical pumping of nitrogen−vacancy color centers in diamond at room temperature. Phys. Rev. Lett., 2009, 102(5): 057403
https://doi.org/10.1103/PhysRevLett.102.057403
609 London P. , Scheuer J. , M. Cai J. , Schwarz I. , Retzker A. , B. Plenio M. , Katagiri M. , Teraji T. , Koizumi S. , Isoya J. , Fischer R. , P. McGuinness L. , Naydenov B. , Jelezko F. . Detecting and polarizing nuclear spins with double resonance on a single electron spin. Phys. Rev. Lett., 2013, 111(6): 067601
https://doi.org/10.1103/PhysRevLett.111.067601
610 Schwartz I. , Scheuer J. , Tratzmiller B. , Muller S. , Chen Q. , Dhand I. , Y. Wang Z. , Muller C. , Naydenov B. , Jelezko F. , B. Plenio M. . Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen−vacancy center quantum dynamics. Sci. Adv., 2018, 4(8): eaat8978
https://doi.org/10.1126/sciadv.aat8978
611 Xie T. , Zhao Z. , Kong X. , Ma W. , Wang M. , Ye X. , Yu P. , Yang Z. , Xu S. , Wang P. , Wang Y. , Shi F. , Du J. . Beating the standard quantum limit under ambient conditions with solidstate spins. Sci. Adv., 2021, 7(32): eabg9204
https://doi.org/10.1126/sciadv.abg9204
612 Neumann P. , Beck J. , Steiner M. , Rempp F. , Fedder H. , R. Hemmer P. , Wrachtrup J. , Jelezko F. . Single-shot readout of a single nuclear spin. Science, 2010, 329(5991): 542
https://doi.org/10.1126/science.1189075
613 Q. Liu G. , Xing J. , L. Ma W. , Wang P. , H. Li C. , C. Po H. , R. Zhang Y. , Fan H. , B. Liu R. , Y. Pan X. . Single-shot readout of a nuclear spin weakly coupled to a nitrogenvacancy center at room temperature. Phys. Rev. Lett., 2017, 118(15): 150504
https://doi.org/10.1103/PhysRevLett.118.150504
614 Randall J. , E. Bradley C. , V. van der Gronden F. , Galicia A. , H. Abobeih M. , Markham M. , J. Twitchen D. , Machado F. , Y. Yao N. , H. Taminiau T. . Many-body-localized discrete time crystal with a programmable spin-based quantum simulator. Science, 2021, 374(6574): 1474
https://doi.org/10.1126/science.abk0603
615 Pompili M. , L. N. Hermans S. , Baier S. , K. C. Beukers H. , C. Humphreys P. , N. Schouten R. , F. L. Vermeulen R. , J. Tiggelman M. , dos Santos Martins L. , Dirkse B. , Wehner S. , Hanson R. . Realization of a multinode quantum network of remote solidstate qubits. Science, 2021, 372(6539): 259
https://doi.org/10.1126/science.abg1919
616 X. Shang Y. , Hong F. , H. Dai J. , N. Hui-Yu Y. , N. Lu Y. , K. Liu E. , H. Yu X. , Q. Liu G. , Y. Pan X. . Magnetic sensing inside a diamond anvil cell via nitrogen−vacancy center spins. Chin. Phys. Lett., 2019, 36(8): 086201
https://doi.org/10.1088/0256-307X/36/8/086201
617 Rong X. , Geng J. , Shi F. , Liu Y. , Xu K. , Ma W. , Kong F. , Jiang Z. , Wu Y. , Du J. . Experimental faulttolerant universal quantum gates with solid-state spins under ambient conditions. Nat. Commun., 2015, 6(1): 8748
https://doi.org/10.1038/ncomms9748
618 D. Fuchs G. , V. Dobrovitski V. , M. Toyli D. , J. Heremans F. , D. Awschalom D. . Gigahertz dynamics of a strongly driven single quantum spin. Science, 2009, 326(5959): 1520
https://doi.org/10.1126/science.1181193
619 Kong F. , Zhao P. , Ye X. , Wang Z. , Qin Z. , Yu P. , Su J. , Shi F. , Du J. . Nanoscale zero-field electron spin resonance spectroscopy. Nat. Commun., 2018, 9(1): 1563
https://doi.org/10.1038/s41467-018-03969-4
620 Scheuer J. , Kong X. , S. Said R. , Chen J. , Kurz A. , Marseglia L. , Du J. , R. Hemmer P. , Montangero S. , Calarco T. , Naydenov B. , Jelezko F. . Precise qubit control beyond the rotating wave approximation. New J. Phys., 2014, 16(9): 093022
https://doi.org/10.1088/1367-2630/16/9/093022
621 Balasubramanian G. , Neumann P. , Twitchen D. , Markham M. , Kolesov R. , Mizuochi N. , Isoya J. , Achard J. , Beck J. , Tissler J. , Jacques V. , R. Hemmer P. , Jelezko F. , Wrachtrup J. . Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 2009, 8(5): 383
https://doi.org/10.1038/nmat2420
622 Zhao N. , W. Ho S. , B. Liu R. . Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths. Phys. Rev. B, 2012, 85(11): 115303
https://doi.org/10.1103/PhysRevB.85.115303
623 Kolkowitz S. , P. Unterreithmeier Q. , D. Bennett S. , D. Lukin M. . Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett., 2012, 109(13): 137601
https://doi.org/10.1103/PhysRevLett.109.137601
624 H. Taminiau T. , J. T. Wagenaar J. , van der Sar T. , Jelezko F. , V. Dobrovitski V. , Hanson R. . Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett., 2012, 109(13): 137602
https://doi.org/10.1103/PhysRevLett.109.137602
625 Zhao N. , Honert J. , Schmid B. , Klas M. , Isoya J. , Markham M. , Twitchen D. , Jelezko F. , B. Liu R. , Fedder H. , Wrachtrup J. . Sensing single remote nuclear spins. Nat. Nanotechnol., 2012, 7(10): 657
https://doi.org/10.1038/nnano.2012.152
626 van der Sar T. , H. Wang Z. , S. Blok M. , Bernien H. , H. Taminiau T. , M. Toyli D. , A. Lidar D. , D. Awschalom D. , Hanson R. , V. Dobrovitski V. . Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature, 2012, 484(7392): 82
https://doi.org/10.1038/nature10900
627 Q. Liu G. , C. Po H. , Du J. , B. Liu R. , Y. Pan X. . Noise-resilient quantum evolution steered by dynamical decoupling. Nat. Commun., 2013, 4(1): 2254
https://doi.org/10.1038/ncomms3254
628 E. Bradley C. , Randall J. , H. Abobeih M. , C. Berrevoets R. , J. Degen M. , A. Bakker M. , Markham M. , J. Twitchen D. , H. Taminiau T. . A ten-qubit solidstate spin register with quantum memory up to one minute. Phys. Rev. X, 2019, 9(3): 031045
https://doi.org/10.1103/PhysRevX.9.031045
629 Reiserer A. , Kalb N. , S. Blok M. , J. M. van Bemmelen K. , H. Taminiau T. , Hanson R. , J. Twitchen D. , Markham M. . Robust quantum-network memory using decoherence-protected subspaces of nuclear spins. Phys. Rev. X, 2016, 6(2): 021040
https://doi.org/10.1103/PhysRevX.6.021040
630 Wang F. , Y. Huang Y. , Y. Zhang Z. , Zu C. , Y. Hou P. , X. Yuan X. , B. Wang W. , G. Zhang W. , He L. , Y. Chang X. , M. Duan L. . Room-temperature storage of quantum entanglement using decoherence-free subspace in a solid-state spin system. Phys. Rev. B, 2017, 96(13): 134314
https://doi.org/10.1103/PhysRevB.96.134314
631 Zu C. , B. Wang W. , He L. , G. Zhang W. , Y. Dai C. , Wang F. , M. Duan L. . Experimental realization of universal geometric quantum gates with solid-state spins. Nature, 2014, 514(7520): 72
https://doi.org/10.1038/nature13729
632 Arroyo-Camejo S. , Lazariev A. , W. Hell S. , Balasubramanian G. . Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun., 2014, 5(1): 4870
https://doi.org/10.1038/ncomms5870
633 Arai K. , Lee J. , Belthangady C. , R. Glenn D. , Zhang H. , L. Walsworth R. . Geometric phase magnetometry using a solid-state spin. Nat. Commun., 2018, 9(1): 4996
https://doi.org/10.1038/s41467-018-07489-z
634 Y. Huang Y. , K. Wu Y. , Wang F. , Y. Hou P. , B. Wang W. , G. Zhang W. , Q. Lian W. , Q. Liu Y. , Y. Wang H. , Y. Zhang H. , He L. , Y. Chang X. , Xu Y. , M. Duan L. . Experimental realization of robust geometric quantum gates with solid-state spins. Phys. Rev. Lett., 2019, 122(1): 010503
https://doi.org/10.1103/PhysRevLett.122.010503
635 Hirose M. , Cappellaro P. . Coherent feedback control of a single qubit in diamond. Nature, 2016, 532(7597): 77
https://doi.org/10.1038/nature17404
636 Rojkov I. , Layden D. , Cappellaro P. , Home J. , Reiter F. . Bias in error-corrected quantum sensing. Phys. Rev. Lett., 2022, 128(14): 140503
https://doi.org/10.1103/PhysRevLett.128.140503
637 Liu W. , Wu Y. , K. Duan C. , Rong X. , Du J. . Dynamically encircling an exceptional point in a real quantum system. Phys. Rev. Lett., 2021, 126(17): 170506
https://doi.org/10.1103/PhysRevLett.126.170506
638 Chen M. , Li C. , Palumbo G. , Q. Zhu Y. , Goldman N. , Cappellaro P. . A synthetic monopole source of Kalb−Ramond field in diamond. Science, 2022, 375(6584): 1017
https://doi.org/10.1126/science.abe6437
639 Ji W. , Chai Z. , Wang M. , Guo Y. , Rong X. , Shi F. , Ren C. , Wang Y. , Du J. . Spin quantum heat engine quantified by quantum steering. Phys. Rev. Lett., 2022, 128(9): 090602
https://doi.org/10.1103/PhysRevLett.128.090602
640 Kong F. , Ju C. , Liu Y. , Lei C. , Wang M. , Kong X. , Wang P. , Huang P. , Li Z. , Shi F. , Jiang L. , Du J. . Direct measurement of topological numbers with spins in diamond. Phys. Rev. Lett., 2016, 117(6): 060503
https://doi.org/10.1103/PhysRevLett.117.060503
641 Ji W. , Zhang L. , Wang M. , Zhang L. , Guo Y. , Chai Z. , Rong X. , Shi F. , J. Liu X. , Wang Y. , Du J. . Quantum simulation for three-dimensional chiral topological insulator. Phys. Rev. Lett., 2020, 125(2): 020504
https://doi.org/10.1103/PhysRevLett.125.020504
642 Wu Y. , Liu W. , Geng J. , Song X. , Ye X. , K. Duan C. , Rong X. , Du J. . Observation of parity−time symmetry breaking in a single-spin system. Science, 2019, 364(6443): 878
https://doi.org/10.1126/science.aaw8205
643 Zhang W. , Ouyang X. , Huang X. , Wang X. , Zhang H. , Yu Y. , Chang X. , Liu Y. , L. Deng D. , M. Duan L. . Observation of non-Hermitian topology with nonunitary dynamics of solid-state spins. Phys. Rev. Lett., 2021, 127(9): 090501
https://doi.org/10.1103/PhysRevLett.127.090501
644 N. Lu Y. , R. Zhang Y. , Q. Liu G. , Nori F. , Fan H. , Y. Pan X. . Observing information backflow from controllable non-Markovian multichannels in diamond. Phys. Rev. Lett., 2020, 124(21): 210502
https://doi.org/10.1103/PhysRevLett.124.210502
645 Zu C. , Machado F. , Ye B. , Choi S. , Kobrin B. , Mittiga T. , Hsieh S. , Bhattacharyya P. , Markham M. , Twitchen D. , Jarmola A. , Budker D. , R. Laumann C. , E. Moore J. , Y. Yao N. . Emergent hydrodynamics in a strongly interacting dipolar spin ensemble. Nature, 2021, 597(7874): 45
https://doi.org/10.1038/s41586-021-03763-1
646 Shi F. , Rong X. , Xu N. , Wang Y. , Wu J. , Chong B. , Peng X. , Kniepert J. , S. Schoenfeld R. , Harneit W. , Feng M. , Du J. . Room-temperature implementation of the Deutsch−Jozsa algorithm with a single electronic spin in diamond. Phys. Rev. Lett., 2010, 105(4): 040504
https://doi.org/10.1103/PhysRevLett.105.040504
647 Xu K. , Xie T. , Li Z. , Xu X. , Wang M. , Ye X. , Kong F. , Geng J. , Duan C. , Shi F. , Du J. . Experimental adiabatic quantum factorization under ambient conditions based on a solid-state single spin system. Phys. Rev. Lett., 2017, 118(13): 130504
https://doi.org/10.1103/PhysRevLett.118.130504
648 Zhang J. , S. Hegde S. , Suter D. . Efficient implementation of a quantum algorithm in a single nitrogenvacancy center of diamond. Phys. Rev. Lett., 2020, 125(3): 030501
https://doi.org/10.1103/PhysRevLett.125.030501
649 L. Ouyang X. , Z. Huang X. , K. Wu Y. , G. Zhang W. , Wang X. , L. Zhang H. , He L. , Y. Chang X. , M. Duan L. . Experimental demonstration of quantum-enhanced machine learning in a nitrogen−vacancy-center system. Phys. Rev. A, 2020, 101(1): 012307
https://doi.org/10.1103/PhysRevA.101.012307
650 Li Z. , Chai Z. , Guo Y. , Ji W. , Wang M. , Shi F. , Wang Y. , Lloyd S. , Du J. . Resonant quantum principal component analysis. Sci. Adv., 2021, 7(34): eabg2589
https://doi.org/10.1126/sciadv.abg2589
651 Bernien H. , Hensen B. , Pfaff W. , Koolstra G. , S. Blok M. , Robledo L. , H. Taminiau T. , Markham M. , J. Twitchen D. , Childress L. , Hanson R. . Heralded entanglement between solidstate qubits separated by three metres. Nature, 2013, 497(7447): 86
https://doi.org/10.1038/nature12016
652 Pfaff W. , J. Hensen B. , Bernien H. , B. van Dam S. , S. Blok M. , H. Taminiau T. , J. Tiggelman M. , N. Schouten R. , Markham M. , J. Twitchen D. , Hanson R. . Unconditional quantum teleportation between distant solid-state quantum bits. Science, 2014, 345(6196): 532
https://doi.org/10.1126/science.1253512
653 Kalb N. , A. Reiserer A. , C. Humphreys P. , J. W. Bakermans J. , J. Kamerling S. , H. Nickerson N. , C. Benjamin S. , J. Twitchen D. , Markham M. , Hanson R. . Entanglement distillation between solid-state quantum network nodes. Science, 2017, 356(6341): 928
https://doi.org/10.1126/science.aan0070
654 C. Humphreys P. , Kalb N. , P. J. Morits J. , N. Schouten R. , F. L. Vermeulen R. , J. Twitchen D. , Markham M. , Hanson R. . Deterministic delivery of remote entanglement on a quantum network. Nature, 2018, 558(7709): 268
https://doi.org/10.1038/s41586-018-0200-5
655 L. N. Hermans S. , Pompili M. , K. C. Beukers H. , Baier S. , Borregaard J. , Hanson R. . Qubit teleportation between non-neighbouring nodes in a quantum network. Nature, 2022, 605(7911): 663
https://doi.org/10.1038/s41586-022-04697-y
656 Shi F. , Kong X. , Wang P. , Kong F. , Zhao N. , B. Liu R. , Du J. . Sensing and atomic-scale structure analysis of single nuclear-spin clusters in diamond. Nat. Phys., 2014, 10(1): 21
https://doi.org/10.1038/nphys2814
657 Arai K. , Belthangady C. , Zhang H. , Bar-Gill N. , J. DeVience S. , Cappellaro P. , Yacoby A. , L. Walsworth R. . Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nat. Nanotechnol., 2015, 10(10): 859
https://doi.org/10.1038/nnano.2015.171
658 Schmitt S. , Gefen T. , M. Sturner F. , Unden T. , Wolff G. , Muller C. , Scheuer J. , Naydenov B. , Markham M. , Pezzagna S. , Meijer J. , Schwarz I. , Plenio M. , Retzker A. , P. McGuinness L. , Jelezko F. . Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science, 2017, 356(6340): 832
https://doi.org/10.1126/science.aam5532
659 Lovchinsky I. , D. Sanchez-Yamagishi J. , K. Urbach E. , Choi S. , Fang S. , I. Andersen T. , Watanabe K. , Taniguchi T. , Bylinskii A. , Kaxiras E. , Kim P. , Park H. , D. Lukin M. . Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science, 2017, 355(6324): 503
https://doi.org/10.1126/science.aal2538
660 Casola F. , van der Sar T. , Yacoby A. . Probing condensed matter physics with magnetometry based on nitrogen−vacancy centres in diamond. Nat. Rev. Mater., 2018, 3(1): 17088
https://doi.org/10.1038/natrevmats.2017.88
661 Jin Q. , Wang Z. , Zhang Q. , Yu Y. , Lin S. . et al.. Room-temperature ferromagnetism at an oxide-nitride interface. Phys. Rev. Lett., 2022, 128(1): 017202
https://doi.org/10.1103/PhysRevLett.128.017202
662 P. McGuinness L. , Yan Y. , Stacey A. , A. Simpson D. , T. Hall L. , Maclaurin D. , Prawer S. , Mulvaney P. , Wrachtrup J. , Caruso F. , E. Scholten R. , C. L. Hollenberg L. . Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol., 2011, 6(6): 358
https://doi.org/10.1038/nnano.2011.64
663 Shi F. , Zhang Q. , Wang P. , Sun H. , Wang J. , Rong X. , Chen M. , Ju C. , Reinhard F. , Chen H. , Wrachtrup J. , Wang J. , Du J. . Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347(6226): 1135
https://doi.org/10.1126/science.aaa2253
664 Wu Y. , Jelezko F. , B. Plenio M. , Weil T. . Diamond quantum devices in biology. Angew. Chem. Int. Ed., 2016, 55(23): 6586
https://doi.org/10.1002/anie.201506556
665 Dolde F. , Fedder H. , W. Doherty M. , Nobauer T. , Rempp F. , Balasubramanian G. , Wolf T. , Reinhard F. , C. L. Hollenberg L. , Jelezko F. , Wrachtrup J. . Electric-field sensing using single diamond spins. Nat. Phys., 2011, 7(6): 459
https://doi.org/10.1038/nphys1969
666 Dolde F. , W. Doherty M. , Michl J. , Jakobi I. , Naydenov B. , Pezzagna S. , Meijer J. , Neumann P. , Jelezko F. , B. Manson N. , Wrachtrup J. . Nanoscale detection of a single fundamental charge in ambient conditions using the NV-center in diamond. Phys. Rev. Lett., 2014, 112(9): 097603
https://doi.org/10.1103/PhysRevLett.112.097603
667 Mittiga T. , Hsieh S. , Zu C. , Kobrin B. , Machado F. , Bhattacharyya P. , Z. Rui N. , Jarmola A. , Choi S. , Budker D. , Y. Yao N. . Imaging the local charge environment of nitrogen−vacancy centers in diamond. Phys. Rev. Lett., 2018, 121(24): 246402
https://doi.org/10.1103/PhysRevLett.121.246402
668 Li R. , Kong F. , Zhao P. , Cheng Z. , Qin Z. , Wang M. , Zhang Q. , Wang P. , Wang Y. , Shi F. , Du J. . Nanoscale electrometry based on a magnetic-field-resistant spin sensor. Phys. Rev. Lett., 2020, 124(24): 247701
https://doi.org/10.1103/PhysRevLett.124.247701
669 Kucsko G. , C. Maurer P. , Y. Yao N. , Kubo M. , J. Noh H. , K. Lo P. , Park H. , D. Lukin M. . Nanometre-scale thermometry in a living cell. Nature, 2013, 500(7460): 54
https://doi.org/10.1038/nature12373
670 Neumann P. , Jakobi I. , Dolde F. , Burk C. , Reuter R. , Waldherr G. , Honert J. , Wolf T. , Brunner A. , H. Shim J. , Suter D. , Sumiya H. , Isoya J. , Wrachtrup J. . High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett., 2013, 13(6): 2738
https://doi.org/10.1021/nl401216y
671 W. Doherty M. , V. Struzhkin V. , A. Simpson D. , P. McGuinness L. , Meng Y. , Stacey A. , J. Karle T. , J. Hemley R. , B. Manson N. , C. L. Hollenberg L. , Prawer S. . Electronic properties and metrology applications of the diamond NV− center under pressure. Phys. Rev. Lett., 2014, 112(4): 047601
https://doi.org/10.1103/PhysRevLett.112.047601
672 Zheng H. , Xu J. , Z. Iwata G. , Lenz T. , Michl J. , Yavkin B. , Nakamura K. , Sumiya H. , Ohshima T. , Isoya J. , Wrachtrup J. , Wickenbrock A. , Budker D. . Zero-field magnetometry based on nitrogen−vacancy ensembles in diamond. Phys. Rev. Appl., 2019, 11(6): 064068
https://doi.org/10.1103/PhysRevApplied.11.064068
673 J. Vetter P. , Marshall A. , T. Genov G. , F. Weiss T. , Striegler N. , F. Großmann E. , Oviedo-Casado S. , Cerrillo J. , Prior J. , Neumann P. , Jelezko F. . Zero- and low-field sensing with nitrogen−vacancy centers. Phys. Rev. Appl., 2022, 17(4): 044028
https://doi.org/10.1103/PhysRevApplied.17.044028
674 Hsieh S. , Bhattacharyya P. , Zu C. , Mittiga T. , J. Smart T. , Machado F. , Kobrin B. , O. Hohn T. , Z. Rui N. , Kamrani M. , Chatterjee S. , Choi S. , Zaletel M. , V. Struzhkin V. , E. Moore J. , I. Levitas V. , Jeanloz R. , Y. Yao N. . Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science, 2019, 366(6471): 1349
https://doi.org/10.1126/science.aaw4352
675 Lesik M. , Plisson T. , Toraille L. , Renaud J. , Occelli F. , Schmidt M. , Salord O. , Delobbe A. , Debuisschert T. , Rondin L. , Loubeyre P. , F. Roch J. . Magnetic measurements on micrometersized samples under high pressure using designed NV centers. Science, 2019, 366(6471): 1359
https://doi.org/10.1126/science.aaw4329
676 Y. Yip K. , O. Ho K. , Y. Yu K. , Chen Y. , Zhang W. , Kasahara S. , Mizukami Y. , Shibauchi T. , Matsuda Y. , K. Goh S. , Yang S. . Measuring magnetic field texture in correlated electron systems under extreme conditions. Science, 2019, 366(6471): 1355
https://doi.org/10.1126/science.aaw4278
677 Wang Z. , McPherson C. , Kadado R. , Brandt N. , Edwards S. , Casey W. , Curro N. . AC sensing using nitrogen-vacancy centers in a diamond anvil cell up to 6 GPa. Phys. Rev. Appl., 2021, 16(5): 054014
https://doi.org/10.1103/PhysRevApplied.16.054014
678 H. Dai J.X. Shang Y.H. Yu Y.Xu Y.Yu H.Hong F.H. Yu X.Y. Pan X.Q. Liu G., Quantum sensing with diamond NV centers under megabar pressures, arXiv: 2204.05064 (2022)
679 Q. Liu G. , Feng X. , Wang N. , Li Q. , B. Liu R. . Coherent quantum control of nitrogen−vacancy center spins near 1000 kelvin. Nat. Commun., 2019, 10(1): 1344
https://doi.org/10.1038/s41467-019-09327-2
680 Chen Y. , Stearn S. , Vella S. , Horsley A. , W. Doherty M. . Optimisation of diamond quantum processors. New J. Phys., 2020, 22(9): 093068
https://doi.org/10.1088/1367-2630/abb0fb
681 M. Kessler E. , Lovchinsky I. , O. Sushkov A. , D. Lukin M. . Quantum error correction for metrology. Phys. Rev. Lett., 2014, 112(15): 150802
https://doi.org/10.1103/PhysRevLett.112.150802
682 Layden D. , Zhou S. , Cappellaro P. , Jiang L. . Ancilla-free quantum error correction codes for quantum metrology. Phys. Rev. Lett., 2019, 122(4): 040502
https://doi.org/10.1103/PhysRevLett.122.040502
683 F. Barry J. , M. Schloss J. , Bauch E. , J. Turner M. , A. Hart C. , M. Pham L. , L. Walsworth R. . Sensitivity optimization for NV-dimond magnetometry. Rev. Mod. Phys., 2020, 92(1): 015004
https://doi.org/10.1103/RevModPhys.92.015004
684 Groot-Berning K. , Kornher T. , Jacob G. , Stopp F. , T. Dawkins S. , Kolesov R. , Wrachtrup J. , Singer K. , Schmidt-Kaler F. . Deterministic single-ion implantation of rare-earth ions for nanometer-resolution color-center generation. Phys. Rev. Lett., 2019, 123(10): 106802
https://doi.org/10.1103/PhysRevLett.123.106802
685 Lühmann T. , John R. , Wunderlich R. , Meijer J. , Pezzagna S. . Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond. Nat. Commun., 2019, 10(1): 4956
https://doi.org/10.1038/s41467-019-12556-0
686 Chu Y. , de Leon N. , Shields B. , Hausmann B. , Evans R. , Togan E. , J. Burek M. , Markham M. , Stacey A. , S. Zibrov A. , Yacoby A. , J. Twitchen D. , Loncar M. , Park H. , Maletinsky P. , D. Lukin M. . Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett., 2014, 14(4): 1982
https://doi.org/10.1021/nl404836p
687 Wang M. , Sun H. , Ye X. , Yu P. , Liu H. . et al.. Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision. Sci. Adv., 2022, 8(38): eabn9573
https://doi.org/10.1126/sciadv.abn9573
688 H. Wan N. , J. Shields B. , Kim D. , Mouradian S. , Lienhard B. , Walsh M. , Bakhru H. , Schroder T. , Englund D. . Efficient extraction of light from a nitrogen−vacancy center in a diamond parabolic reflector. Nano Lett., 2018, 18(5): 2787
https://doi.org/10.1021/acs.nanolett.7b04684
689 M. Hrubesch F. , Braunbeck G. , Stutzmann M. , Reinhard F. , S. Brandt M. . Efficient electrical spin readout of NV− centers in diamond. Phys. Rev. Lett., 2017, 118(3): 037601
https://doi.org/10.1103/PhysRevLett.118.037601
690 Siyushev P. , Nesladek M. , Bourgeois E. , Gulka M. , Hruby J. , Yamamoto T. , Trupke M. , Teraji T. , Isoya J. , Jelezko F. . Photoelectrical imaging and coherent spin-state readout of single nitrogen−vacancy centers in diamond. Science, 2019, 363(6428): 728
https://doi.org/10.1126/science.aav2789
691 Laflamme R. , Knill E. , G. Cory D. , M. Fortunato E. , F. Havel T. . et al.. NMR and quantum information processing. Los Alamos Sci., 2002, 27: 344
692 A. Jones J. . Quantum computing with NMR. Prog. Nucl. Magn. Reson. Spectrosc., 2011, 59(2): 91
https://doi.org/10.1016/j.pnmrs.2010.11.001
693 M. K. Vandersypen L. , Steffen M. , Breyta G. , S. Yannoni C. , H. Sherwood M. , L. Chuang I. . Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 2001, 414(6866): 883
https://doi.org/10.1038/414883a
694 Negrevergne C. , S. Mahesh T. , A. Ryan C. , Ditty M. , Cyr-Racine F. , Power W. , Boulant N. , Havel T. , G. Cory D. , Laflamme R. . Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett., 2006, 96(17): 170501
https://doi.org/10.1103/PhysRevLett.96.170501
695 Li J. , Luo Z. , Xin T. , Wang H. , Kribs D. , Lu D. , Zeng B. , Laflamme R. . Experimental implementation of efficient quantum pseudorandomness on a 12-spin system. Phys. Rev. Lett., 2019, 123(3): 030502
https://doi.org/10.1103/PhysRevLett.123.030502
696 Lu D. , Li K. , Li J. , Katiyar H. , J. Park A. . et al.. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inf., 2017, 3: 45
https://doi.org/10.1038/s41534-017-0045-z
697 Laflamme R.Knill E.Cory D.Fortunato E.Havel T., et al.., Introduction to NMR quantum information processing, arXiv: quant-ph/0207172 (2002)
698 Pravia M. , Fortunato E. , Weinstein Y. , D. Price M. , Teklemariam G. , J. Nelson R. , Sharf Y. , Somaroo S. , H. Tseng C. , F. Havel T. , G. Cory D. . Observations of quantum dynamics by solution-state NMR spectroscopy. Concepts Magn. Reson., 1999, 11(4): 225
https://doi.org/10.1002/(SICI)1099-0534(1999)11:4<225::AID-CMR3>3.0.CO;2-E
699 Peng X. , Zhu X. , Fang X. , Feng M. , Gao K. , Yang X. , Liu M. . Preparation of pseudo-pure states by lineselective pulses in nuclear magnetic resonance. Chem. Phys. Lett., 2001, 340(5−6): 509
https://doi.org/10.1016/S0009-2614(01)00421-3
700 Knill E. , Laflamme R. , Martinez R. , H. Tseng C. . An algorithmic benchmark for quantum information processing. Nature, 2000, 404(6776): 368
https://doi.org/10.1038/35006012
701 Zheng W. , Wang H. , Xin T. , Nie X. , Lu D. , Li J. . Optimal bounds on state transfer under quantum channels with application to spin system engineering. Phys. Rev. A, 2019, 100(2): 022313
https://doi.org/10.1103/PhysRevA.100.022313
702 O. Boykin P. , Mor T. , Roychowdhury V. , Vatan F. , Vrijen R. . Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. USA, 2002, 99(6): 3388
https://doi.org/10.1073/pnas.241641898
703 S. Anwar M. , Blazina D. , A. Carteret H. , B. Duckett S. , K. Halstead T. , A. Jones J. , M. Kozak C. , J. K. Taylor R. . Preparing high purity initial states for nuclear magnetic resonance quantum computing. Phys. Rev. Lett., 2004, 93(4): 040501
https://doi.org/10.1103/PhysRevLett.93.040501
704 Freeman R. . Selective excitation in high-resolution NMR. Chem. Rev., 1991, 91(7): 1397
https://doi.org/10.1021/cr00007a006
705 A. Ryan C. , Negrevergne C. , Laforest M. , Knill E. , Laflamme R. . Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods. Phys. Rev. A, 2008, 78(1): 012328
https://doi.org/10.1103/PhysRevA.78.012328
706 M. K. Vandersypen L. , L. Chuang I. . NMR techniques for quantum control and computation. Rev. Mod. Phys., 2005, 76(4): 1037
https://doi.org/10.1103/RevModPhys.76.1037
707 A. Ryan C. , Laforest M. , Laflamme R. . Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing. New J. Phys., 2009, 11(1): 013034
https://doi.org/10.1088/1367-2630/11/1/013034
708 Lu D. , Li H. , A. Trottier D. , Li J. , Brodutch A. , P. Krismanich A. , Ghavami A. , I. Dmitrienko G. , Long G. , Baugh J. , Laflamme R. . Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quantum processor. Phys. Rev. Lett., 2015, 114(14): 140505
https://doi.org/10.1103/PhysRevLett.114.140505
709 A. Jones J. , Vedral V. , Ekert A. , Castagnoli G. . Geometric quantum computation using nuclear magnetic resonance. Nature, 2000, 403(6772): 869
https://doi.org/10.1038/35002528
710 Feng G. , Xu G. , Long G. . Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett., 2013, 110(19): 190501
https://doi.org/10.1103/PhysRevLett.110.190501
711 Khaneja N. , Brockett R. , J. Glaser S. . Time optimal control in spin systems. Phys. Rev. A, 2001, 63(3): 032308
https://doi.org/10.1103/PhysRevA.63.032308
712 D’Alessandro D., Introduction to Quantum Control and Dynamics, CRC Press, 2021
713 Khaneja N. , Reiss T. , Kehlet C. , Schulte-Herbruggen T. , J. Glaser S. . Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson., 2005, 172(2): 296
https://doi.org/10.1016/j.jmr.2004.11.004
714 Li J. , Yang X. , Peng X. , P. Sun C. . Hybrid quantum−classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
https://doi.org/10.1103/PhysRevLett.118.150503
715 M. Souza A. , A. Alvarez G. , Suter D. . Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett., 2011, 106(24): 240501
https://doi.org/10.1103/PhysRevLett.106.240501
716 M. Souza A. , A. Alvarez G. , Suter D. . Robust dynamical decoupling. Phil. Trans. R. Soc. A, 2012, 370(1976): 4748
https://doi.org/10.1098/rsta.2011.0355
717 K. Cummins H. , Jones C. , Furze A. , F. Soffe N. , Mosca M. , M. Peach J. , A. Jones J. . Approximate quantum cloning with nuclear magnetic resonance. Phys. Rev. Lett., 2002, 88(18): 187901
https://doi.org/10.1103/PhysRevLett.88.187901
718 Du J. , Durt T. , Zou P. , Li H. , C. Kwek L. , H. Lai C. , H. Oh C. , Ekert A. . Experimental quantum cloning with prior partial information. Phys. Rev. Lett., 2005, 94(4): 040505
https://doi.org/10.1103/PhysRevLett.94.040505
719 Chen H. , Lu D. , Chong B. , Qin G. , Zhou X. , Peng X. , Du J. . Experimental demonstration of probabilistic quantum cloning. Phys. Rev. Lett., 2011, 106(18): 180404
https://doi.org/10.1103/PhysRevLett.106.180404
720 G. Cory D. , D. Price M. , Maas W. , Knill E. , Laflamme R. , H. Zurek W. , F. Havel T. , S. Somaroo S. . Experimental quantum error correction. Phys. Rev. Lett., 1998, 81(10): 2152
https://doi.org/10.1103/PhysRevLett.81.2152
721 Zhang J. , Laflamme R. , Suter D. . Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code. Phys. Rev. Lett., 2012, 109(10): 100503
https://doi.org/10.1103/PhysRevLett.109.100503
722 B. Batalhão T. , M. Souza A. , Mazzola L. , Auccaise R. , S. Sarthour R. , S. Oliveira I. , Goold J. , De Chiara G. , Paternostro M. , M. Serra R. . Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett., 2014, 113(14): 140601
https://doi.org/10.1103/PhysRevLett.113.140601
723 A. Camati P. , P. Peterson J. , B. Batalhao T. , Micadei K. , M. Souza A. , S. Sarthour R. , S. Oliveira I. , M. Serra R. . Experimental rectification of entropy production by Maxwell’s demon in a quantum system. Phys. Rev. Lett., 2016, 117(24): 240502
https://doi.org/10.1103/PhysRevLett.117.240502
724 Micadei K. , P. Peterson J. , M. Souza A. , S. Sarthour R. , S. Oliveira I. , T. Landi G. , B. Batalhao T. , M. Serra R. , Lutz E. . Reversing the direction of heat flow using quantum correlations. Nat. Commun., 2019, 10(1): 2456
https://doi.org/10.1038/s41467-019-10333-7
725 Nie X. , Zhu X. , Huang K. , Tang K. , Long X. , Lin Z. , Tian Y. , Qiu C. , Xi C. , Yang X. , Li J. , Dong Y. , Xin T. , Lu D. . Experimental realization of a quantum refrigerator driven by indefinite causal orders. Phys. Rev. Lett., 2022, 129(10): 100603
https://doi.org/10.1103/PhysRevLett.129.100603
726 Moussa O. , A. Ryan C. , G. Cory D. , Laflamme R. . Testing contextuality on quantum ensembles with one clean qubit. Phys. Rev. Lett., 2010, 104(16): 160501
https://doi.org/10.1103/PhysRevLett.104.160501
727 L. Chuang I. , M. K. Vandersypen L. , Zhou X. , W. Leung D. , Lloyd S. . Experimental realization of a quantum algorithm. Nature, 1998, 393(6681): 143
https://doi.org/10.1038/30181
728 A. Jones J. , Mosca M. , H. Hansen R. . Implementation of a quantum search algorithm on a quantum computer. Nature, 1998, 393(6683): 344
https://doi.org/10.1038/30687
729 S. Weinstein Y. , A. Pravia M. , M. Fortunato E. , Lloyd S. , G. Cory D. . Implementation of the quantum Fourier transform. Phys. Rev. Lett., 2001, 86(9): 1889
https://doi.org/10.1103/PhysRevLett.86.1889
730 Zhang J. , H. Yung M. , Laflamme R. , Aspuru-Guzik A. , Baugh J. . Digital quantum simulation of the statistical mechanics of a frustrated magnet. Nat. Commun., 2012, 3(1): 880
https://doi.org/10.1038/ncomms1860
731 Peng X. , Zhang J. , Du J. , Suter D. . Quantum simulation of a system with competing two- and three-body interactions. Phys. Rev. Lett., 2009, 103(14): 140501
https://doi.org/10.1103/PhysRevLett.103.140501
732 Peng X. , Zhou H. , B. Wei B. , Cui J. , Du J. , B. Liu R. . Experimental observation of Lee−Yang zeros. Phys. Rev. Lett., 2015, 114(1): 010601
https://doi.org/10.1103/PhysRevLett.114.010601
733 Li J. , Fan R. , Wang H. , Ye B. , Zeng B. , Zhai H. , Peng X. , Du J. . Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X, 2017, 7(3): 031011
https://doi.org/10.1103/PhysRevX.7.031011
734 Nie X. , B. Wei B. , Chen X. , Zhang Z. , Zhao X. , Qiu C. , Tian Y. , Ji Y. , Xin T. , Lu D. , Li J. . Experimental observation of equilibrium and dynamical quantum phase transitions via out-of-time-ordered correlators. Phys. Rev. Lett., 2020, 124(25): 250601
https://doi.org/10.1103/PhysRevLett.124.250601
735 Du J. , Xu N. , Peng X. , Wang P. , Wu S. , Lu D. . NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. Phys. Rev. Lett., 2010, 104(3): 030502
https://doi.org/10.1103/PhysRevLett.104.030502
736 Li Z. , Liu X. , Wang H. , Ashhab S. , Cui J. , Chen H. , Peng X. , Du J. . Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett., 2019, 122(9): 090504
https://doi.org/10.1103/PhysRevLett.122.090504
737 Lu D. , Xu N. , Xu R. , Chen H. , Gong J. , Peng X. , Du J. . Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator. Phys. Rev. Lett., 2011, 107(2): 020501
https://doi.org/10.1103/PhysRevLett.107.020501
738 Luo Z. , Li J. , Li Z. , Y. Hung L. , Wan Y. , Peng X. , Du J. . Experimentally probing topological order and its breakdown through modular matrices. Nat. Phys., 2018, 14(2): 160
https://doi.org/10.1038/nphys4281
739 Li K. , Wan Y. , Y. Hung L. , Lan T. , Long G. , Lu D. , Zeng B. , Laflamme R. . Experimental identification of non-Abelian topological orders on a quantum simulator. Phys. Rev. Lett., 2017, 118(8): 080502
https://doi.org/10.1103/PhysRevLett.118.080502
740 Lin Z. , Zhang L. , Long X. , A. Fan Y. , Li Y. . et al.. Experimental quantum simulation of non-Hermitian dynamical topological states using stochastic Schrödinger equation. npj Quantum Inf., 2022, 8: 77
https://doi.org/10.1038/s41534-022-00587-3
741 Zhang Z. , Long X. , Zhao X. , Lin Z. , Tang K. , Liu H. , Yang X. , Nie X. , Wu J. , Li J. , Xin T. , Li K. , Lu D. . Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit. Phys. Rev. A, 2022, 105(3): L030402
https://doi.org/10.1103/PhysRevA.105.L030402
742 Li Z. , Liu X. , Xu N. , Du J. . Experimental realization of a quantum support vector machine. Phys. Rev. Lett., 2015, 114(14): 140504
https://doi.org/10.1103/PhysRevLett.114.140504
743 W. Yao X. , Wang H. , Liao Z. , C. Chen M. , Pan J. , Li J. , Zhang K. , Lin X. , Wang Z. , Luo Z. , Zheng W. , Li J. , Zhao M. , Peng X. , Suter D. . Quantum image processing and its application to edge detection: Theory and experiment. Phys. Rev. X, 2017, 7(3): 031041
https://doi.org/10.1103/PhysRevX.7.031041
744 Xin T. , Che L. , Xi C. , Singh A. , Nie X. , Li J. , Dong Y. , Lu D. . Experimental quantum principal component analysis via parametrized quantum circuits. Phys. Rev. Lett., 2021, 126(11): 110502
https://doi.org/10.1103/PhysRevLett.126.110502
745 A. Ryan C. , Moussa O. , Baugh J. , Laflamme R. . Spin based heat engine: Demonstration of multiple rounds of algorithmic cooling. Phys. Rev. Lett., 2008, 100(14): 140501
https://doi.org/10.1103/PhysRevLett.100.140501
746 A. Álvarez G. , Suter D. , Kaiser R. . Localization−delocalization transition in the dynamics of dipolar-coupled nuclear spins. Science, 2015, 349(6250): 846
https://doi.org/10.1126/science.1261160
747 X. Wei K. , Ramanathan C. , Cappellaro P. . Exploring localization in nuclear spin chains. Phys. Rev. Lett., 2018, 120(7): 070501
https://doi.org/10.1103/PhysRevLett.120.070501
748 X. Wei K. , Peng P. , Shtanko O. , Marvian I. , Lloyd S. , Ramanathan C. , Cappellaro P. . Emergent prethermalization signatures in out-of-time ordered correlations. Phys. Rev. Lett., 2019, 123(9): 090605
https://doi.org/10.1103/PhysRevLett.123.090605
749 Peng P. , Yin C. , Huang X. , Ramanathan C. , Cappellaro P. . Floquet prethermalization in dipolar spin chains. Nat. Phys., 2021, 17(4): 444
https://doi.org/10.1038/s41567-020-01120-z
750 Asaad S. , Mourik V. , Joecker B. , A. I. Johnson M. , D. Baczewski A. , R. Firgau H. , T. Madzik M. , Schmitt V. , J. Pla J. , E. Hudson F. , M. Itoh K. , C. McCallum J. , S. Dzurak A. , Laucht A. , Morello A. . Coherent electrical control of a single high-spin nucleus in silicon. Nature, 2020, 579(7798): 205
https://doi.org/10.1038/s41586-020-2057-7
751 Saffman M. , G. Walker T. , Mølmer K. . Quantum information with Rydberg atoms. Rev. Mod. Phys., 2010, 82(3): 2313
https://doi.org/10.1103/RevModPhys.82.2313
752 Saffman M. . Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges. J. Phys. At. Mol. Opt. Phys., 2016, 49(20): 202001
https://doi.org/10.1088/0953-4075/49/20/202001
753 Browaeys A. , Lahaye T. . Many-body physics with individually controlled Rydberg atoms. Nat. Phys., 2020, 16(2): 132
https://doi.org/10.1038/s41567-019-0733-z
754 Henriet L. , Beguin L. , Signoles A. , Lahaye T. , Browaeys A. , Reymond G.-O. , Jurczak C. . Quantum computing with neutral atoms. Quantum, 2020, 4: 327
https://doi.org/10.22331/q-2020-09-21-327
755 Morgado M. , Whitlock S. . Quantum simulation and computing with Rydberg-interacting qubits. AVS Quantum Sci., 2021, 3(2): 023501
https://doi.org/10.1116/5.0036562
756 Cooper A. , P. Covey J. , S. Madjarov I. , G. Porsev S. , S. Safronova M. , Endres M. . Alkaline earth atoms in optical tweezers. Phys. Rev. X, 2018, 8(4): 041055
https://doi.org/10.1103/PhysRevX.8.041055
757 A. Norcia M. , W. Young A. , M. Kaufman A. . Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X, 2018, 8(4): 041054
https://doi.org/10.1103/PhysRevX.8.041054
758 Saskin S. , T. Wilson J. , Grinkemeyer B. , D. Thompson J. . Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett., 2019, 122(14): 143002
https://doi.org/10.1103/PhysRevLett.122.143002
759 M. Kaufman A. , Ni K.-K. . Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys., 2021, 17(12): 1324
https://doi.org/10.1038/s41567-021-01357-2
760 Schlosser N. , Reymond G. , Protsenko I. , Grangier P. . Sub-Poissonian loading of single atoms in a microscopic dipole trap. Nature, 2001, 411(6841): 1024
https://doi.org/10.1038/35082512
761 Schlosser N. , Reymond G. , Grangier P. . Collisional blockade in microscopic optical dipole traps. Phys. Rev. Lett., 2002, 89(2): 023005
https://doi.org/10.1103/PhysRevLett.89.023005
762 Grünzweig T. , Hilliard A. , McGovern M. , F. Andersen M. . Near-deterministic preparation of a single atom in an optical microtrap. Nat. Phys., 2010, 6(12): 951
https://doi.org/10.1038/nphys1778
763 J. Lester B. , Luick N. , M. Kaufman A. , M. Reynolds C. , A. Regal C. . Rapid production of uniformly filled arrays of neutral atoms. Phys. Rev. Lett., 2015, 115(7): 073003
https://doi.org/10.1103/PhysRevLett.115.073003
764 O. Brown M. , Thiele T. , Kiehl C. , Hsu T.-W. , A. Regal C. . Gray-molasses optical-tweezer loading: Controlling collisions for scaling atom-array assembly. Phys. Rev. X, 2019, 9(1): 011057
https://doi.org/10.1103/PhysRevX.9.011057
765 M. Aliyu M. , Zhao L. , Q. Quek X. , C. Yellapragada K. , Loh H. . D1 magic wavelength tweezers for scaling atom arrays. Phys. Rev. Res., 2021, 3(4): 043059
https://doi.org/10.1103/PhysRevResearch.3.043059
766 Jenkins A. , W. Lis J. , Senoo A. , F. McGrew W. , M. Kaufman A. . Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X, 2022, 12(2): 021027
https://doi.org/10.1103/PhysRevX.12.021027
767 Barredo D. , de Léséleuc S. , Lienhard V. , Lahaye T. , Browaeys A. . An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 2016, 354(6315): 1021
https://doi.org/10.1126/science.aah3778
768 Endres M. , Bernien H. , Keesling A. , Levine H. , R. Anschuetz E. , Krajenbrink A. , Senko C. , Vuletic V. , Greiner M. , D. Lukin M. . Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 2016, 354(6315): 1024
https://doi.org/10.1126/science.aah3752
769 Barredo D. , Lienhard V. , De Leseleuc S. , Lahaye T. , Browaeys A. . Synthetic three-dimensional atomic structures assembled atom by atom. Nature, 2018, 561(7721): 79
https://doi.org/10.1038/s41586-018-0450-2
770 M. Graham T. , Kwon M. , Grinkemeyer B. , Marra Z. , Jiang X. , T. Lichtman M. , Sun Y. , Ebert M. , Saffman M. . Rydberg-mediated entanglement in a twodimensional neutral atom qubit array. Phys. Rev. Lett., 2019, 123(23): 230501
https://doi.org/10.1103/PhysRevLett.123.230501
771 Scholl P. , Schuler M. , J. Williams H. , A. Eberharter A. , Barredo D. , Schymik K.-N. , Lienhard V. , Henry L.-P. , C. Lang T. , Lahaye T. , M. Läuchli A. , Browaeys A. . Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature, 2021, 595(7866): 233
https://doi.org/10.1038/s41586-021-03585-1
772 Ebadi S. , T. Wang T. , Levine H. , Keesling A. , Semeghini G. , Omran A. , Bluvstein D. , Samajdar R. , Pichler H. , W. Ho W. , Choi S. , Sachdev S. , Greiner M. , Vuletić V. , D. Lukin M. . Quantum phases of matter on a 256-atom programmable quantum simulator. Nature, 2021, 595(7866): 227
https://doi.org/10.1038/s41586-021-03582-4
773 Schymik K.-N. , Pancaldi S. , Nogrette F. , Barredo D. , Paris J. , Browaeys A. , Lahaye T. . Single atoms with 6000-second trapping lifetimes in optical-tweezer arrays at cryogenic temperatures. Phys. Rev. Appl., 2021, 16(3): 034013
https://doi.org/10.1103/PhysRevApplied.16.034013
774 N. Schymik K. , Ximenez B. , Bloch E. , Dreon D. , Signoles A. , Nogrette F. , Barredo D. , Browaeys A. , Lahaye T. . In-situ equalization of single-atom loading in large-scale optical tweezers arrays. Phys. Rev. A, 2022, 106(2): 022611
https://doi.org/10.1103/PhysRevA.106.022611
775 de Léséleuc S. , Barredo D. , Lienhard V. , Browaeys A. , Lahaye T. . Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states. Phys. Rev. A, 2018, 97(5): 053803
https://doi.org/10.1103/PhysRevA.97.053803
776 J. Gibbons M. , D. Hamley C. , Shih C.-Y. , S. Chapman M. . Nondestructive fluorescent state detection of single neutral atom qubits. Phys. Rev. Lett., 2011, 106(13): 133002
https://doi.org/10.1103/PhysRevLett.106.133002
777 Fuhrmanek A. , Bourgain R. , R. P. Sortais Y. , Browaeys A. . Free-space lossless state detection of a single trapped atom. Phys. Rev. Lett., 2011, 106(13): 133003
https://doi.org/10.1103/PhysRevLett.106.133003
778 Jau Y.-Y. , M. Hankin A. , Keating T. , H. Deutsch I. , W. Biedermann G. . Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys., 2016, 12(1): 71
https://doi.org/10.1038/nphys3487
779 Kwon M. , F. Ebert M. , G. Walker T. , Saffman M. . Parallel low-loss measurement of multiple atomic qubits. Phys. Rev. Lett., 2017, 119(18): 180504
https://doi.org/10.1103/PhysRevLett.119.180504
780 Yu S. , Xu P. , Liu M. , He X. , Wang J. , Zhan M. . Qubit fidelity of a single atom transferred among the sites of a ring optical lattice. Phys. Rev. A, 2014, 90(6): 062335
https://doi.org/10.1103/PhysRevA.90.062335
781 Xia T. , Lichtman M. , Maller K. , W. Carr A. , J. Piotrowicz M. , Isenhower L. , Saffman M. . Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett., 2015, 114(10): 100503
https://doi.org/10.1103/PhysRevLett.114.100503
782 Bluvstein D. , Levine H. , Semeghini G. , T. Wang T. , Ebadi S. , Kalinowski M. , Keesling A. , Maskara N. , Pichler H. , Greiner M. , Vuletić V. , D. Lukin M. . A quantum processor based on coherent transport of entangled atom arrays. Nature, 2022, 604(7906): 451
https://doi.org/10.1038/s41586-022-04592-6
783 M. Kaufman A. , J. Lester B. , Foss-Feig M. , L. Wall M. , M. Rey A. , A. Regal C. . Entangling two transportable neutral atoms via local spin exchange. Nature, 2015, 527(7577): 208
https://doi.org/10.1038/nature16073
784 Wilk T. , Gaëtan A. , Evellin C. , Wolters J. , Miroshnychenko Y. , Grangier P. , Browaeys A. . Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett., 2010, 104(1): 010502
https://doi.org/10.1103/PhysRevLett.104.010502
785 Isenhower L. , Urban E. , L. Zhang X. , T. Gill A. , Henage T. , A. Johnson T. , G. Walker T. , Saffman M. . Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett., 2010, 104(1): 010503
https://doi.org/10.1103/PhysRevLett.104.010503
786 Levine H. , Keesling A. , Omran A. , Bernien H. , Schwartz S. , S. Zibrov A. , Endres M. , Greiner M. , Vuletić V. , D. Lukin M. . High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett., 2018, 121(12): 123603
https://doi.org/10.1103/PhysRevLett.121.123603
787 Levine H. , Keesling A. , Semeghini G. , Omran A. , T. Wang T. , Ebadi S. , Bernien H. , Greiner M. , Vuletić V. , Pichler H. , D. Lukin M. . Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett., 2019, 123(17): 170503
https://doi.org/10.1103/PhysRevLett.123.170503
788 Ma S. , P. Burgers A. , Liu G. , Wilson J. , Zhang B. , D. Thompson J. . Universal gate operations on nuclear spin qubits in an optical tweezer array of 171Yb atoms. Phys. Rev. X, 2022, 12(2): 021028
https://doi.org/10.1103/PhysRevX.12.021028
789 S. Madjarov I. , P. Covey J. , L. Shaw A. , Choi J. , Kale A. , Cooper A. , Pichler H. , Schkolnik V. , R. Williams J. , Endres M. . High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys., 2020, 16(8): 857
https://doi.org/10.1038/s41567-020-0903-z
790 T. Wilson J. , Saskin S. , Meng Y. , Ma S. , Dilip R. , P. Burgers A. , D. Thompson J. . Trapping alkaline earth Rydberg atoms optical tweezer arrays. Phys. Rev. Lett., 2022, 128(3): 033201
https://doi.org/10.1103/PhysRevLett.128.033201
791 M. Graham T. , Song Y. , Scott J. , Poole C. , Phuttitarn L. . et al.. Multi-qubit entanglement and algorithms on a neutralatom quantum computer. Nature, 2022, 604(7906): 457
https://doi.org/10.1038/s41586-022-04603-6
792 Gullion T. , B. Baker D. , S. Conradi M. . New, compensated carr-purcell sequences. J. Magn. Reson., 1990, 89: 479
793 Yang J. , He X. , Guo R. , Xu P. , Wang K. , Sheng C. , Liu M. , Wang J. , Derevianko A. , Zhan M. . Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps. Phys. Rev. Lett., 2016, 117(12): 123201
https://doi.org/10.1103/PhysRevLett.117.123201
794 Barnes K. , Battaglino P. , J. Bloom B. , Cassella K. , Coxe R. . et al.. Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun., 2022, 13(1): 2779
https://doi.org/10.1038/s41467-022-29977-z
795 Ebadi S. , Keesling A. , Cain M. , T. Wang T. , Levine H. . et al.. Quantum optimization of maximum independent set using Rydberg atom arrays. Science, 2022, 376(6598): 1209
https://doi.org/10.1126/science.abo6587
796 Labuhn H. , Barredo D. , Ravets S. , de Léséleuc S. , Macrì T. , Lahaye T. , Browaeys A. . Tunable twodimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature, 2016, 534(7609): 667
https://doi.org/10.1038/nature18274
797 de Léséleuc S. , Weber S. , Lienhard V. , Barredo D. , P. Buchler H. , Lahaye T. , Browaeys A. . Accurate mapping of multilevel Rydberg atoms on interacting spin-1/2 particles for the quantum simulation of Ising models. Phys. Rev. Lett., 2018, 120(11): 113602
https://doi.org/10.1103/PhysRevLett.120.113602
798 Kim H. , Park Y. , Kim K. , Sim H.-S. , Ahn J. . Detailed balance of thermalization dynamics in Rydberg-atom quantum simulators. Phys. Rev. Lett., 2018, 120(18): 180502
https://doi.org/10.1103/PhysRevLett.120.180502
799 Kim M. , Song Y. , Kim J. , Ahn J. . Quantum Ising Hamiltonian programming in trio, quartet, and sextet qubit systems. PRX Quantum, 2020, 1(2): 020323
https://doi.org/10.1103/PRXQuantum.1.020323
800 Song Y. , Kim M. , Hwang H. , Lee W. , Ahn J. . Quantum simulation of Cayley-tree Ising Hamiltonians with three-dimensional Rydberg atoms. Phys. Rev. Res., 2021, 3(1): 013286
https://doi.org/10.1103/PhysRevResearch.3.013286
801 Bernien H. , Schwartz S. , Keesling A. , Levine H. , Omran A. , Pichler H. , Choi S. , S. Zibrov A. , Endres M. , Greiner M. , Vuletić V. , D. Lukin M. . Probing many-body dynamics on a 51-atom quantum simulator. Nature, 2017, 551(7682): 579
https://doi.org/10.1038/nature24622
802 Keesling A. , Omran A. , Levine H. , Bernien H. , Pichler H. , Choi S. , Samajdar R. , Schwartz S. , Silvi P. , Sachdev S. , Zoller P. , Endres M. , Greiner M. , Vuletić V. , D. Lukin M. . Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature, 2019, 568(7751): 207
https://doi.org/10.1038/s41586-019-1070-1
803 Lienhard V. , de Léséleuc S. , Barredo D. , Lahaye T. , Browaeys A. , Schuler M. , Henry L.-P. , M. Läuchli A. . Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising models with antiferromagnetic interactions. Phys. Rev. X, 2018, 8(2): 021070
https://doi.org/10.1103/PhysRevX.8.021070
804 Bluvstein D. , Omran A. , Levine H. , Keesling A. , Semeghini G. , Ebadi S. , T. Wang T. , A. Michailidis A. , Maskara N. , W. Ho W. , Choi S. , Serbyn M. , Greiner M. , Vuletić V. , D. Lukin M. . Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science, 2021, 371(6536): 1355
https://doi.org/10.1126/science.abg2530
805 Semeghini G. , Levine H. , Keesling A. , Ebadi S. , T. Wang T. , Bluvstein D. , Verresen R. , Pichler H. , Kalinowski M. , Samajdar R. , Omran A. , Sachdev S. , Vishwanath A. , Greiner M. , Vuletić V. , D. Lukin M. . Probing topological spin liquids on a programmable quantum simulator. Science, 2021, 374(6572): 1242
https://doi.org/10.1126/science.abi8794
806 de Léséleuc S. , Lienhard V. , Scholl P. , Barredo D. , Weber S. , Lang N. , P. Büchler H. , Lahaye T. , Browaeys A. . Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science, 2019, 365(6455): 775
https://doi.org/10.1126/science.aav9105
807 Scholl P. , J. Williams H. , Bornet G. , Wallner F. , Barredo D. , Henriet L. , Signoles A. , Hainaut C. , Franz T. , Geier S. , Tebben A. , Salzinger A. , Zürn G. , Lahaye T. , Weidemüller M. , Browaeys A. . Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRX Quantum, 2022, 3(2): 020303
https://doi.org/10.1103/PRXQuantum.3.020303
808 M. Kaufman A. , J. Lester B. , A. Regal C. . Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X, 2012, 2(4): 041014
https://doi.org/10.1103/PhysRevX.2.041014
809 D. Thompson J. , G. Tiecke T. , S. Zibrov A. , Vuletić V. , D. Lukin M. . Coherence and Raman sideband cooling of a single atom in an optical tweezer. Phys. Rev. Lett., 2013, 110(13): 133001
https://doi.org/10.1103/PhysRevLett.110.133001
810 V. Vasilyev D. , Grankin A. , A. Baranov M. , M. Sieberer L. , Zoller P. . Monitoring quantum simulators via quantum nondemolition couplings to atomic clock qubits. PRX Quantum, 2020, 1(2): 020302
https://doi.org/10.1103/PRXQuantum.1.020302
811 Singh K. , Anand S. , Pocklington A. , T. Kemp J. , Bernien H. . Dual-element, two-dimensional atom array with continuous-mode operation. Phys. Rev. X, 2022, 12(1): 011040
https://doi.org/10.1103/PhysRevX.12.011040
812 Knill E. , Laflamme R. , J. Milburn G. . A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816): 46
https://doi.org/10.1038/35051009
813 Aaronson S.Arkhipov A., The computational complexity of linear optics, in: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, 2011, pp 333–342
814 S. Hamilton C. , Kruse R. , Sansoni L. , Barkhofen S. , Silberhorn C. , Jex I. . Gaussian boson sampling. Phys. Rev. Lett., 2017, 119(17): 170501
https://doi.org/10.1103/PhysRevLett.119.170501
815 Kok P. , J. Munro W. , Nemoto K. , C. Ralph T. , P. Dowling J. , J. Milburn G. . Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 2007, 79(1): 135
https://doi.org/10.1103/RevModPhys.79.135
816 W. Pan J. , B. Chen Z. , Y. Lu C. , Weinfurter H. , Zeilinger A. , Żukowski M. . Multiphoton entanglement and interferometry. Rev. Mod. Phys., 2012, 84(2): 777
https://doi.org/10.1103/RevModPhys.84.777
817 S. Zhong H. , Li Y. , Li W. , C. Peng L. , E. Su Z. , Hu Y. , M. He Y. , Ding X. , Zhang W. , Li H. , Zhang L. , Wang Z. , You L. , L. Wang X. , Jiang X. , Li L. , A. Chen Y. , L. Liu N. , Y. Lu C. , W. Pan J. . 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett., 2018, 121(25): 250505
https://doi.org/10.1103/PhysRevLett.121.250505
818 L. Wang X. , H. Luo Y. , L. Huang H. , C. Chen M. , E. Su Z. , Liu C. , Chen C. , Li W. , Q. Fang Y. , Jiang X. , Zhang J. , Li L. , L. Liu N. , Y. Lu C. , W. Pan J. . 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett., 2018, 120(26): 260502
https://doi.org/10.1103/PhysRevLett.120.260502
819 Thomas P. , Ruscio L. , Morin O. , Rempe G. . Efficient generation of entangled multi-photon graph states from a single atom. Nature, 2022, 608(7924): 677
https://doi.org/10.1038/s41586-022-04987-5
820 S. Zhong H. , H. Deng Y. , Qin J. , Wang H. , C. Chen M. , C. Peng L. , H. Luo Y. , Wu D. , Q. Gong S. , Su H. , Hu Y. , Hu P. , Y. Yang X. , J. Zhang W. , Li H. , Li Y. , Jiang X. , Gan L. , Yang G. , You L. , Wang Z. , Li L. , L. Liu N. , J. Renema J. , Y. Lu C. , W. Pan J. . Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett., 2021, 127(18): 180502
https://doi.org/10.1103/PhysRevLett.127.180502
821 K. Hong C. , Y. Ou Z. , Mandel L. . Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 1987, 59(18): 2044
https://doi.org/10.1103/PhysRevLett.59.2044
822 Ghosh R. , Mandel L. . Observation of nonclassical effects in the interference of two photons. Phys. Rev. Lett., 1987, 59(17): 1903
https://doi.org/10.1103/PhysRevLett.59.1903
823 G. Kwiat P. , Mattle K. , Weinfurter H. , Zeilinger A. , V. Sergienko A. , Shih Y. . New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 1995, 75(24): 4337
https://doi.org/10.1103/PhysRevLett.75.4337
824 Kaneda F. , G. Christensen B. , J. Wong J. , S. Park H. , T. McCusker K. , G. Kwiat P. . Time-multiplexed heralded single-photon source. Optica, 2015, 2(12): 1010
https://doi.org/10.1364/OPTICA.2.001010
825 F. Clauser J. . Experimental distinction between the quantum and classical field theoretic predictions for the photoelectric effect. Phys. Rev. D, 1974, 9(4): 853
https://doi.org/10.1103/PhysRevD.9.853
826 J. Kimble H. , Dagenais M. , Mandel L. . Photon antibunching in resonance fluorescence. Phys. Rev. Lett., 1977, 39(11): 691
https://doi.org/10.1103/PhysRevLett.39.691
827 Diedrich F. , Walther H. . Nonclassical radiation of a single stored ion. Phys. Rev. Lett., 1987, 58(3): 203
https://doi.org/10.1103/PhysRevLett.58.203
828 E. Moerner W. , Kador L. . Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett., 1989, 62(21): 2535
https://doi.org/10.1103/PhysRevLett.62.2535
829 Michler P. , Kiraz A. , Becher C. , V. Schoenfeld W. , Petroff P. , Zhang L. , L. Hu E. , Imamoglu A. . A quantum dot single-photon turnstile device. Science, 2000, 290(5500): 2282
https://doi.org/10.1126/science.290.5500.2282
830 Kurtsiefer C. , Mayer S. , Zarda P. , Weinfurter H. . Stable solid-state source of single photons. Phys. Rev. Lett., 2000, 85(2): 290
https://doi.org/10.1103/PhysRevLett.85.290
831 Castelletto S. , C. Johnson B. , Ivády V. , Stavrias N. , Umeda T. , Gali A. , Ohshima T. . A silicon carbide room-temperature single-photon source. Nat. Mater., 2014, 13(2): 151
https://doi.org/10.1038/nmat3806
832 T. Tran T. , Bray K. , J. Ford M. , Toth M. , Aharonovich I. . Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol., 2016, 11(1): 37
https://doi.org/10.1038/nnano.2015.242
833 Senellart P. , Solomon G. , White A. . High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol., 2017, 12(11): 1026
https://doi.org/10.1038/nnano.2017.218
834 Tomm N. , Javadi A. , O. Antoniadis N. , Najer D. , C. Lobl M. , R. Korsch A. , Schott R. , R. Valentin S. , D. Wieck A. , Ludwig A. , J. Warburton R. . A bright and fast source of coherent single photons. Nat. Nanotechnol., 2021, 16(4): 399
https://doi.org/10.1038/s41565-020-00831-x
835 Wang H. , M. He Y. , H. Chung T. , Hu H. , Yu Y. , Chen S. , Ding X. , C. Chen M. , Qin J. , Yang X. , Z. Liu R. , C. Duan Z. , P. Li J. , Gerhardt S. , Winkler K. , Jurkat J. , J. Wang L. , Gregersen N. , H. Huo Y. , Dai Q. , Yu S. , Höfling S. , Y. Lu C. , W. Pan J. . Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 2019, 13(11): 770
https://doi.org/10.1038/s41566-019-0494-3
836 Varnava M. , E. Browne D. , Rudolph T. . How good must single photon sources and detectors be for efficient linear optical quantum computation. Phys. Rev. Lett., 2008, 100(6): 060502
https://doi.org/10.1103/PhysRevLett.100.060502
837 L. Braunstein S. , Van Loock P. . Quantum information with continuous variables. Rev. Mod. Phys., 2005, 77(2): 513
https://doi.org/10.1103/RevModPhys.77.513
838 S. Lloyd and S. L. Braunstein, Quantum computation over continuous variables, in: Quantum Information with Continuous Variables, Springer, 1999, pp 9–17
839 Gottesman D. , Kitaev A. , Preskill J. . Encoding a qubit in an oscillator. Phys. Rev. A, 2001, 64(1): 012310
https://doi.org/10.1103/PhysRevA.64.012310
840 Vahlbruch H. , Mehmet M. , Danzmann K. , Schnabel R. . Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett., 2016, 117(11): 110801
https://doi.org/10.1103/PhysRevLett.117.110801
841 Furusawa A. , L. Sorensen J. , L. Braunstein S. , A. Fuchs C. , J. Kimble H. , S. Polzik E. . Unconditional quantum teleportation. Science, 1998, 282(5389): 706
https://doi.org/10.1126/science.282.5389.706
842 V. Larsen M. , Guo X. , R. Breum C. , S. Neergaard-Nielsen J. , L. Andersen U. . Deterministic generation of a two-dimensional cluster state. Science, 2019, 366(6463): 369
https://doi.org/10.1126/science.aay4354
843 Asavanant W. , Shiozawa Y. , Yokoyama S. , Charoensombutamon B. , Emura H. , N. Alexander R. , Takeda S. , i. Yoshikawa J. , C. Menicucci N. , Yonezawa H. , Furusawa A. . Generation of time-domain-multiplexed two-dimensional cluster state. Science, 2019, 366(6463): 373
https://doi.org/10.1126/science.aay2645
844 Reck M. , Zeilinger A. , J. Bernstein H. , Bertani P. . Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 1994, 73(1): 58
https://doi.org/10.1103/PhysRevLett.73.58
845 R. Clements W. , C. Humphreys P. , J. Metcalf B. , S. Kolthammer W. , A. Walmsley I. . Optimal design for universal multiport interferometers. Optica, 2016, 3(12): 1460
https://doi.org/10.1364/OPTICA.3.001460
846 Wang H. , He Y. , H. Li Y. , E. Su Z. , Li B. , L. Huang H. , Ding X. , C. Chen M. , Liu C. , Qin J. , P. Li J. , M. He Y. , Schneider C. , Kamp M. , Z. Peng C. , Höfling S. , Y. Lu C. , W. Pan J. . High-efficiency multiphoton boson sampling. Nat. Photonics, 2017, 11(6): 361
https://doi.org/10.1038/nphoton.2017.63
847 Wang H. , Qin J. , Ding X. , C. Chen M. , Chen S. , You X. , M. He Y. , Jiang X. , You L. , Wang Z. , Schneider C. , J. Renema J. , Höfling S. , Y. Lu C. , W. Pan J. . Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett., 2019, 123(25): 250503
https://doi.org/10.1103/PhysRevLett.123.250503
848 He Y. , Ding X. , E. Su Z. , L. Huang H. , Qin J. , Wang C. , Unsleber S. , Chen C. , Wang H. , M. He Y. , L. Wang X. , J. Zhang W. , J. Chen S. , Schneider C. , Kamp M. , X. You L. , Wang Z. , Höfling S. , Y. Lu C. , W. Pan J. . Time-bin-encoded boson sampling with a single-photon device. Phys. Rev. Lett., 2017, 118(19): 190501
https://doi.org/10.1103/PhysRevLett.118.190501
849 B. Spring J. , J. Metcalf B. , C. Humphreys P. , S. Kolthammer W. , Jin X. , Barbieri M. , Datta A. , Thomaspeter N. , K. Langford N. , Kundys D. , C. Gates J. , J. Smith B. , G. R. Smith P. , A. Walmsley I. . Boson sampling on a photonic chip. Science, 2013, 339(6121): 798
https://doi.org/10.1126/science.1231692
850 Tillmann M. , Dakic B. , Heilmann R. , Nolte S. , Szameit A. , Walther P. . Experimental boson sampling. Nat. Photonics, 2013, 7(7): 540
https://doi.org/10.1038/nphoton.2013.102
851 Crespi A. , Osellame R. , Ramponi R. , J. Brod D. , F. Galvao E. , Spagnolo N. , Vitelli C. , Maiorino E. , Mataloni P. , Sciarrino F. . Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics, 2013, 7(7): 545
https://doi.org/10.1038/nphoton.2013.112
852 Preskill J., Quantum computing and the entanglement frontier, arXiv: 1203.5813 (2012)
853 A. Broome M. , Fedrizzi A. , Rahimikeshari S. , Dove J. , Aaronson S. , C. Ralph T. , White A. . Photonic boson sampling in a tunable circuit. Science, 2013, 339(6121): 794
https://doi.org/10.1126/science.1231440
854 P. Lund A. , Laing A. , Rahimikeshari S. , Rudolph T. , L. Obrien J. , C. Ralph T. . Boson sampling from a Gaussian state. Phys. Rev. Lett., 2014, 113(10): 100502
https://doi.org/10.1103/PhysRevLett.113.100502
855 Bentivegna M. , Spagnolo N. , Vitelli C. , Flamini F. , Viggianiello N. , Latmiral L. , Mataloni P. , J. Brod D. , F. Galvao E. , Crespi A. , Ramponi R. , Osellame R. , Sciarrino F. . Experimental scattershot boson sampling. Sci. Adv., 2015, 1(3): e1400255
https://doi.org/10.1126/sciadv.1400255
856 R. Motes K. , Gilchrist A. , P. Dowling J. , P. Rohde P. . Scalable boson sampling with time-bin encoding using a loop-based architecture. Phys. Rev. Lett., 2014, 113(12): 120501
https://doi.org/10.1103/PhysRevLett.113.120501
857 Huh J. , G. Guerreschi G. , Peropadre B. , R. McClean J. , Aspuru-Guzik A. . Boson sampling for molecular vibronic spectra. Nat. Photonics, 2015, 9(9): 615
https://doi.org/10.1038/nphoton.2015.153
858 M. Arrazola J. , R. Bromley T. . Using Gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett., 2018, 121(3): 030503
https://doi.org/10.1103/PhysRevLett.121.030503
859 Sparrow C. , Martin-Lopez E. , Maraviglia N. , Neville A. , Harrold C. , Carolan J. , N. Joglekar Y. , Hashimoto T. , Matsuda N. , L. O’Brien J. , P. Tew D. , Laing A. . Simulating the vibrational quantum dynamics of molecules using photonics. Nature, 2018, 557(7707): 660
https://doi.org/10.1038/s41586-018-0152-9
860 Banchi L. , Fingerhuth M. , Babej T. , Ing C. , M. Arrazola J. . Molecular docking with Gaussian boson sampling. Sci. Adv., 2020, 6(23): eaax1950
https://doi.org/10.1126/sciadv.aax1950
861 Preskill J. . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
https://doi.org/10.22331/q-2018-08-06-79
862 M. Stace T. , D. Barrett S. , C. Doherty A. . Thresholds for topological codes in the presence of loss. Phys. Rev. Lett., 2009, 102(20): 200501
https://doi.org/10.1103/PhysRevLett.102.200501
863 M. Terhal B. . Quantum error correction for quantum memories. Rev. Mod. Phys., 2015, 87(2): 307
https://doi.org/10.1103/RevModPhys.87.307
864 Pant M. , Towsley D. , Englund D. , Guha S. . Percolation thresholds for photonic quantum computing. Nat. Commun., 2019, 10(1): 1070
https://doi.org/10.1038/s41467-019-08948-x
865 Fukui K. , Tomita A. , Okamoto A. , Fujii K. . Highthreshold fault-tolerant quantum computation with analog quantum error correction. Phys. Rev. X, 2018, 8(2): 021054
https://doi.org/10.1103/PhysRevX.8.021054
866 E. Chang D. , Vuletić V. , D. Lukin M. . Quantum nonlinear optics — photon by photon. Nat. Photonics, 2014, 8(9): 685
https://doi.org/10.1038/nphoton.2014.192
867 Fleischhauer M. , Imamoglu A. , P. Marangos J. . Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 2005, 77(2): 633
https://doi.org/10.1103/RevModPhys.77.633
868 M. Duan L. , Kimble H. . Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett., 2004, 92(12): 127902
https://doi.org/10.1103/PhysRevLett.92.127902
869 V. Gorshkov A. , Otterbach J. , Fleischhauer M. , Pohl T. , D. Lukin M. . Photon−photon interactions via Rydberg blockade. Phys. Rev. Lett., 2011, 107(13): 133602
https://doi.org/10.1103/PhysRevLett.107.133602
870 Chen Z. , Zhou Y. , T. Shen J. , C. Ku P. , Steel D. . Two-photon controlled-phase gates enabled by photonic dimers. Phys. Rev. A, 2021, 103(5): 052610
https://doi.org/10.1103/PhysRevA.103.052610
871 Hacker B. , Welte S. , Rempe G. , Ritter S. . A photon–photon quantum gate based on a single atom in an optical resonator. Nature, 2016, 526(7615): 193
https://doi.org/10.1038/nature18592
872 Tiarks D. , Schmidt-Eberle S. , Stolz T. , Rempe G. , Durr S. . A photon–photon quantum gate based on Rydberg interactions. Nat. Phys., 2019, 15(2): 124
https://doi.org/10.1038/s41567-018-0313-7
873 Stolz T. , Hegels H. , Winter M. , Rohr B. , F. Hsiao Y. , Husel L. , Rempe G. , Durr S. . Quantum-logic gate between two optical photons with an average efficiency above 40%. Phys. Rev. X, 2022, 12(2): 021035
https://doi.org/10.1103/PhysRevX.12.021035
874 Vaneecloo J. , Garcia S. , Ourjoumtsev A. . Intracavity Rydberg superatom for optical quantum engineering: Coherent control, single-shot detection, and optical π phase shift. Phys. Rev. X, 2022, 12(2): 021034
https://doi.org/10.1103/PhysRevX.12.021034
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed