Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (2): 21302   https://doi.org/10.1007/s11467-022-1251-5
  本期目录
Categorical computation
Liang Kong1,2,3(), Hao Zheng1,3,4,5,6()
1. Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2. International Quantum Academy, Shenzhen 518048, China
3. Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
4. Institute for Applied Mathematics, Tsinghua University, Beijing 100084, China
5. Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
6. Department of Mathematics, Peking University, Beijing 100871, China
 全文: PDF(3624 KB)   HTML
Abstract

In quantum computing, the computation is achieved by linear operators in or between Hilbert spaces. In this work, we explore a new computation scheme, in which the linear operators in quantum computing are replaced by (higher) functors between two (higher) categories. If from Turing computing to quantum computing is the first quantization of computation, then this new scheme can be viewed as the second quantization of computation. The fundamental problem in realizing this idea is how to realize a (higher) functor physically. We provide a theoretical idea of realizing (higher) functors physically based on the physics of topological orders.

Key wordsquantum computation    categorical computation    topological order
收稿日期: 2022-11-07      出版日期: 2023-01-17
Corresponding Author(s): Liang Kong,Hao Zheng   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(2): 21302.
Liang Kong, Hao Zheng. Categorical computation. Front. Phys. , 2023, 18(2): 21302.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1251-5
https://academic.hep.com.cn/fop/CN/Y2023/V18/I2/21302
  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Crane L., B. Frenkel I., dimensional topological quantum field theory Four. Hopf categories, and the canonical bases. J. Math. Phys., 1994, 35(10): 5136
https://doi.org/10.1063/1.530746
2 C. Weibel, The K-book: An introduction to algebraic K-theory, Graduate Studies in Math. Vol. 145, AMS, 2013
3 Johnson-Freyd T.. On the classification of topological orders. Commun. Math. Phys., 2022, 393(2): 989
https://doi.org/10.1007/s00220-022-04380-3
4 Kong L.Zheng H., Categories of quantum liquids I, J. High Energy Phys. 2022, 70 (2022), arXiv: 2011.02859
5 G. Wen X.. Choreographed entanglement dances: Topological states of quantum matter. Science, 2019, 363(6429): eaal3099
https://doi.org/10.1126/science.aal3099
6 Kong L.G. Wen X.Zheng H., Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers, arXiv: 1502.01690 (2015)
7 Kong L., G. Wen X., Zheng H.. Boundary-bulk relation in topological orders. Nucl. Phys. B, 2017, 922: 62
https://doi.org/10.1016/j.nuclphysb.2017.06.023
8 Etingof P.Gelaki S.Nikshych D.Ostrik V., Tensor Categories, American Mathematical Society, Providence, RI, 2015
9 G. Turaev V., Quantum Invariant of Knots and 3-Manifolds, de Gruyter Studies in Mathematics, Vol. 18, Walter de Gruyter, Berlin, 1994
10 Ai Y., Kong L., Zheng H.. Topological orders and factorization homology. Adv. Theor. Math. Phys., 2017, 21(8): 1845
https://doi.org/10.4310/ATMP.2017.v21.n8.a1
11 Kong L.H. Zhang Z., An invitation to topological orders and category theory, arXiv: 2205.05565 (2022)
12 L. Douglas C.J. Reutter D., Fusion 2-categories and a state-sum invariant for 4-manifolds, arXiv: 1812.11933 (2018)
13 Gaiotto D.Johnson-Freyd T., Condensations in higher categories, arXiv: 1905.09566 (2019)
14 Kong L.Tian Y.H. Zhang Z., Defects in the 3-dimensional toric code model form a braided fusion 2-category, J. High Energy Phys. 2020, 78 (2020), arXiv: 2009.06564
15 Kong L., Zheng H.. The center functor is fully faithful. Adv. Math., 2018, 339: 749
https://doi.org/10.1016/j.aim.2018.09.031
16 Kong L.Zheng H., Categories of quantum liquids II, arXiv: 2107.03858 (2021)
17 Y. Kitaev A.. Fault-tolerant quantum computation by anyons. Ann. Phys., 2003, 303(1): 2
https://doi.org/10.1016/S0003-4916(02)00018-0
18 Freedman M., P/NP and the quantum field computer, Proc. Natl. Acad. Sci. USA 95(1), 98 (1998)
19 Wang Z., Topological Quantum Computation, CBMS Regional Conference Series in Mathematics Publication, Vol. 112, 2010
20 J. Satzinger K., J. Liu Y., Smith A., Knapp C.. et al.. Realizing topologically ordered states on a quantum processor. Science, 2021, 374(6572): 1237
https://doi.org/10.1126/science.abi8378
21 Semeghini G., Levine H., Keesling A., Ebadi S., T. Wang T., Bluvstein D., Verresen R., Pichler H., Kalinowski M., Samajdar R., Omran A., Sachdev S., Vishwanath A., Greiner M., Vuletic V., D. Lukin M.. Probing topological spin liquids on a programmable quantum simulator. Science, 2021, 374(6572): 1242
https://doi.org/10.1126/science.abi8794
22 Kitaev A., Kong L.. Models for gapped boundaries and domain walls. Commun. Math. Phys., 2012, 313(2): 351
https://doi.org/10.1007/s00220-012-1500-5
23 Nakamura J., Liang S., C. Gardner G., J. Manfra M.. Direct observation of anyonic braiding statistics. Nat. Phys., 2020, 16(9): 931
https://doi.org/10.1038/s41567-020-1019-1
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed