Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (4): 43601   https://doi.org/10.1007/s11467-023-1258-6
  本期目录
Review of the role of ionic liquids in two-dimensional materials
Na Sa1, Meng Wu1(), Hui-Qiong Wang1,2()
1. Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, China
2. Department of Physics, and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
 全文: PDF(6347 KB)   HTML
Abstract

Ionic liquids (ILs) are expected to be used as readily available “designer” solvents, characterized by a number of tunable properties that can be obtained by modulating anion and cation combinations and ion chain lengths. Among them, its high ionicity is outstanding in the preparation and property modulation of two-dimensional (2D) materials. In this review, we mainly focus on the ILs-assisted exfoliation of 2D materials towards large-scale as well as functionalization. Meanwhile, electric-field controlled ILs-gating of 2D material systems have shown novel electronic, magnetic, optical and superconducting properties, attracting a broad range of scientific research activities. Moreover, ILs have also been extensively applied in various field practically. We summarize the recent developments of ILs modified 2D material systems from the electrochemical, solar cells and photocatalysis aspects, discuss their advantages and possibilities as “designer solvent”. It is believed that the design of ILs accompanying with diverse 2D materials will not only solve several scientific problems but also enrich materials design and engineer of 2D materials.

Key wordsionic liquids    two-dimensional materials    liquid phase exfoliation    ionic liquid-gating    electrochemical capacitors    solar cells    photocatalysis
收稿日期: 2022-11-10      出版日期: 2023-02-23
Corresponding Author(s): Meng Wu,Hui-Qiong Wang   
作者简介:

Qingyong Zheng and Ya Gao contributed equally to this work.

 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(4): 43601.
Na Sa, Meng Wu, Hui-Qiong Wang. Review of the role of ionic liquids in two-dimensional materials. Front. Phys. , 2023, 18(4): 43601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1258-6
https://academic.hep.com.cn/fop/CN/Y2023/V18/I4/43601
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Cations of ILs
[BMIM] 1-butyl-3-methylimidazolium
[EMIM] 1-ethyl-3-methylimidazolium
  
Anions of ILs
[PF6] hexafluorophosphate
[BF4] tetrafluoroborate
[TFSI] or [NTf2] bis(trifluoromethylsulfonyl) imide
  
Other
ILs Ionic liquids
2D materials two-dimensional materials
TMDs transition metal dichalcogenide
MoS2 molybdenum disulfide
MoSe2 Molybdenum(IV) selenide
MoTe2 Molybdenum Ditelluride
WS2 Tungsten disulfide
WSe2 Tungsten(IV) selenide
ReS2 Rhenium Disulfide
TaS2 tantalum disulfide
NMDs noble metal dichalcogenides
PdSe2 Palladium diselenide
PtSe2 Platina Diselenide
PtS2 Platinum disulfide
h-BN hexanol boron nitride
BP black phosphorus
LDHs layered double hydroxide
g-C3N4 graphite carbon nitrides
MOFs metal-organic frameworks
COFs covalent-organic frameworks
LPE liquid phase exfoliation
NMP N-methylpyrrolidone
N12P 1-dodecyl-2-pyrrolidone
(P[VBTP][Cl]) poly(triphenyl-4-vinylbenzylphosphonium chloride)
(P[VimBu][Br]) poly(3-N-butyl-1-vinylimidazolium bromide)
(PNIL) (poly(N-isopropylacrylamide-co-IL)
FG fluorinated graphene
EDLTs electrical double-layer transistors
FETs field-effect transistors
CNT carbon nanotubes
SS subthreshold swing
CDW charge-density-wave
Cr2Ge2Te6 Chromium germanium tellurium
m-CTF microporous covalent triazine structure
rGO reduced graphene oxide
aMEGO activated microwave exfoliated graphene oxide
GNS 2D graphene nanosheets
GO graphite oxide
(EMI-TFSI) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide
Ti3C2Tx Titanium carbide
MSCs micro-supercapacitors
AA-Ti3C2 AA-cation-intercalated Ti3C2Tx
EMIM-TFSI 1-ethly-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide
DMIM 1,3-dimethyl-3-imidazolium
Cs0.08FA0.92PbI3 formamidinium-cesium lead iodide perovskite
[Hnmp]Cl [N-methyl-pyrrolidonium] chloride
Bi2O2CO3 Bismuth subcarbonate
Bi2Se3 bismuth selenide
[C16mim]Br 1-hexadecyl-3-methylimidazole bromide
Bi2MoO6 Bismuth molybdenum oxide
Bi2WO6 Bismuth tungstate
  
1 Welton T.. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8): 2071
https://doi.org/10.1021/cr980032t
2 P. Hallett J., Welton T.. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5): 3508
https://doi.org/10.1021/cr1003248
3 K. Singh S., W. Savoy A.. Ionic liquids synthesis and applications: An overview. J. Mol. Liq., 2020, 297: 112038
https://doi.org/10.1016/j.molliq.2019.112038
4 S. Egorova K., G. Gordeev E., P. Ananikov V.. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117: 7132
https://doi.org/10.1021/acs.chemrev.6b00562
5 M. Gomes J., S. Silva S., L. Reis R.. Biocompatible ionic liquids: Fundamental behaviours and applications. Chem. Soc. Rev., 2019, 48(15): 4317
https://doi.org/10.1039/C9CS00016J
6 R. MacFarlane D., Forsyth M., C. Howlett P., Kar M., Passerini S., M. Pringle J., Ohno H., Watanabe M., Yan F., J. Zheng W., G. Zhang S., Zhang J.. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater., 2016, 1(2): 15005
https://doi.org/10.1038/natrevmats.2015.5
7 J. Zhou W., Zhang M., Y. Kong X., W. Huang W., C. Zhang Q.. Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries. Adv. Sci. (Weinh.), 2021, 8(13): 2004490
https://doi.org/10.1002/advs.202004490
8 Li L., Zhao N., Wei W., H. Sun Y.. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel, 2013, 108: 112
https://doi.org/10.1016/j.fuel.2011.08.022
9 X. Tan X., F. Sun X., X. Han B.. Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. Natl. Sci. Rev., 2022, 9(4): nwab022
https://doi.org/10.1093/nsr/nwab022
10 V. Kondratenko E., Mul G., Baltrusaitis J., O. Larrazabal G., Perez-Ramirez J.. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci., 2013, 6(11): 3112
https://doi.org/10.1039/c3ee41272e
11 J. Greer A., Jacquemin J., Hardacre C.. Industrial applications of ionic liquids. Molecules, 2020, 25
https://doi.org/10.3390/molecules25215207
12 Nasirpour N., Mohammadpourfard M., Z. Heris S.. Ionic liquids: Promising compounds for sustainable chemical processes and applications. Chem. Eng. Res. Des., 2020, 160: 264
https://doi.org/10.1016/j.cherd.2020.06.006
13 A. Elgharbawy A., A. Riyadi F., Z. Alam M., Moniruzzaman M.. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. J. Mol. Liq., 2018, 251: 150
https://doi.org/10.1016/j.molliq.2017.12.050
14 C. Cui J., Li Y., Chen D., G. Zhan T., D. Zhang K.. Ionic liquid-based stimuli-responsive functional materials. Adv. Funct. Mater., 2020, 30(50): 2005522
https://doi.org/10.1002/adfm.202005522
15 W. Cho C., P. T. Pham T., F. Zhao Y., Stolte S., S. Yun Y.. Review of the toxic effects of ionic liquids. Sci. Total Environ., 2021, 786: 147309
https://doi.org/10.1016/j.scitotenv.2021.147309
16 C. Duan X., Huang H., H. Xiao S., W. Deng J., Zhou G., H. Li Q., Wang T.. 3D hierarchical CuO mesocrystals from ionic liquid precursors: Towards better electrochemical performance for Li-ion batteries. J. Mater. Chem. A, 2016, 4(21): 8402
https://doi.org/10.1039/C5TA10173E
17 D. Rogers R., R. Seddon K.. Ionic liquids - Solvents of the future. Science, 2003, 302(5646): 792
https://doi.org/10.1126/science.1090313
18 K. Geim A., S. Novoselov K.. The rise of graphene. Nat. Mater., 2007, 6(3): 183
https://doi.org/10.1038/nmat1849
19 Kong W., Kum H., H. Bae S., Shim J., Kim H., P. Kong L., Meng Y., J. Wang K., Kim C., Kim J.. Path towards graphene commercialization from lab to market. Nat. Nanotechnol., 2019, 14(10): 927
https://doi.org/10.1038/s41565-019-0555-2
20 S. Novoselov K., Mishchenko A., Carvalho A., H. Castro Neto A.. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439
https://doi.org/10.1126/science.aac9439
21 Mukherjee S., Ren Z., Singh G.. Beyond graphene anode materials for emerging metal ion batteries and supercapacitors. Nano-Micro Lett., 2018, 10(4): 70
https://doi.org/10.1007/s40820-018-0224-2
22 Jo S., Ubrig N., Berger H., B. Kuzmenko A., F. Morpurgo A.. Mono- and bilayer WS2 light-emitting transistors. Nano Lett., 2014, 14(4): 2019
https://doi.org/10.1021/nl500171v
23 Podzorov V., E. Gershenson M., Kloc C., Zeis R., Bucher E.. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett., 2004, 84(17): 3301
https://doi.org/10.1063/1.1723695
24 Zhang Y., Ye J., Matsuhashi Y., Iwasa Y.. Ambipolar MoS2 thin flake transistors. Nano Lett., 2012, 12(3): 1136
https://doi.org/10.1021/nl2021575
25 Braga D., G. Lezama I., Berger H., F. Morpurgo A.. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett., 2012, 12(10): 5218
https://doi.org/10.1021/nl302389d
26 Splendiani A., Sun L., Zhang Y., Li T., Kim J., Y. Chim C., Galli G., Wang F.. Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
https://doi.org/10.1021/nl903868w
27 F. Mak K., Lee C., Hone J., Shan J., F. Heinz T.. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105(13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805
28 Kumar A., K. Ahluwalia P., , Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo W; X = S. Te) from ab-initio theory: New direct band gap semiconductors. Eur. Phys. J. B, 2012, 85(6): 186
https://doi.org/10.1140/epjb/e2012-30070-x
29 Chen Y., Xi J., O. Dumcenco D., Liu Z., Suenaga K., Wang D., Shuai Z., S. Huang Y., Xie L.. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano, 2013, 7(5): 4610
https://doi.org/10.1021/nn401420h
30 Terrones H., Lopez-Urias F., Terrones M.. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep., 2013, 3(1): 1549
https://doi.org/10.1038/srep01549
31 Zhang Y., Jeon M., J. Rich L., Hong H., Geng J., Zhang Y., Shi S., E. Barnhart T., Alexandridis P., D. Huizinga J., Seshadri M., Cai W., Kim C., F. Lovell J.. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat. Nanotechnol., 2014, 9(8): 631
https://doi.org/10.1038/nnano.2014.130
32 K. Geim A., S. Novoselov K.. The rise and rise of graphene. Nat. Nanotechnol., 2010, 5(11): 755
https://doi.org/10.1038/nnano.2010.224
33 Lee C., D. Wei X., W. Kysar J., Hone J.. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385
https://doi.org/10.1126/science.1157996
34 H. Castro Neto A., Guinea F., M. R. Peres N., S. Novoselov K., K. Geim A.. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81(1): 109
https://doi.org/10.1103/RevModPhys.81.109
35 Song L., J. Ci L., Lu H., B. Sorokin P., H. Jin C., Ni J., G. Kvashnin A., G. Kvashnin D., Lou J., I. Yakobson B., M. Ajayan P.. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8): 3209
https://doi.org/10.1021/nl1022139
36 C. Zheng J., Zhang L., V. Kretinin A., V. Morozov S., B. Wang Y., Wang T., J. Li X., Ren F., Y. Zhang J., Y. Lu C., C. Chen J., Lu M., Q. Wang H., K. Geim A., S. Novoselov K.. High thermal conductivity of hexagonal boron nitride laminates. 2D Mater., 2016, 3: 011004
https://doi.org/10.1088/2053-1583/3/1/011004
37 K. Li L., J. Yu Y., J. Ye G., Q. Ge Q., D. Ou X., Wu H., L. Feng D., H. Chen X., B. Zhang Y.. Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
https://doi.org/10.1038/nnano.2014.35
38 Tao L., Cinquanta E., Chiappe D., Grazianetti C., Fanciulli M., Dubey M., Molle A., Akinwande D.. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol., 2015, 10(3): 227
https://doi.org/10.1038/nnano.2014.325
39 Balendhran S., Walia S., Nili H., Sriram S., Bhaskaran M.. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small, 2015, 11(6): 640
https://doi.org/10.1002/smll.201402041
40 Q. Wang Z., Y. Lu T., Q. Wang H., P. Feng Y., C. Zheng J.. Review of borophene and its potential applications. Front. Phys., 2019, 14(3): 33403
https://doi.org/10.1007/s11467-019-0884-5
41 J. Ong W., L. Tan L., H. Ng Y., T. Yong S., P. Chai S.. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev., 2016, 116(12): 7159
https://doi.org/10.1021/acs.chemrev.6b00075
42 B. Pang J., G. Mendes R., Bachmatiuk A., Zhao L., Q. Ta H., Gemming T., Liu H., F. Liu Z., H. Rummeli M.. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev., 2019, 48(1): 72
https://doi.org/10.1039/C8CS00324F
43 Khan K., K. Tareen A., Aslam M., P. Zhang Y., H. Wang R., B. Ouyang Z., Y. Gou Z., Zhang H.. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale, 2019, 11(45): 21622
https://doi.org/10.1039/C9NR05919A
44 L. Chen X., S. Zhou Z., C. Deng B., F. Wu Z., N. Xia F., Cao Y., Zhang L., Huang W., Wang N., Wang L.. Electrically tunable physical properties of two-dimensional materials. Nano Today, 2019, 27: 99
https://doi.org/10.1016/j.nantod.2019.05.005
45 Liu Y., O. Weiss N., D. Duan X., C. Cheng H., Huang Y., F. Duan X.. Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1(9): 16042
https://doi.org/10.1038/natrevmats.2016.42
46 S. Liu C., W. Chen H., Y. Wang S., Liu Q., G. Jiang Y., W. Zhang D., Liu M., Zhou P.. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol., 2020, 15(7): 545
https://doi.org/10.1038/s41565-020-0724-3
47 Kang K., E. Xie S., J. Huang L., M. Han Y., Y. Huang P., F. Mak K., J. Kim C., Muller D., Park J.. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520(7549): 656
https://doi.org/10.1038/nature14417
48 Chang C., Chen W., Chen Y., H. Chen Y., Chen Y.. et al.. Recent progress on two-dimensional materials. Acta Phys. - Chim. Sin., 2021, 37(12): 2108017
https://doi.org/10.3866/PKU.WHXB202108017
49 Keskin S., Kayrak-Talay D., Akman U., Hortacsu O.. A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids, 2007, 43(1): 150
https://doi.org/10.1016/j.supflu.2007.05.013
50 Shariati A., J. Peters C.. High-pressure phase equilibria of systems with ionic liquids. J. Supercrit. Fluids, 2005, 34(2): 171
https://doi.org/10.1016/j.supflu.2004.11.011
51 F. Brennecke J., J. Maginn E.. Ionic liquids: Innovative fluids for chemical processing. AIChE J., 2001, 47(11): 2384
https://doi.org/10.1002/aic.690471102
52 N. Coleman J., Lotya M., O’Neill A., D. Bergin S., J. King P.. et al.. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568
https://doi.org/10.1126/science.1194975
53 Xu S., Li D., Wu P.. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater., 2015, 25(7): 1127
https://doi.org/10.1002/adfm.201403863
54 Chen Y., Tan C., Zhang H., Wang L.. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev., 2015, 44(9): 2681
https://doi.org/10.1039/C4CS00300D
55 H. Wang Q., Kalantar-Zadeh K., Kis A., N. Coleman J., S. Strano M.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
56 H. L. Koppens F., Mueller T., Avouris P., C. Ferrari A., S. Vitiello M., Polini M.. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9(10): 780
https://doi.org/10.1038/nnano.2014.215
57 Luo W., Wang Y., Hitz E., Lin Y., Yang B., Hu L.. Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications. Adv. Funct. Mater., 2017, 27(31): 1701450
https://doi.org/10.1002/adfm.201701450
58 Wang X., Feng H., Wu Y., Jiao L.. Controlled synthesis of highly crystalline mos2 flakes by chemical vapor deposition. J. Am. Chem. Soc., 2013, 135(14): 5304
https://doi.org/10.1021/ja4013485
59 Xing W., Chen Y., Wu X., Xu X., Ye P., Zhu T., Guo Q., Yang L., Li W., Huang H.. PEDOT: PSS-assisted exfoliation and functionalization of 2D nanosheets for high-performance organic solar cells. Adv. Funct. Mater., 2017, 27(32): 1701622
https://doi.org/10.1002/adfm.201701622
60 Yi M., Shen Z.. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A, 2015, 3(22): 11700
https://doi.org/10.1039/C5TA00252D
61 Hernandez Y., Nicolosi V., Lotya M., M. Blighe F., Sun Z., De S., T. McGovern I., Holland B., Byrne M., K. Gun’ko Y., J. Boland J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., C. Ferrari A., N. Coleman J.. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9): 563
https://doi.org/10.1038/nnano.2008.215
62 Niu L., N. Coleman J., Zhang H., Shin H., Chhowalla M., Zheng Z.. Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small, 2016, 12(3): 272
https://doi.org/10.1002/smll.201502207
63 Tao H., Zhang Y., Gao Y., Sun Z., Yan C., Texter J.. Scalable exfoliation and dispersion of two-dimensional materials — an update. Phys. Chem. Chem. Phys., 2017, 19(2): 921
https://doi.org/10.1039/C6CP06813H
64 Feng X., Xing W., Yang H., Yuan B., Song L., Hu Y., M. Liew K.. High-performance poly(ethylene oxide)/molybdenum disulfide nanocomposite films: Reinforcement of properties based on the gradient interface effect. ACS Appl. Mater. Interfaces, 2015, 7(24): 13164
https://doi.org/10.1021/acsami.5b02312
65 D. Rogers R.. Reflections on ionic liquids. Nature, 2007, 447(7147): 917
https://doi.org/10.1038/447917a
66 Li W., Wu P.. Unusual thermal phase transition behavior of an ionic liquid and poly(ionic liquid) in water with significantly different LCST and dynamic mechanism. Polym. Chem., 2014, 5(19): 5578
https://doi.org/10.1039/C4PY00593G
67 Morishita T., Okamoto H., Katagiri Y., Matsushita M., Fukumori K.. A high-yield ionic liquid-promoted synthesis of boron nitride nanosheets by direct exfoliation. Chem. Commun. (Camb.), 2015, 51(60): 12068
https://doi.org/10.1039/C5CC04077A
68 Matsumoto M., Saito Y., Park C., Fukushima T., Aida T.. Ultrahigh-throughput exfoliation of graphite into pristine “single-layer” graphene using microwaves and molecularly engineered ionic liquids. Nat. Chem., 2015, 7(9): 730
https://doi.org/10.1038/nchem.2315
69 C. Du W., Q. Jiang X., H. Zhu L.. From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J. Mater. Chem. A, 2013, 1(36): 10592
https://doi.org/10.1039/c3ta12212c
70 Nuvoli D., Valentini L., Alzari V., Scognamillo S., B. Bon S., Piccinini M., Illescas J., Mariani A.. High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem., 2011, 21(10): 3428
https://doi.org/10.1039/C0JM02461A
71 Bordes E., Morcos B., Bourgogne D., M. Andanson J., O. Bussière P., C. Santini C., Benayad A., C. Gomes M., A. H. Pádua A.. Dispersion and stabilization of exfoliated graphene in ionic liquids. Front Chem., 2019, 7: 223
https://doi.org/10.3389/fchem.2019.00223
72 G. Gu X., Zhao Y., Sun K., L. Z. Vieira C., J. Jia Z., Cui C., J. Wang Z., Walsh A., D. Huang S.. Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene. Ultrason. Sonochem., 2019, 58: 104630
https://doi.org/10.1016/j.ultsonch.2019.104630
73 Restolho J., L. Mata J., Saramago B.. On the interfacial behavior of ionic liquids: Surface tensions and contact angles. J. Colloid Interface Sci., 2009, 340(1): 82
https://doi.org/10.1016/j.jcis.2009.08.013
74 A. Harnisch J., D. Porter M.. Electrochemically modulated liquid chromatography: An electrochemical strategy for manipulating chromatographic retention. Analyst (Lond. ), 2001, 126(11): 1841
https://doi.org/10.1039/b105249g
75 K. Reed S., J. Lanning O., A. Madden P.. Electrochemical interface between an ionic liquid and a model metallic electrode. J. Chem. Phys., 2007, 126(8): 084704
https://doi.org/10.1063/1.2464084
76 Q. Wang X., F. Fulvio P., A. Baker G., M. Veith G., R. Unocic R., M. Mahurin S., F. Chi M., Dai S.. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem. Commun. (Camb. ), 2010, 46(25): 4487
https://doi.org/10.1039/c0cc00799d
77 Beneš H., K. Donato R., Ecorchard P., Popelkova D., Pavlova E., Schelonka D., Pop-Georgievski O., S. Schrekker H., Stengl V.. Direct delamination of graphite ore into defect-free graphene using a biphasic solvent system under pressurized ultrasound. RSC Adv., 2016, 6(8): 6008
https://doi.org/10.1039/C5RA23654A
78 Winchester A., Ghosh S., M. Feng S., L. Elias A., Mallouk T., Terrones M., Talapatra S.. Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide. ACS Appl. Mater. Interfaces, 2014, 6(3): 2125
https://doi.org/10.1021/am4051316
79 Biswas Y., Dule M., K. Mandal T.. Poly(ionic liquid)-promoted solvent-borne efficient exfoliation of MoS2/MoSe2 nanosheets for dual-responsive dispersion and polymer nanocomposites. J. Phys. Chem. C, 2017, 121(8): 4747
https://doi.org/10.1021/acs.jpcc.7b00952
80 Guan G., Zhang S., Liu S., Cai Y., Low M., P. Teng C., Y. Phang I., Cheng Y., L. Duei K., M. Srinivasan B., Zheng Y., W. Zhang Y., Y. Han M.. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc., 2015, 137: 6152
https://doi.org/10.1021/jacs.5b02780
81 J. Smith R., J. King P., Lotya M., Wirtz C., Khan U., De S., O'Neill A., S. Duesberg G., C. Grunlan J., Moriarty G., Chen J., Wang J., I. Minett A., Nicolosi V., N. Coleman J.. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater., 2011, 23: 3944
https://doi.org/10.1002/adma.201102584
82 Lei Z., Zhou Y., Wu P.. Simultaneous exfoliation and functionalization of MoSe2 nanosheets to prepare “smart” nanocomposite hydrogels with tunable dual stimuli-responsive behavior. Small, 2016, 12(23): 3112
https://doi.org/10.1002/smll.201600727
83 W. Wang X., Y. Wu P.. Aqueous phase exfoliation of two-dimensional materials assisted by thermoresponsive polymeric ionic liquid and their applications in stimuli-responsive hydrogels and highly thermally conductive films. ACS Appl. Mater. Interfaces, 2018, 10(3): 2504
https://doi.org/10.1021/acsami.7b15712
84 Tian R., Jia X., Yang J., Li Y., Song H.. Large-scale, green, and high-efficiency exfoliation and noncovalent functionalization of fluorinated graphene by ionic liquid crystal. Chem. Eng. J., 2020, 395: 125104
https://doi.org/10.1016/j.cej.2020.125104
85 Gusain R., P. Mungse H., Kumar N., R. Ravindran T., Pandian R., Sugimura H., P. Khatri O.. Covalently attached graphene-ionic liquid hybrid nanomaterials: Synthesis, characterization and tribological application. J. Mater. Chem. A, 2016, 4(3): 926
https://doi.org/10.1039/C5TA08640J
86 Li M., S. Westover A., Carter R., Oakes L., Muralidharan N., C. Boire T., J. Sung H., L. Pint C.. Noncovalent Pi−Pi stacking at the carbon electrolyte interface: Controlling the voltage window of electrochemical supercapacitors. ACS Appl. Mater. Interfaces, 2016, 8(30): 19558
https://doi.org/10.1021/acsami.6b06753
87 Song W., Yan J., Ji H.. Tribological performance of an imidazolium ionic liquid-functionalized SiO2@graphene oxide as an additive. ACS Appl. Mater. Interfaces, 2021, 13(42): 50573
https://doi.org/10.1021/acsami.1c16030
88 Tian R., Jia X., Lan M., Wang S., Li Y., Yang J., Shao D., Feng L., Su Q., Song H.. Ionic liquid crystals confining ultrathin MoS2 nanosheets: A high-concentration and stable aqueous dispersion. ACS Sustain. Chem. & Eng., 2022, 10(13): 4186
https://doi.org/10.1021/acssuschemeng.1c08434
89 G. Shang N., Papakonstantinou P., Sharma S., Lubarsky G., X. Li M., W. McNeill D., J. Quinn A., Z. Zhou W., Blackley R.. Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding. Chem. Commun. (Camb.), 2012, 48(13): 1877
https://doi.org/10.1039/c2cc17185f
90 T. Zhang W., R. Wang Y., H. Zhang D., X. Yu S., X. Zhu W., Wang J., Q. Zheng F., X. Wang S., L. Wang J.. A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding. Nanoscale, 2015, 7(22): 10210
https://doi.org/10.1039/C5NR02253C
91 Z. Bisri S., Shimizu S., Nakano M., Iwasa Y.. Endeavor of iontronics: From fundamentals to applications of ion-controlled electronics. Adv. Mater., 2017, 29(25): 1607054
https://doi.org/10.1002/adma.201607054
92 Yuan H., Shimotani H., Tsukazaki A., Ohtomo A., Kawasaki M., Iwasa Y.. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater., 2009, 19(7): 1046
https://doi.org/10.1002/adfm.200801633
93 Ono S., Minder N., Chen Z., Facchetti A., F. Morpurgo A.. High-performance n-type organic field-effect transistors with ionic liquid gates. Appl. Phys. Lett., 2010, 97(14): 143307
https://doi.org/10.1063/1.3493190
94 Hong K., H. Kim S., H. Lee K., D. Frisbie C.. Printed, sub-2V ZnO electrolyte gated transistors and inverters on plastic. Adv. Mater., 2013, 25(25): 3413
https://doi.org/10.1002/adma.201300211
95 Ueno K., Nakamura S., Shimotani H., Ohtomo A., Kimura N., Nojima T., Aoki H., Iwasa Y., Kawasaki M.. Electric-field-induced superconductivity in an insulator. Nat. Mater., 2008, 7(11): 855
https://doi.org/10.1038/nmat2298
96 T. Ye J., Inoue S., Kobayashi K., Kasahara Y., T. Yuan H., Shimotani H., Iwasa Y.. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater., 2010, 9(2): 125
https://doi.org/10.1038/nmat2587
97 Ueno K., Nakamura S., Shimotani H., T. Yuan H., Kimura N., Nojima T., Aoki H., Iwasa Y., Kawasaki M.. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol., 2011, 6(7): 408
https://doi.org/10.1038/nnano.2011.78
98 Ye J., F. Craciun M., Koshino M., Russo S., Inoue S., Yuan H., Shimotani H., F. Morpurgo A., Iwasa Y.. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. USA, 2011, 108(32): 13002
https://doi.org/10.1073/pnas.1018388108
99 T. Bollinger A., Dubuis G., Yoon J., Pavuna D., Misewich J., Bozovic I.. Superconductor−insulator transition in La2-xSrxCuO4 at the pair quantum resistance. Nature, 2011, 472(7344): 458
https://doi.org/10.1038/nature09998
100 Saito Y., Nakamura Y., S. Bahramy M., Kohama Y., Ye J., Kasahara Y., Nakagawa Y., Onga M., Tokunaga M., Nojima T., Yanase Y., Iwasa Y.. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys., 2016, 12: 144
https://doi.org/10.1038/nphys3580
101 Yu Y., Yang F., F. Lu X., J. Yan Y., H. Cho Y., Ma L., Niu X., Kim S., W. Son Y., Feng D., Li S., W. Cheong S., H. Chen X., Zhang Y.. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol., 2015, 10(3): 270
https://doi.org/10.1038/nnano.2014.323
102 Saito Y., Nojima T., Iwasa Y.. Gate-induced superconductivity in two-dimensional atomic crystals. Supercond. Sci. Technol., 2016, 29(9): 093001
https://doi.org/10.1088/0953-2048/29/9/093001
103 C. Wu Y., F. Li D., L. Wu C., Y. Hwang H., Cui Y.. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater., 2022,
https://doi.org/10.1038/s41578-022-00473-6
104 Liu L.Han J.Xu L.Zhou J.Zhao C. Ding S.Shi H.Xiao M.Ding L.Ma Z. Jin C.Zhang Z.M. Peng L., Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics, Science 368 (2020) 850
105 G. Lezama I., Ubaldini A., Longobardi M., Giannini E., Renner C., B. Kuzmenko A., F. Morpurgo A.. Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals. 2D Mater., 2014, 1: 021002
https://doi.org/10.1088/2053-1583/1/2/021002
106 L. Wang F., Stepanov P., Gray M., N. Lau C., E. Itkis M., C. Haddon R.. Ionic liquid gating of suspended MoS2 field effect transistor devices. Nano Lett., 2015, 15(8): 5284
https://doi.org/10.1021/acs.nanolett.5b01610
107 Shi W., T. Ye J., J. Zhang Y., Suzuki R., Yoshida M., Miyazaki J., Inoue N., Saito Y., Iwasa Y.. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep., 2015, 5(1): 12534
https://doi.org/10.1038/srep12534
108 Larentis S., R. Tolsma J., Fallahazad B., C. Dillen D., Kim K., H. MacDonald A., Tutuc E.. Band offset and negative compressibility in graphene−MoS2 heterostructures. Nano Lett., 2014, 14(4): 2039
https://doi.org/10.1021/nl500212s
109 Dezi G., Scopigno N., Caprara S., Grilli M.. Negative electronic compressibility and nanoscale inhomogeneity in ionic-liquid gated two-dimensional superconductors. Phys. Rev. B, 2018, 98(21): 214507
https://doi.org/10.1103/PhysRevB.98.214507
110 M. Ugeda M., J. Bradley A., Zhang Y., Onishi S., Chen Y., Ruan W., Ojeda-Aristizabal C., Ryu H., T. Edmonds M., Z. Tsai H., Riss A., K. Mo S., Lee D., Zettl A., Hussain Z., X. Shen Z., F. Crommie M.. Characterization of collective ground states in single-layer NbSe2. Nat. Phys., 2016, 12(1): 92
https://doi.org/10.1038/nphys3527
111 W. Tsen A., Hunt B., D. Kim Y., J. Yuan Z., Jia S., J. Cava R., Hone J., Kim P., R. Dean C., N. Pasupathy A.. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nat. Phys., 2016, 12: 208
https://doi.org/10.1038/nphys3579
112 Xi X., Zhao L., Wang Z., Berger H., Forro L., Shan J., F. Mak K.. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol., 2015, 10: 765
https://doi.org/10.1038/nnano.2015.143
113 Xi X., Berger H., Forro L., Shan J., F. Mak K.. Gate tuning of electronic phase transitions in two-dimensional NbSe2. Phys. Rev. Lett., 2016, 117(10): 106801
https://doi.org/10.1103/PhysRevLett.117.106801
114 Chen Y., Xing W., Wang X., Shen B., Yuan W., Su T., Ma Y., Yao Y., Zhong J., Yun Y., C. Xie X., Jia S., Han W.. Role of oxygen in ionic liquid gating on two-dimensional Cr2Ge2Te6: A non-oxide material. ACS Appl. Mater. Interfaces, 2018, 10(1): 1383
https://doi.org/10.1021/acsami.7b14795
115 Y. Cheng C., L. Pai W., H. Chen Y., T. Paylaga N., Y. Wu P., W. Chen C., T. Liang C., C. Chou F., Sankar R., S. Fuhrer M., Y. Chen S., H. Wang W.. Phase modulation of self-gating in ionic liquid-functionalized InSe field-effect transistors. Nano Lett., 2022, 22(6): 2270
https://doi.org/10.1021/acs.nanolett.1c04522
116 Xu T., Du H., Liu H., Liu W., Zhang X., Si C., Liu P., Zhang K.. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater., 2021, 33(48): 2101368
https://doi.org/10.1002/adma.202101368
117 Alipoori S., Mazinani S., H. Aboutalebi S., Sharif F.. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Storage, 2020, 27: 101072
https://doi.org/10.1016/j.est.2019.101072
118 R. MacFarlane D., Tachikawa N., Forsyth M., M. Pringle J., C. Howlett P., D. Elliott G., H. Davis J., Watanabe M., Simon P., A. Angell C.. Energy applications of ionic liquids. Energy Environ. Sci., 2014, 7(1): 232
https://doi.org/10.1039/C3EE42099J
119 W. Chi Y., C. Hu C., H. Shen H., P. Huang K.. New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping. Nano Lett., 2016, 16(9): 5719
https://doi.org/10.1021/acs.nanolett.6b02401
120 Balducci A., Soavi F., Mastragostino M.. The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Appl. Phys. A, 2006, 82: 627
https://doi.org/10.1007/s00339-005-3402-2
121 Balducci A., A. Henderson W., Mastragostino M., Passerini S., Simon P., Soavi F.. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. Electrochim. Acta, 2005, 50(11): 2233
https://doi.org/10.1016/j.electacta.2004.10.006
122 Balducci A., Bardi U., Caporali S., Mastragostino M., Soavi F.. Ionic liquids for hybrid supercapacitors. Electrochem. Commun., 2004, 6(6): 566
https://doi.org/10.1016/j.elecom.2004.04.005
123 Mastragostino M., Soavi F.. Strategies for high-performance supercapacitors for HEV. J. Power Sources, 2007, 174(1): 89
https://doi.org/10.1016/j.jpowsour.2007.06.009
124 Galiński M., Lewandowski A., Stepniak I.. Ionic liquids as electrolytes. Electrochim. Acta, 2006, 51(26): 5567
https://doi.org/10.1016/j.electacta.2006.03.016
125 Lewandowski A., Galinski M.. Carbon-ionic liquid double-layer capacitors. J. Phys. Chem. Solids, 2004, 65(2−3): 281
https://doi.org/10.1016/j.jpcs.2003.09.009
126 Balducci A., Dugas R., L. Taberna P., Simon P., Plee D., Mastragostino M., Passerini S.. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources, 2007, 165(2): 922
https://doi.org/10.1016/j.jpowsour.2006.12.048
127 Arbizzani C., Beninati S., Lazzari M., Soavi F., Mastragostino M.. Electrode materials for ionic liquid-based supercapacitors. J. Power Sources, 2007, 174(2): 648
https://doi.org/10.1016/j.jpowsour.2007.06.162
128 Eftekhari A.. Supercapacitors utilising ionic liquids. Energy Storage Mater., 2017, 9: 47
https://doi.org/10.1016/j.ensm.2017.06.009
129 Y. Lin R., L. Taberna P., Fantini S., Presser V., R. Perez C., Malbosc F., L. Rupesinghe N., B. K. Teo K., Gogotsi Y., Simon P.. Capacitive energy storage from −50 to 100 °C using an ionic liquid electrolyte. J. Phys. Chem. Lett., 2011, 2(19): 2396
https://doi.org/10.1021/jz201065t
130 Kunze M., Jeong S., B. Appetecchi G., Schöenhoff M., Winter M., Passerini S.. Mixtures of ionic liquids for low temperature electrolytes. Electrochim. Acta, 2012, 82: 69
https://doi.org/10.1016/j.electacta.2012.02.035
131 Y. Tsai W., Lin R., Murali S., L. Zhang L., K. McDonough J., S. Ruoff R., L. Taberna P., Gogotsi Y., Simon P.. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy, 2013, 2(3): 403
https://doi.org/10.1016/j.nanoen.2012.11.006
132 Lethien C., Le Bideau J., Brousse T.. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci., 2019, 12(1): 96
https://doi.org/10.1039/C8EE02029A
133 Yang Z., Tian J., Yin Z., Cui C., Qian W., Wei F.. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon, 2019, 141: 467
https://doi.org/10.1016/j.carbon.2018.10.010
134 Cui C., Qian W., Yu Y., Kong C., Yu B., Xiang L., Wei F.. Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V. J. Am. Chem. Soc., 2014, 136(6): 2256
https://doi.org/10.1021/ja412219r
135 Yu Y., Cui C., Qian W., Wei F.. Full capacitance potential of SWCNT electrode in ionic liquids at 4 V. J. Mater. Chem. A, 2014, 2(46): 19897
https://doi.org/10.1039/C4TA04773G
136 Lazzari M., Mastragostino M., Soavi F.. Capacitance response of carbons in solvent-free ionic liquid electrolytes. Electrochem. Commun., 2007, 9(7): 1567
https://doi.org/10.1016/j.elecom.2007.02.021
137 R. MacFarlane D., Meakin P., Sun J., Amini N., Forsyth M.. Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B, 1999, 103(20): 4164
https://doi.org/10.1021/jp984145s
138 A. Henderson W., Passerini S.. Phase behavior of ionic liquid-LiX mixtures: Pyrrolidinium cations and TFSI- anions. Chem. Mater., 2004, 16(15): 2881
https://doi.org/10.1021/cm049942j
139 Zhou Y., Qi H., Yang J., Bo Z., Huang F., S. Islam M., Lu X., Dai L., Amal R., H. Wang C., Han Z.. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci., 2021, 14(4): 1854
https://doi.org/10.1039/D0EE03167D
140 Lota G., Fic K., Frackowiak E.. Carbon nanotubes and their composites in electrochemical applications. Energy Environ. Sci., 2011, 4(5): 1592
https://doi.org/10.1039/c0ee00470g
141 F. El-Kady M., L. Shao Y., B. Kaner R.. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater., 2016, 1(7): 16033
https://doi.org/10.1038/natrevmats.2016.33
142 G. Pandolfo A., F. Hollenkamp A.. Carbon properties and their role in supercapacitors. J. Power Sources, 2006, 157(1): 11
https://doi.org/10.1016/j.jpowsour.2006.02.065
143 Hao L., Ning J., Luo B., Wang B., Zhang Y., Tang Z., Yang J., Thomas A., Zhi L.. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc., 2015, 137(1): 219
https://doi.org/10.1021/ja508693y
144 W. Zhu Y., Murali S., D. Stoller M., J. Ganesh K., W. Cai W., J. Ferreira P., Pirkle A., M. Wallace R., A. Cychosz K., Thommes M., Su D., A. Stach E., S. Ruoff R.. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332(6037): 1537
https://doi.org/10.1126/science.1200770
145 Largeot C., Portet C., Chmiola J., Taberna P.-L., Gogotsi Y., Simon P.. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc., 2008, 130: 2730
https://doi.org/10.1021/ja7106178
146 Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., L. Taberna P.. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 2006, 313(5794): 1760
https://doi.org/10.1126/science.1132195
147 Zheng C., Z. Qian W., J. Cui C., Zhang Q., G. Jin Y., Q. Zhao M., H. Tan P., Wei F.. Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors. Carbon, 2012, 50(14): 5167
https://doi.org/10.1016/j.carbon.2012.06.058
148 S. Yun Y., Y. Cho S., Shim J., H. Kim B., J. Chang S., J. Baek S., S. Huh Y., Tak Y., W. Park Y., Park S., J. Jin H.. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater., 2013, 25(14): 1993
https://doi.org/10.1002/adma.201204692
149 B. Lei Z., H. Liu Z., J. Wang H., X. Sun X., Lu L., S. Zhao X.. A high-energy-density supercapacitor with graphene-CMK-5 as the electrode and ionic liquid as the electrolyte. J. Mater. Chem. A, 2013, 1(6): 2313
https://doi.org/10.1039/c2ta01040b
150 Kim T., C. Kang H., Tran Thanh T., D. Lee J., Kim H., S. Yang W., G. Yoon H., S. Suh K.. Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors. RSC Adv., 2012, 2(23): 8808
https://doi.org/10.1039/c2ra21400h
151 Wang H., Xu Z., Kohandehghan A., Li Z., Cui K., Tan X., J. Stephenson T., K. King’ondu C., M. B. Holt C., C. Olsen B., K. Tak J., Harfield D., O. Anyia A., Mitlin D.. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano, 2013, 7(6): 5131
https://doi.org/10.1021/nn400731g
152 L. Zhang L., Zhao X., D. Stoller M., Zhu Y., Ji H., Murali S., Wu Y., Perales S., Clevenger B., S. Ruoff R.. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett., 2012, 12(4): 1806
https://doi.org/10.1021/nl203903z
153 Jung N., Kwon S., Lee D., M. Yoon D., M. Park Y., Benayad A., Y. Choi J., S. Park J.. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors. Adv. Mater., 2013, 25(47): 6854
https://doi.org/10.1002/adma.201302788
154 P. Hao G., H. Lu A., Dong W., Y. Jin Z., Q. Zhang X., T. Zhang J., C. Li W.. Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance. Adv. Energy Mater., 2013, 3(11): 1421
https://doi.org/10.1002/aenm.201300383
155 Brousse T., Belanger D., W. Long J.. To be or not to be pseudocapacitive. J. Electrochem. Soc., 2015, 162(5): A5185
https://doi.org/10.1149/2.0201505jes
156 Simon P., Gogotsi Y., Dunn B.. Where do batteries end and supercapacitors begin. Science, 2014, 343(6176): 1210
https://doi.org/10.1126/science.1249625
157 E. Conway B.. Transition from supercapacitor to battery behavior in electrochemical energy-storage. J. Electrochem. Soc., 1991, 138(6): 1539
https://doi.org/10.1149/1.2085829
158 Mourad E., Coustan L., Lannelongue P., Zigah D., Mehdi A., Vioux A., A. Freunberger S., Favier F., Fontaine O.. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater., 2017, 16: 446
https://doi.org/10.1038/nmat4808
159 Simon P., Gogotsi Y.. Perspectives for electrochemical capacitors and related devices. Nat. Mater., 2020, 19(11): 1151
https://doi.org/10.1038/s41563-020-0747-z
160 Jing Y., Zhou Z., R. Cabrera C., Chen Z.. Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A, 2014, 2(31): 12104
https://doi.org/10.1039/C4TA01033G
161 K. Aslam M., B. Niu Y., W. Xu M., for non-lithium-ion (Na MXenes. Mg, and Al) batteries and supercapacitors. Adv. Energy Mater., 2021, 11(2): 2000681
https://doi.org/10.1002/aenm.202000681
162 Peigney A., Laurent C., Flahaut E., R. Bacsa R., Rousset A.. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39(4): 507
https://doi.org/10.1016/S0008-6223(00)00155-X
163 Wang J., Ding B., Xu Y., Shen L., Dou H., Zhang X.. Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances. ACS Appl. Mater. Interfaces, 2015, 7(40): 22284
https://doi.org/10.1021/acsami.5b05428
164 Yang X., Cheng C., Wang Y., Qiu L., Li D.. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 2013, 341(6145): 534
https://doi.org/10.1126/science.1239089
165 Futamura R., Iiyama T., Takasaki Y., Gogotsi Y., J. Biggs M., Salanne M., Segalini J., Simon P., Kaneko K.. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater., 2017, 16: 1225
https://doi.org/10.1038/nmat4974
166 N. Li Z., Gadipelli S., C. Li H., A. Howard C., J. L. Brett D., R. Shearing P., X. Guo Z., P. Parkin I., Li F.. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy, 2020, 5(2): 160
https://doi.org/10.1038/s41560-020-0560-6
167 Cheng C., Jiang G., P. Simon G., Z. Liu J., Li D.. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol., 2018, 13: 685
https://doi.org/10.1038/s41565-018-0181-4
168 L. Su X., R. Ye C., P. Li X., H. Guo M., G. Cao R., Ni K., W. Zhu Y.. Heterogeneous stacking carbon films for optimized supercapacitor performance. Energy Storage Mater., 2022, 50: 365
https://doi.org/10.1016/j.ensm.2022.05.020
169 Kim J., Kim S.. Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim. Acta, 2014, 119: 11
https://doi.org/10.1016/j.electacta.2013.11.187
170 Kim J., Kim S.. Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties. Appl. Surf. Sci., 2014, 295: 31
https://doi.org/10.1016/j.apsusc.2013.12.156
171 Anasori B., Xie Y., Beidaghi M., Lu J., C. Hosler B., Hultman L., R. C. Kent P., Gogotsi Y., W. Barsoum M.. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 2015, 9(10): 9507
https://doi.org/10.1021/acsnano.5b03591
172 Hu Q., Sun D., Wu Q., Wang H., Wang L., Liu B., Zhou A., He J.. MXene: A new family of promising hydrogen storage medium. J. Phys. Chem. A, 2013, 117(51): 14253
https://doi.org/10.1021/jp409585v
173 Dong Y., Zheng S., Qin J., Zhao X., Shi H., Wang X., Chen J., S. Wu Z.. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano, 2018, 12(3): 2381
https://doi.org/10.1021/acsnano.7b07672
174 R. Lukatskaya M., Mashtalir O., E. Ren C., Dall’Agnese Y., Rozier P., L. Taberna P., Naguib M., Simon P., W. Barsoum M., Gogotsi Y.. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502
https://doi.org/10.1126/science.1241488
175 VahidMohammadi A., Moncada J., Chen H., Kayali E., Orangi J., A. Carrero C., Beidaghi M.. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A, 2018, 6(44): 22123
https://doi.org/10.1039/C8TA05807E
176 Lu M., J. Li H., J. Han W., N. Chen J., Shi W., H. Wang J., M. Meng X., G. Qi J., B. Li H., S. Zhang B., Zhang W., Zheng W.. 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J. Energy Chem., 2019, 31: 148
https://doi.org/10.1016/j.jechem.2018.05.017
177 Wu F., Jiang Y., Q. Ye Z., X. Huang Y., H. Wang Z., J. Li S., Mei Y., Xie M., Li L., J. Chen R.. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A, 2019, 7(3): 1315
https://doi.org/10.1039/C8TA11419F
178 Xia Y., S. Mathis T., Q. Zhao M., Anasori B., Dang A., H. Zhou Z., Cho H., Gogotsi Y., Yang S.. Thickness - independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 2018, 557: 409
https://doi.org/10.1038/s41586-018-0109-z
179 F. Zhang C., P. Kremer M., Seral-Ascaso A., H. Park S., McEvoy N., Anasori B., Gogotsi Y., Nicolosi V.. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater., 2018, 28(9): 1705506
https://doi.org/10.1002/adfm.201705506
180 Xu S., Dall’Agnese Y., Wei G., Zhang C., Gogotsi Y., Han W.. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy, 2018, 50: 479
https://doi.org/10.1016/j.nanoen.2018.05.064
181 Lin Z., Barbara D., L. Taberna P., L. Van Aken K., Anasori B., Gogotsi Y., Simon P.. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources, 2016, 326: 575
https://doi.org/10.1016/j.jpowsour.2016.04.035
182 F. Lin Z., Rozier P., Duployer B., L. Taberna P., Anasori B., Gogotsi Y., Simon P.. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun., 2016, 72: 50
https://doi.org/10.1016/j.elecom.2016.08.023
183 H. Zheng S., Zhang C., Zhou F., F. Dong Y., Y. Shi X., Nicolosi V., S. Wu Z., H. Bao X.. Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J. Mater. Chem. A, 2019, 7(16): 9478
https://doi.org/10.1039/C9TA02190F
184 D. Bakulina O., Y. Ivanov M., A. Prikhod’ko S., Pylaeva S., V. Zaytseva I., V. Surovtsev N., Y. Adonin N., V. Fedin M.. Nanocage formation and structural anomalies in imidazolium ionic liquid glasses governed by alkyl chains of cations. Nanoscale, 2020, 12(38): 19982
https://doi.org/10.1039/D0NR06065H
185 Liang K., A. Matsumoto R., Zhao W., C. Osti N., Popov I., P. Thapaliya B., Fleischmann S., Misra S., Prenger K., Tyagi M., Mamontov E., Augustyn V., R. Unocic R., P. Sokolov A., Dai S., T. Cummings P., Naguib M.. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater., 2021, 31(33): 2104007
https://doi.org/10.1002/adfm.202104007
186 Fan Q., Z. Zhao R., J. Yi M., Qi P., X. Chai C., Ying H., C. Hao J.. Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications. Chem. Eng. J., 2022, 428: 131107
https://doi.org/10.1016/j.cej.2021.131107
187 J. Wan Y., Rajavel K., M. Li X., Y. Wang X., Y. Liao S., Q. Lin Z., L. Zhu P., Sun R., P. Wong C.. Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J., 2021, 408: 127303
https://doi.org/10.1016/j.cej.2020.127303
188 S. Lee J., Q. Wang X., M. Luo H., A. Baker G., Dai S.. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc., 2009, 131: 4596
https://doi.org/10.1021/ja900686d
189 Yoshida Y., Fujie K., W. Lim D., Ikeda R., Kitagawa H.. Superionic conduction over a wide temperature range in a metal-organic framework impregnated with ionic liquids. Angew. Chem. Int. Ed., 2019, 58(32): 10909
https://doi.org/10.1002/anie.201903980
190 Bi S., Banda H., Chen M., Niu L., Chen M., Wu T., Wang J., Wang R., Feng J., Chen T., Dinca M., A. Kornyshev A., Feng G.. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater., 2020, 19: 552
https://doi.org/10.1038/s41563-019-0598-7
191 Zhong C., Deng Y., Hu W., Qiao J., Zhang L., Zhang J.. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev., 2015, 44(21): 7484
https://doi.org/10.1039/C5CS00303B
192 Yang H., Kannappan S., S. Pandian A., H. Jang J., S. Lee Y., Lu W.. Graphene supercapacitor with both high power and energy density. Nanotechnology, 2017, 28(44): 445401
https://doi.org/10.1088/1361-6528/aa8948
193 González A., Goikolea E., Andoni Barrena J., Mysyk R.. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev., 2016, 58: 1189
https://doi.org/10.1016/j.rser.2015.12.249
194 Pohlmann S., S. Kühnel R., A. Centeno T., Balducci A.. The influence of anion-cation combinations on the physicochemical properties of advanced electrolytes for supercapacitors and the capacitance of activated carbons. ChemElectroChem, 2014, 1(8): 1301
https://doi.org/10.1002/celc.201402091
195 L. Van Aken K., Beidaghi M., Gogotsi Y.. Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chem. Int. Ed., 2015, 54(16): 4806
https://doi.org/10.1002/anie.201412257
196 Pohlmann S., Ramirez-Castro C., Balducci A.. The influence of conductive salt ion selection on EDLC electrolyte characteristics and carbon-electrolyte interaction. J. Electrochem. Soc., 2015, 162(5): A5020
https://doi.org/10.1149/2.0041505jes
197 Q. Ye W., Y. Wang H., Q. Ning J., J. Zhong Y., Hu Y.. New types of hybrid electrolytes for supercapacitors. J. Energy Chem., 2021, 57: 219
https://doi.org/10.1016/j.jechem.2020.09.016
198 Hagiwara R., Matsumoto K., Nakamori Y., Tsuda T., Ito Y., Matsumoto H., Momota K.. Physicochemical properties of 1, 3-dialkylimidazolium fluorohydrogenate room-temperature molten salts. J. Electrochem. Soc., 2003, 150(12): D195
https://doi.org/10.1149/1.1621414
199 Kong C., Qian W., Zheng C., Yu Y., Cui C., Wei F.. Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte. Chem. Commun. (Camb.), 2013, 49(91): 10727
https://doi.org/10.1039/c3cc46188b
200 Yang D., Zhou X., X. Yang R., Yang Z., Yu W., L. Wang X., Li C., Z. Liu S., P. H. Chang R.. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci., 2016, 9(10): 3071
https://doi.org/10.1039/C6EE02139E
201 Bai S., M. Da P., Li C., P. Wang Z., C. Yuan Z., Fu F., Kawecki M., J. Liu X., Sakai N., T. W. Wang J., Huettner S., Buecheler S., Fahlman M., Gao F., J. Snaith H.. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571: 245
https://doi.org/10.1038/s41586-019-1357-2
202 Divitini G., Cacovich S., Matteocci F., Cina L., Di Carlo A., Ducati C.. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy, 2016, 1(2): 15012
https://doi.org/10.1038/nenergy.2015.12
203 Leijtens T., T. Hoke E., Grancini G., J. Slotcavage D., E. Eperon G., M. Ball J., De Bastiani M., R. Bowring A., Martino N., Wojciechowski K., D. McGehee M., J. Snaith H., Petrozza A.. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater., 2015, 5(20): 1500962
https://doi.org/10.1002/aenm.201500962
204 Domanski K., Roose B., Matsui T., Saliba M., H. Turren-Cruz S., P. Correa-Baena J., Roldan-Carmona C., Richardson G., M. Foster J., De Angelis F., M. Ball J., Petrozza A., Mine N., K. Nazeeruddin M., Tress W., Grätzel M., Steiner U., Hagfeldt A., Abate A.. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci., 2017, 10(2): 604
https://doi.org/10.1039/C6EE03352K
205 J. Zhu X., Y. Du M., S. Feng J., Wang H., Xu Z., K. Wang L., N. Zuo S., Y. Wang C., Y. Wang Z., Zhang C., D. Ren X., Priya S., Yang D., Liu S.. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem. Int. Ed., 2021, 60(8): 4238
https://doi.org/10.1002/anie.202010987
206 Wang X., Ran X., Liu X., Gu H., Zuo S., Hui W., Lu H., Sun B., Gao X., Zhang J., Xia Y., Chen Y., Huang W.. Tailoring component interaction for air-processed efficient and stable all-inorganic perovskite photovoltaic. Angew. Chem. Int. Ed., 2020, 59(32): 13354
https://doi.org/10.1002/anie.202004256
207 Liu C., Fang Z., S. Sun J., Lou Q., F. Ge J., Chen X., J. Zhou E., H. Shang M., Y. Yang W., Y. Ge Z.. Imidazolium ionic liquid as organic spacer for tuning the excitonic structure of 2D perovskite materials. ACS Energy Lett., 2020, 5(11): 3617
https://doi.org/10.1021/acsenergylett.0c01784
208 Hui W., F. Chao L., Lu H., Xia F., Wei Q.. et al.. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science, 2021, 371: 1359
https://doi.org/10.1126/science.abf7652
209 K. Geim A., V. Grigorieva I.. Van der Waals heterostructures. Nature, 2013, 499(7459): 419
https://doi.org/10.1038/nature12385
210 F. Sun Y., Gao S., Xie Y.. Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction. Chem. Soc. Rev., 2014, 43(2): 530
https://doi.org/10.1039/C3CS60231A
211 Huang X.Tan C.Yin Z.Zhang H., 25th anniversary article: Hybrid nanostructures based on two-Dimensional nanomaterials, Adv. Mater. 26(14), 2185 (2014)
212 Sun Y., Gao S., Lei F., Xiao C., Xie Y.. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res., 2015, 48(1): 3
https://doi.org/10.1021/ar500164g
213 Sun Y., Cheng H., Gao S., Sun Z., Liu Q., Liu Q., Lei F., Yao T., He J., Wei S., Xie Y.. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem. Int. Ed., 2012, 51(35): 8727
https://doi.org/10.1002/anie.201204675
214 Li J., Yu Y., Zhang L.. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis. Nanoscale, 2014, 6(15): 8473
https://doi.org/10.1039/C4NR02553A
215 Jiang J., Zhao K., Xiao X., Zhang L.. Synthesis and facet-dependent photoreactivity of BiOCl Single-crystalline nanosheets. J. Am. Chem. Soc., 2012, 134(10): 4473
https://doi.org/10.1021/ja210484t
216 Łuczak J., Paszkiewicz M., Krukowska A., Malankowska A., Zaleska-Medynska A.. Ionic liquids for nano- and microstructures preparation (Part 1): Properties and multifunctional role. Adv. Colloid Interface Sci., 2016, 230: 13
https://doi.org/10.1016/j.cis.2015.08.006
217 Łuczak J., Paszkiewicz M., Krukowska A., Malankowska A., Zaleska-Medynska A.. Ionic liquids for nano- and microstructures preparation (Part 2): Application in synthesis. Adv. Colloid Interface Sci., 2016, 227: 1
https://doi.org/10.1016/j.cis.2015.08.010
218 Dou L., Xiang Y., Zhong J., Li J., Huang S.. Ionic liquid-assisted preparation of thin Bi2SiO5 nanosheets for effective photocatalytic degradation of RhB. Mater. Lett., 2020, 261: 127117
https://doi.org/10.1016/j.matlet.2019.127117
219 Xia J., Ji M., Di J., Wang B., Yin S., He M., Zhang Q., Li H.. Improved photocatalytic activity of few-layer Bi4O5I2 nanosheets induced by efficient charge separation and lower valence position. J. Alloys Compd., 2017, 695: 922
https://doi.org/10.1016/j.jallcom.2016.10.203
220 H. Li J., Ren J., J. Hao Y., P. Zhou E., Wang Y., J. Wang X., Su R., Liu Y., H. Qi X., T. Li F.. Construction of beta-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for deep understanding the importance of separation efficiency and valence band position. J. Hazard. Mater., 2021, 401: 123262
https://doi.org/10.1016/j.jhazmat.2020.123262
221 K. Jana M., Biswas K., N. R. Rao C.. Ionothermal synthesis of few-layer nanostructures of Bi2Se3 and related materials. Chemistry, 2013, 19(28): 9110
https://doi.org/10.1002/chem.201300983
222 Z. Zhao J., X. Ji M., Di J., P. Ge Y., F. Zhang P., X. Xia J., M. Li H.. Synthesis of g-C3N4/Bi4O5Br2 via reactable ionic liquid and its cooperation effect for the enhanced photocatalytic behavior towards ciprofloxacin degradation. J. Photochem. Photobiol. A, 2017, 347: 168
https://doi.org/10.1016/j.jphotochem.2017.07.023
223 Y. Zhu Q., Y. Wang Z., F. Chen L., Y. Cheng H., W. Qi Z.. Ionic-liquid-controlled two-dimensional monolayer Bi2MoO6 and its adsorption of azo molecules. ACS Appl. Nano Mater., 2018, 1(9): 5083
https://doi.org/10.1021/acsanm.8b01186
224 Pancielejko A., Luczak J., Lisowski W., Trykowski G., Venieri D., Zaleska-Medynska A., Mazierski P.. Ionic liquid as morphology-directing agent of two-dimensional Bi2WO6: New insight into photocatalytic and antibacterial activity. Appl. Surf. Sci., 2022, 599: 153971
https://doi.org/10.1016/j.apsusc.2022.153971
225 Peplow M.. Graphene booms in factories but lacks a killer app. Nature, 2015, 522(7556): 268
https://doi.org/10.1038/522268a
226 Ravula S., N. Baker S., Kamath G., A. Baker G.. Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions. Nanoscale, 2015, 7(10): 4338
https://doi.org/10.1039/C4NR01524J
227 Lu J., Yang J., Wang J., Lim A., Wang S., P. Loh K.. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8): 2367
https://doi.org/10.1021/nn900546b
228 Zhang Y., W. Li S., X. Xu Y., Y. Shi X., X. Zhang M., N. Huang Y., Liang Y., Q. Chen Y., L. Ji W., R. Kim J., L. Song W., G. Yu D., Kim I.. Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities. Nano Res., 2022, 15(6): 5556
https://doi.org/10.1007/s12274-022-4160-6
229 Tajik S., Lohrasbi-Nejad A., Mohammadzadeh Jahani P., B. Askari M., Salarizadeh P., Beitollahi H.. Co-detection of carmoisine and tartrazine by carbon paste electrode modified with ionic liquid and MoO3/WO3 nanocomposite. J. Food Meas. Charact., 2022, 16(1): 722
https://doi.org/10.1007/s11694-021-01201-4
230 G. Nejad F., Sheikhshoaie I., Beitollahi H.. Simultaneous detection of carmoisine and tartrazine in food samples using GO-Fe3O4-PAMAM and ionic liquid based electrochemical sensor. Food Chem. Toxicol., 2022, 162: 112864
https://doi.org/10.1016/j.fct.2022.112864
231 Karimi-Maleh H., Darabi R., Shabani-Nooshabadi M., Baghayeri M., Karimi F., Rouhi J., Alizadeh M., Karaman O., Vasseghian Y., Karaman C.. Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food Chem. Toxicol., 2022, 162: 112907
https://doi.org/10.1016/j.fct.2022.112907
232 Degani M., Z. An Q., Albaladejo-Siguan M., J. Hofstetter Y., Cho C., Paulus F., Grancini G., Vaynzof Y.. 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv., 2021, 7(49): eabj7930
https://doi.org/10.1126/sciadv.abj7930
233 Zeng G., J. Chen W., B. Chen X., Hu Y., Chen Y., Zhang B., Y. Chen H., W. Sun W., X. Shen Y., W. Li Y., Yan F., F. Li Y.. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc., 2022, 144(19): 8658
https://doi.org/10.1021/jacs.2c01503
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed