Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (2): 21307   https://doi.org/10.1007/s11467-023-1259-5
  本期目录
Quantum transport in topological semimetals under magnetic fields (III)
Lei Shi1,2, Hai-Zhou Lu1,2()
1. Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
2. Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
 全文: PDF(5566 KB)   HTML
Abstract

We review our most recent research on quantum transport, organizing the review according to the intensity of the magnetic field and focus mostly on topological semimetals and topological insulators. We first describe the phenomenon of quantum transport when a magnetic field is not present. We introduce the nonlinear Hall effect and its theoretical descriptions. Then, we discuss Coulomb instabilities in 3D higher-order topological insulators. Next, we pay close attention to the surface states and find a function to identify the axion insulator in the antiferromagnetic topological insulator MnBi2Te4. Under weak magnetic fields, we focus on the decaying Majorana oscillations which has the correlation with spin−orbit coupling. In the section on strong magnetic fields, we study the helical edge states and the one-sided hinge states of the Fermi-arc mechanism, which are relevant to the quantum Hall effect. Under extremely large magnetic fields, we derive a theoretical explanation of the negative magnetoresistance without a chiral anomaly. Then, we show how magnetic responses can be used to detect relativistic quasiparticles. Additionally, we introduce the 3D quantum Hall effect’s charge-density wave mechanism and compare it with the theory of 3D transitions between metal and insulator driven by magnetic fields.

Key wordstopological semimetal    topological insulator    axion insulator    nonlinear Hall effect (NHE)    quantum oscillation    quantum Hall effect (QHE)    charge density wave (CDW)
收稿日期: 2023-01-13      出版日期: 2023-04-10
Corresponding Author(s): Hai-Zhou Lu   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(2): 21307.
Lei Shi, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (III). Front. Phys. , 2023, 18(2): 21307.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1259-5
https://academic.hep.com.cn/fop/CN/Y2023/V18/I2/21307
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Ref. Crystal orientation Thickness (nm) Analysis
[231, 226] [112] 12−23, 35 Bulk subbands
[234, 227] [112] 20, 38−43 Surface states
[233, 224] [112] 80, 100 Mixed Fermi arcs
[230, 232] [112] 55−71, 80−150 Weyl orbit
[223] [001] 45−50 Topological insulator type surface states
[235] [010] 150−2000 Weyl orbit
Tab.1  
Fig.9  
Fig.10  
Fig.11  
1 Z. Lu H., Q. Shen S.. Quantum transport in topological semimetals under magnetic fields. Front. Phys., 2017, 12(3): 127201
https://doi.org/10.1007/s11467-016-0609-y
2 P. Sun H., Z. Lu H.. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys., 2019, 14(3): 33405
https://doi.org/10.1007/s11467-019-0890-7
3 B. Qiang X., Z. Lu H.. Quantum transport in topological matters under magnetic fields. Acta Phys. Sin., 2021, 70(2): 027201
https://doi.org/10.7498/aps.70.20200914
4 Z. Lu H., Q. Shen S.. Weak antilocalization and localization in disordered and interacting Weyl semimetals. Phys. Rev. B, 2015, 92(3): 035203
https://doi.org/10.1103/PhysRevB.92.035203
5 Dai X.Z. Lu H.Q. Shen S.Yao H., Detecting monopole charge in Weyl semimetals via quantum interference transport, Phys. Rev. B 93, 161110(R) (2016)
6 Li H., T. He H., Z. Lu H., C. Zhang H., C. Liu H., Ma R., Y. Fan Z., Q. Shen S., N. Wang J.. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun., 2016, 7(1): 10301
https://doi.org/10.1038/ncomms10301
7 Dai X., Z. Du Z., Z. Lu H.. Negative magnetoresistance without chiral anomaly in topological insulators. Phys. Rev. Lett., 2017, 119(16): 166601
https://doi.org/10.1103/PhysRevLett.119.166601
8 Li C., M. Wang C., Wan B., Wan X., Z. Lu H., C. Xie X.. Rules for phase shifts of quantum oscillations in topological nodal-line semimetals. Phys. Rev. Lett., 2018, 120(14): 146602
https://doi.org/10.1103/PhysRevLett.120.146602
9 M. Wang C., Z. Lu H., Q. Shen S.. Anomalous phase shift of quantum oscillations in 3D topological semimetals. Phys. Rev. Lett., 2016, 117(7): 077201
https://doi.org/10.1103/PhysRevLett.117.077201
10 Z. Lu H., B. Zhang S., Q. Shen S.. High-field magnetoconductivity of topological semimetals with short range potential. Phys. Rev. B, 2015, 92(4): 045203
https://doi.org/10.1103/PhysRevB.92.045203
11 B. Zhang S., Z. Lu H., Q. Shen S.. Linear magnetoconductivity in an intrinsic topological Weyl semimetal. New J. Phys., 2016, 18(5): 053039
https://doi.org/10.1088/1367-2630/18/5/053039
12 M. Wang C.P. Sun H.Z. Lu H.C. Xie X., 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett. 119(13), 136806 (2017)
13 Chen Y., Z. Lu H., C. Xie X.. Forbidden backscattering and resistance dip in the quantum limit as a sig nature for topological insulators. Phys. Rev. Lett., 2018, 121(3): 036602
https://doi.org/10.1103/PhysRevLett.121.036602
14 L. Zhang C., Y. Xu S., M. Wang C., Lin Z., Z. Du Z., Guo C., C. Lee C., Lu H., Feng Y., M. Huang S., Chang G., H. Hsu C., Liu H., Lin H., Li L., Zhang C., Zhang J., C. Xie X., Neupert T., Z. Hasan M., Z. Lu H., Wang J., Jia S.. Magnetic tunnelling induced Weyl node annihilation in TaP. Nat. Phys., 2017, 13(10): 979
https://doi.org/10.1038/nphys4183
15 Du Z., Wang C., P. Sun H., Z. Lu H., Xie X.. Quantum theory of the nonlinear Hall effect. Nat. Commun., 2021, 12(1): 5038
https://doi.org/10.1038/s41467-021-25273-4
16 Du Z., Z. Lu H., Xie X.. Nonlinear Hall effects. Nat. Rev. Phys., 2021, 3(11): 744
https://doi.org/10.1038/s42254-021-00359-6
17 Du Z., Wang C., Li S., Z. Lu H., Xie X.. Disorder induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun., 2019, 10(1): 3047
https://doi.org/10.1038/s41467-019-10941-3
18 Ma Q., Y. Xu S., Shen H., MacNeill D., Fatemi V., R. Chang T., M. Mier Valdivia A., Wu S., Du Z., H. Hsu C., Fang S., D. Gibson Q., Watanabe K., Taniguchi T., J. Cava R., Kaxiras E., Z. Lu H., Lin H., Fu L., Gedik N., Jarillo-Herrero P.. Observation of the nonlinear Hall effect under time-reversal symmetric conditions. Nature, 2019, 565(7739): 337
https://doi.org/10.1038/s41586-018-0807-6
19 Z. Du Z., M. Wang C., Z. Lu H., C. Xie X.. Band signatures for strong nonlinear Hall effect in Bi layer WTe2. Phys. Rev. Lett., 2018, 121(26): 266601
https://doi.org/10.1103/PhysRevLett.121.266601
20 L. Zhao P., B. Qiang X., Z. Lu H., C. Xie X.. Coulomb instabilities of a three-dimensional higher-order topological insulator. Phys. Rev. Lett., 2021, 127(17): 176601
https://doi.org/10.1103/PhysRevLett.127.176601
21 P. Sun H., M. Wang C., B. Zhang S., Chen R., Zhao Y., Liu C., Liu Q., Chen C., Z. Lu H., C. Xie X.. Analytical solution for the surface states of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 2020, 102(24): 241406
https://doi.org/10.1103/PhysRevB.102.241406
22 Chen R., Li S., P. Sun H., Liu Q., Zhao Y., Z. Lu H., C. Xie X.. Using nonlocal surface trans port to identify the axion insulator. Phys. Rev. B, 2021, 103(24): L241409
https://doi.org/10.1103/PhysRevB.103.L241409
23 Cao Z., Zhang H., F. Lü H., X. He W., Z. Lu H., C. Xie X.. Decays of Majorana or Andreev oscillations induced by step-like spin−orbit coupling. Phys. Rev. Lett., 2019, 122(14): 147701
https://doi.org/10.1103/PhysRevLett.122.147701
24 Chen R., Liu T., M. Wang C., Z. Lu H., C. Xie X.. Field tunable one sided higher-order topological hinge states in Dirac semimetals. Phys. Rev. Lett., 2021, 127(6): 066801
https://doi.org/10.1103/PhysRevLett.127.066801
25 Chen R., M. Wang C., Liu T., Z. Lu H., C. Xie X.. Quantum Hall effect originated from helical edge states in Cd3As2. Phys. Rev. Res., 2021, 3(3): 033227
https://doi.org/10.1103/PhysRevResearch.3.033227
26 Wan B., Schindler F., Wang K., Wu K., Wan X., Neupert T., Z. Lu H.. Theory for the negative longitudinal magnetoresistance in the quantum limit of Kramers Weyl semimetals. J. Phys.: Condens. Matter, 2018, 30(50): 505501
https://doi.org/10.1088/1361-648X/aaebed
27 L. Zhang C.. et al.. Nonsaturating quantum magnetization in Weyl semimetal TaAs. Nat. Commun., 2019, 10: 1028
https://doi.org/10.1038/s41467-019-09012-4
28 Qin F., Li S., Z. Du Z., M. Wang C., Zhang W., Yu D., Z. Lu H., C. Xie X.. Theory for the charge density wave mechanism of 3D quantum Hall effect. Phys. Rev. Lett., 2020, 125(20): 206601
https://doi.org/10.1103/PhysRevLett.125.206601
29 L. Zhao P., Z. Lu H., C. Xie X.. Theory for magnetic field driven 3D metal−insulator transitions in the quantum limit. Phys. Rev. Lett., 2021, 127(4): 046602
https://doi.org/10.1103/PhysRevLett.127.046602
30 Q. Shen S., Topological Insulators, 2nd Ed., Springer Verlag, Berlin Heidelberg, 2017
31 Okugawa R., Murakami S.. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Phys. Rev. B, 2014, 89(23): 235315
https://doi.org/10.1103/PhysRevB.89.235315
32 Z. Lu H., B. Zhang S., Q. Shen S.. High field mag netoconductivity of topological semimetals with short range potential. Phys. Rev. B, 2015, 92(4): 045203
https://doi.org/10.1103/PhysRevB.92.045203
33 Zheng H., Zahid Hasan M.. Quasiparticle interference on type I and type II Weyl semimetal surfaces: A review. Adv. Phys. X, 2018, 3(1): 1466661
https://doi.org/10.1080/23746149.2018.1466661
34 Z. Lu H., Y. Shan W., Yao W., Niu Q., Q. Shen S.. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B, 2010, 81(11): 115407
https://doi.org/10.1103/PhysRevB.81.115407
35 M. Wang C., L. Lei X.. Linear magnetoresistance on the topological surface. Phys. Rev. B, 2012, 86(3): 035442
https://doi.org/10.1103/PhysRevB.86.035442
36 Wang Z., Weng H., Wu Q., Dai X., Fang Z.. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B, 2013, 88(12): 125427
https://doi.org/10.1103/PhysRevB.88.125427
37 Jeon S., B. Zhou B., Gyenis A., E. Feldman B., Kimchi I., C. Potter A., D. Gibson Q., J. Cava R., Vishwanath A., Yazdani A.. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater., 2014, 13(9): 851
https://doi.org/10.1038/nmat4023
38 L. Zhang C., Schindler F., Liu H., R. Chang T., Y. Xu S., Chang G., Hua W., Jiang H., Yuan Z., Sun J., T. Jeng H., Z. Lu H., Lin H., Z. Hasan M., C. Xie X., Neupert T., Jia S.. Ultraquantum magnetoresistance in the Kramers−Weyl semimetal candidate β-Ag2Se. Phys. Rev. B, 2017, 96(16): 165148
https://doi.org/10.1103/PhysRevB.96.165148
39 H. Hall E.. et al.. On a new action of the magnet on electric currents. Am. J. Math., 1879, 2(3): 287
https://doi.org/10.2307/2369245
40 H. Hall E.. Xviii. on the “rotational coefficient” in nickel and cobalt. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1881, 12(74): 157
https://doi.org/10.1080/14786448108627086
41 Klitzing K., Dorda G., Pepper M.. New method for high accuracy determination of the fine structure constant based on quantized Hall resistance. Phys. Rev. Lett., 1980, 45(6): 494
https://doi.org/10.1103/PhysRevLett.45.494
42 C. Tsui D., L. Stormer H., C. Gossard A.. Two dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 1982, 48(22): 1559
https://doi.org/10.1103/PhysRevLett.48.1559
43 Nagaosa N., Sinova J., Onoda S., H. MacDonald A., P. Ong N.. Anomalous Hall effect. Rev. Mod. Phys., 2010, 82(2): 1539
https://doi.org/10.1103/RevModPhys.82.1539
44 E. Cage M.Klitzing K.Chang A.Duncan F.Haldane M. B. Laughlin R.Pruisken A.Thouless D., The Quantum Hall Effect, Springer Science & Business Media, 2012
45 Sodemann I., Fu L.. Quantum nonlinear Hall effect induced by Berry curvature dipole in time reversal in variant materials. Phys. Rev. Lett., 2015, 115(21): 216806
https://doi.org/10.1103/PhysRevLett.115.216806
46 Low T., Jiang Y., Guinea F.. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B, 2015, 92(23): 235447
https://doi.org/10.1103/PhysRevB.92.235447
47 I. Facio J., Efremov D., Koepernik K., S. You J., Sodemann I., van den Brink J.. Strongly enhanced berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett., 2018, 121(24): 246403
https://doi.org/10.1103/PhysRevLett.121.246403
48 S. You J., Fang S., Y. Xu S., Kaxiras E., Low T.. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B, 2018, 98(12): 121109
https://doi.org/10.1103/PhysRevB.98.121109
49 Zhang Y., van den Brink J., Felser C., Yan B.. Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition metal dichalcogenides WTe2 and MoTe2. 2D Mater., 2018, 5: 044001
https://doi.org/10.1088/2053-1583/aad1ae/meta
50 Zhang Y., Sun Y., Yan B.. Berry curvature dipole in Weyl semimetal materials: An ab initio study. Phys. Rev. B, 2018, 97(4): 041101
https://doi.org/10.1103/PhysRevB.97.041101
51 Papaj M., Fu L.. Magnus Hall effect. Phys. Rev. Lett., 2019, 123(21): 216802
https://doi.org/10.1103/PhysRevLett.123.216802
52 Mandal D., Das K., Agarwal A.. Magnus Nernst and thermal Hall effect. Phys. Rev. B, 2020, 102(20): 205414
https://doi.org/10.1103/PhysRevB.102.205414
53 Hamamoto K., Ezawa M., W. Kim K., Morimoto T., Nagaosa N.. Nonlinear spin current generation in noncentrosymmetric spin−orbit coupled systems. Phys. Rev. B, 2017, 95(22): 224430
https://doi.org/10.1103/PhysRevB.95.224430
54 Araki Y.. Strain-induced nonlinear spin Hall effect in topological Dirac semimetal. Sci. Rep., 2018, 8(1): 15236
https://doi.org/10.1038/s41598-018-33655-w
55 Q. Yu X., G. Zhu Z., S. You J., Low T., Su G.. Topological nonlinear anomalous nernst effect in strained transition metal dichalcogenides. Phys. Rev. B, 2019, 99(20): 201410
https://doi.org/10.1103/PhysRevB.99.201410
56 Zeng C., Nandy S., Taraphder A., Tewari S.. Nonlinear Nernst effect in bilayer WTe2. Phys. Rev. B, 2019, 100(24): 245102
https://doi.org/10.1103/PhysRevB.100.245102
57 Nakai R., Nagaosa N.. Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals. Phys. Rev. B, 2019, 99(11): 115201
https://doi.org/10.1103/PhysRevB.99.115201
58 Zeng C., Nandy S., Tewari S.. Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime. Phys. Rev. Res., 2020, 2(3): 032066
https://doi.org/10.1103/PhysRevResearch.2.032066
59 Kang K., Li T., Sohn E., Shan J., F. Mak K.. Nonlinear anomalous Hall effect in few layer WTe2. Nat. Mater., 2019, 18(4): 324
https://doi.org/10.1038/s41563-019-0294-7
60 V. Berry M.. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 1984, 392(1802): 45
https://doi.org/10.1098/rspa.1984.0023
61 Xiao D., C. Chang M., Niu Q.. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
https://doi.org/10.1103/RevModPhys.82.1959
62 Karplus R., M. Luttinger J.. Hall effect in ferromagnetics. Phys. Rev., 1954, 95(5): 1154
https://doi.org/10.1103/PhysRev.95.1154
63 A. Benalcazar W., A. Bernevig B., L. Hughes T.. Quantized electric multipole insulators. Science, 2017, 357(6346): 61
https://doi.org/10.1126/science.aah6442
64 A. Benalcazar W., A. Bernevig B., L. Hughes T.. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B, 2017, 96(24): 245115
https://doi.org/10.1103/PhysRevB.96.245115
65 M. Wang C.P. Sun H.Z. Lu H.C. Xie X., 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett. 119(13), 136806 (2017)
66 Song Z.Fang Z.Fang C., (d − 2) dimensional edge states of rotation symmetry protected topological states, Phys. Rev. Lett. 119(24), 246402 (2017)
67 Langbehn J., Peng Y., Trifunovic L., von Oppen F., W. Brouwer P.. Reflection symmetric second-order topological insulators and superconductors. Phys. Rev. Lett., 2017, 119(24): 246401
https://doi.org/10.1103/PhysRevLett.119.246401
68 Chen R., Z. Chen C., H. Gao J., Zhou B., H. Xu D.. Higher-order topological insulators in quasicrystals. Phys. Rev. Lett., 2020, 124(3): 036803
https://doi.org/10.1103/PhysRevLett.124.036803
69 Schindler F., M. Cook A., G. Vergniory M., Wang Z., S. P. Parkin S., A. Bernevig B., Neupert T.. Higher-order topological insulators. Sci. Adv., 2018, 4(6): eaat0346
https://doi.org/10.1126/sciadv.aat0346
70 Schindler F., Wang Z., G. Vergniory M., M. Cook A., Murani A., Sengupta S., Y. Kasumov A., Deblock R., Jeon S., Drozdov I., Bouchiat H., Guéron S., Yazdani A., A. Bernevig B., Neupert T.. Higher-order topology in bismuth. Nat. Phys., 2018, 14(9): 918
https://doi.org/10.1038/s41567-018-0224-7
71 Ezawa M.. Higher-order topological insulators and semimetals on the breathing Kagome and pyrochlore lattices. Phys. Rev. Lett., 2018, 120(2): 026801
https://doi.org/10.1103/PhysRevLett.120.026801
72 Li Z., Cao Y., Yan P., Wang X.. Higher-order topological solitonic insulators. npj Comput. Mater., 2019, 5: 107
https://doi.org/10.1038/s41524-019-0246-4
73 Fu L., L. Kane C., J. Mele E.. Topological insulators in three dimensions. Phys. Rev. Lett., 2007, 98(10): 106803
https://doi.org/10.1103/PhysRevLett.98.106803
74 E. Moore J., Balents L.. Topological invariants of time reversal invariant band structures. Phys. Rev. B, 2007, 75(12): 121306
https://doi.org/10.1103/PhysRevB.75.121306
75 Murakami S.. Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase. New J. Phys., 2007, 9(9): 356
https://doi.org/10.1088/1367-2630/9/9/356
76 Roy R.. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B, 2009, 79(19): 195322
https://doi.org/10.1103/PhysRevB.79.195322
77 Fu L., L. Kane C.. Topological insulators within version symmetry. Phys. Rev. B, 2007, 76(4): 045302
https://doi.org/10.1103/PhysRevB.76.045302
78 Hsieh D.Qian D.Wray L.Xia Y.S. Hor Y. J. Cava R.Z. Hasan M., A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)
79 Zhang H., X. Liu C., L. Qi X., Dai X., Fang Z., C. Zhang S., Topological insulators in Bi2Se3. Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 438
https://doi.org/10.1038/nphys1270
80 Xia Y., Qian D., Hsieh D., Wray L., Pal A., Lin H., Bansil A., Grauer D., S. Hor Y., J. Cava R., Z. Hasan M.. Observation of a large gap topological insulator class with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 398
https://doi.org/10.1038/nphys1274
81 Z. Hasan M., L. Kane C.. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
82 L. Qi X., C. Zhang S.. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
83 Z. Hasan M., E. Moore J.. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2011, 2(1): 55
https://doi.org/10.1146/annurev-conmatphys-062910-140432
84 Xue H., Yang Y., Gao F., Chong Y., Zhang B.. Acoustic higher-order topological insulator on a Kagome lattice. Nat. Mater., 2019, 18(2): 108
https://doi.org/10.1038/s41563-018-0251-x
85 Ni X., Weiner M., Alù A., B. Khanikaev A.. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater., 2019, 18(2): 113
https://doi.org/10.1038/s41563-018-0252-9
86 Xue H., Ge Y., X. Sun H., Wang Q., Jia D., J. Guan Y., Q. Yuan S., Chong Y., Zhang B.. Observation of an acoustic octupole topological insulator. Nat. Commun., 2020, 11(1): 2442
https://doi.org/10.1038/s41467-020-16350-1
87 Serra-Garcia M., Peri V., Süsstrunk R., R. Bilal O., Larsen T., G. Villanueva L., D. Huber S.. Observation of a phononic quadrupole topological insulator. Nature, 2018, 555(7696): 342
https://doi.org/10.1038/nature25156
88 W. Peterson C.A. Benalcazar W.L. Hughes T.Bahl G., A quantized microwave quadrupole insulator with topologically protected corner states, Nature 555(7696), 346 (2018)
89 Imhof S., Berger C., Bayer F., Brehm J., W. Molenkamp L., Kiessling T., Schindler F., H. Lee C., Greiter M., Neupert T., Thomale R.. Topoelectrical circuit realization of topological corner modes. Nat. Phys., 2018, 14(9): 925
https://doi.org/10.1038/s41567-018-0246-1
90 Serra-Garcia M.Süsstrunk R.D. Huber S., Observation of quadrupole transitions and edge mode topology in an LC circuit network, Phys. Rev. B 99, 020304(R) (2019)
91 Mittal S., V. Orre V., Zhu G., A. Gorlach M., Poddubny A., Hafezi M.. Photonic quadrupole topological phases. Nat. Photonics, 2019, 13(10): 692
https://doi.org/10.1038/s41566-019-0452-0
92 El Hassan A., K. Kunst F., Moritz A., Andler G., J. Bergholtz E., Bourennane M.. Corner states of light in photonic waveguides. Nat. Photonics, 2019, 13(10): 697
https://doi.org/10.1038/s41566-019-0519-y
93 Y. Xie B., X. Su G., F. Wang H., Su H., P. Shen X., Zhan P., H. Lu M., L. Wang Z., F. Chen Y.. Visualization of higher-order topological insulating phases in twodimensional dielectric photonic crystals. Phys. Rev. Lett., 2019, 122(23): 233903
https://doi.org/10.1103/PhysRevLett.122.233903
94 Li M., Zhirihin D., Gorlach M., Ni X., Filonov D., Slobozhanyuk A., Alù A., B. Khanikaev A.. Higher-order topological states in photonic Kagome crystals with long range interactions. Nat. Photonics, 2020, 14(2): 89
https://doi.org/10.1038/s41566-019-0561-9
95 Xu Y., Song Z., Wang Z., Weng H., Dai X.. Higher-order topology of the axion insula tor EuIn2As2. Phys. Rev. Lett., 2019, 122(25): 256402
https://doi.org/10.1103/PhysRevLett.122.256402
96 X. Zhang R.Wu F.Das Sarma S., Möbius insulator and higher-order topology in MnBi2nTe3n+1, Phys. Rev. Lett. 124(13), 136407 (2020)
97 E. Moore J.. The birth of topological insulators. Nature, 2010, 464(7286): 194
https://doi.org/10.1038/nature08916
98 Zhu Z., Papaj M., A. Nie X., K. Xu H., S. Gu Y., Yang X., Guan D., Wang S., Li Y., Liu C., Luo J., A. Xu Z., Zheng H., Fu L., F. Jia J.. Discovery of segmented Fermi surface induced by cooper pair momentum. Science, 2021, 374(6573): 1381
https://doi.org/10.1126/science.abf1077
99 X. Liu C., L. Qi X., Dai X., Fang Z., C. Zhang S.. Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells. Phys. Rev. Lett., 2008, 101(14): 146802
https://doi.org/10.1103/PhysRevLett.101.146802
100 Yu R., Zhang W., J. Zhang H., C. Zhang S., Dai X., Fang Z.. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
https://doi.org/10.1126/science.1187485
101 A. Nie X., Li S., Yang M., Zhu Z., K. Xu H., Yang X., Zheng F., Guan D., Wang S., Y. Li Y., Liu C., Li J., Zhang P., Shi Y., Zheng H., Jia J.. Robust hot electron and multiple topological insulator states in PtBi2. ACS Nano, 2020, 14(2): 2366
https://doi.org/10.1021/acsnano.9b09564
102 Zhu Z., R. Chang T., Y. Huang C., Pan H., A. Nie X., Z. Wang X., T. Jin Z., Y. Xu S., M. Huang S., D. Guan D., Wang S., Y. Li Y., Liu C., Qian D., Ku W., Song F., Lin H., Zheng H., F. Jia J.. Quasiparticle interference and nonsymmorphic effect on a floating band surface state of zrsise. Nat. Commun., 2018, 9(1): 4153
https://doi.org/10.1038/s41467-018-06661-9
103 Mogi M., Yoshimi R., Tsukazaki A., Yasuda K., Kozuka Y., Takahashi K., Kawasaki M., Tokura Y.. Magnetic modulation doping in topological insulators toward higher temperature quantum anomalous Hall effect. Appl. Phys. Lett., 2015, 107(18): 182401
https://doi.org/10.1063/1.4935075
104 Tokura Y., Yasuda K., Tsukazaki A.. Magnetic topological insulators. Nat. Rev. Phys., 2019, 1(2): 126
https://doi.org/10.1038/s42254-018-0011-5
105 M. Otrokov M., I. Klimovskikh I., Bentmann H., Estyunin D., Zeugner A., S. Aliev Z., Gaß S., U. B. Wolter A., V. Koroleva A., M. Shikin A., Blanco-Rey M., Hoffmann M., P. Rusinov I., Y. Vyazovskaya A., V. Eremeev S., M. Koroteev Y., M. Kuznetsov V., Freyse F., Sánchez-Barriga J., R. Amiraslanov I., B. Babanly M., T. Mamedov N., A. Abdullayev N., N. Zverev V., Alfonsov A., Kataev V., Büchner B., F. Schwier E., Kumar S., Kimura A., Petaccia L., Di Santo G., C. Vidal R., Schatz S., Kißner K., Ünzelmann M., H. Min C., Moser S., R. F. Peixoto T., Reinert F., Ernst A., M. Echenique P., Isaeva A., V. Chulkov E.. Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576(7787): 416
https://doi.org/10.1038/s41586-019-1840-9
106 Zhang D., Shi M., Zhu T., Xing D., Zhang H., Wang J.. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett., 2019, 122(20): 206401
https://doi.org/10.1103/PhysRevLett.122.206401
107 Li J., Li Y., Du S., Wang Z., L. Gu B., C. Zhang S., He K., Duan W., Xu Y.. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4 family materials. Sci. Adv., 2019, 5(6): eaaw5685
https://doi.org/10.1126/sciadv.aaw5685
108 K. Xu H., Gu M., Fei F., S. Gu Y., Liu D., Y. Yu Q., S. Xue S., H. Ning X., Chen B., Xie H., Zhu Z., Guan D., Wang S., Li Y., Liu C., Liu Q., Song F., Zheng H., Jia J.. Observation of magnetism-induced topological edge state in antiferromagnetic topological insulator MnBi4Te7. ACS Nano, 2022, 16(6): 9810
https://doi.org/10.1021/acsnano.2c03622
109 J. Hao Y., Liu P., Feng Y., M. Ma X., F. Schwier E., Arita M., Kumar S., Hu C., Lu R., Zeng M., Wang Y., Hao Z., Y. Sun H., Zhang K., Mei J., Ni N., Wu L., Shimada K., Chen C., Liu Q., Liu C.. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041038
https://doi.org/10.1103/PhysRevX.9.041038
110 J. Chen Y., X. Xu L., H. Li J., W. Li Y., Y. Wang H., F. Zhang C., Li H., Wu Y., J. Liang A., Chen C., W. Jung S., Cacho C., H. Mao Y., Liu S., X. Wang M., F. Guo Y., Xu Y., K. Liu Z., X. Yang L., L. Chen Y.. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041040
https://doi.org/10.1103/PhysRevX.9.041040
111 Swatek P., Wu Y., L. Wang L., Lee K., Schrunk B., Yan J., Kaminski A.. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 2020, 101(16): 161109
https://doi.org/10.1103/PhysRevB.101.161109
112 D. Peccei R.R. Quinn H., CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38(25), 1440 (1977)
113 Wang J., Lian B., L. Qi X., C. Zhang S.. Quantized topological magnetoelectric effect of the zero plateau quantum anomalous Hall state. Phys. Rev. B, 2015, 92(8): 081107
https://doi.org/10.1103/PhysRevB.92.081107
114 Morimoto T., Furusaki A., Nagaosa N.. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B, 2015, 92(8): 085113
https://doi.org/10.1103/PhysRevB.92.085113
115 L. Qi X., Li R., Zang J., C. Zhang S.. Inducing a magnetic monopole with topological surface states. Science, 2009, 323(5918): 1184
https://doi.org/10.1126/science.1167747
116 Maciejko J., L. Qi X., D. Drew H., C. Zhang S.. Topological quantization in units of the fine structure constant. Phys. Rev. Lett., 2010, 105(16): 166803
https://doi.org/10.1103/PhysRevLett.105.166803
117 K. Tse W., H. MacDonald A.. Giant magneto optical Kerr effect and universal faraday effect in thin film topological insulators. Phys. Rev. Lett., 2010, 105(5): 057401
https://doi.org/10.1103/PhysRevLett.105.057401
118 Yu J., Zang J., X. Liu C.. Magnetic resonance induced pseudoelectric field and giant current response in axion insulators. Phys. Rev. B, 2019, 100(7): 075303
https://doi.org/10.1103/PhysRevB.100.075303
119 Chen R., P. Sun H., Zhou B.. Side surface mediated hybridization in axion insulators. Phys. Rev. B, 2023, 107(12): 125304
https://doi.org/10.1103/PhysRevB.107.125304
120 M. Essin A., E. Moore J., Vanderbilt D.. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett., 2009, 102(14): 146805
https://doi.org/10.1103/PhysRevLett.102.146805
121 S. K. Mong R., M. Essin A., E. Moore J.. Anti ferromagnetic topological insulators. Phys. Rev. B, 2010, 81(24): 245209
https://doi.org/10.1103/PhysRevB.81.245209
122 Niu C., Wang H., Mao N., Huang B., Mokrousov Y., Dai Y.. Antiferromagnetic topological insulator with nonsymmorphic protection in two dimensions. Phys. Rev. Lett., 2020, 124(6): 066401
https://doi.org/10.1103/PhysRevLett.124.066401
123 Xu Y., Miotkowski I., Liu C., Tian J., Nam H., Alidoust N., Hu J., K. Shih C., Z. Hasan M., P. Chen Y.. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys., 2014, 10(12): 956
https://doi.org/10.1038/nphys3140
124 MacKinnon A.. The calculation of transport properties and density of states of disordered solids. Z. Phys. B, 1985, 59(4): 385
https://doi.org/10.1007/BF01328846
125 Metalidis G., Bruno P.. Green’s function technique for studying electron flow in two-dimensional mesoscopic samples. Phys. Rev. B, 2005, 72(23): 235304
https://doi.org/10.1103/PhysRevB.72.235304
126 Landauer R.. Electrical resistance of disordered one dimensional lattices. Philosophical Magazine, 1970, 21: 863
https://doi.org/10.1080/14786437008238472
127 Büttiker M.. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B, 1988, 38(14): 9375
https://doi.org/10.1103/PhysRevB.38.9375
128 S. Fisher D., A. Lee P.. Relation between conductivity and transmission matrix. Phys. Rev. B, 1981, 23(12): 6851
https://doi.org/10.1103/PhysRevB.23.6851
129 L. Chu R., Shi J., Q. Shen S.. Surface edge state and half quantized Hall conductance in topological insulators. Phys. Rev. B, 2011, 84(8): 085312
https://doi.org/10.1103/PhysRevB.84.085312
130 Alicea J.. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys., 2012, 75(7): 076501
https://doi.org/10.1088/0034-4885/75/7/076501
131 Leijnse M., Flensberg K.. Introduction to topological superconductivity and Majorana fermions. Semicond. Sci. Technol., 2012, 27(12): 124003
https://doi.org/10.1088/0268-1242/27/12/124003
132 Beenakker C.. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys., 2013, 4(1): 113
https://doi.org/10.1146/annurev-conmatphys-030212-184337
133 D. Stanescu T., Tewari S.. Majorana fermions in semiconductor nanowires: Fundamentals, modeling, and experiment. J. Phys.: Condens. Matter, 2013, 25(23): 233201
https://doi.org/10.1088/0953-8984/25/23/233201
134 Aguado R.. Majorana quasiparticles in condensed matter. Riv. Nuovo Cim., 2017, 40: 523
https://doi.org/10.1393/ncr/i2017-10141-9
135 Kitaev A.. Fault-tolerant quantum computation by anyons. Ann. Phys., 2003, 303(1): 2
https://doi.org/10.1016/S0003-4916(02)00018-0
136 Nayak C., H. Simon S., Stern A., Freedman M., Das Sarma S.. Nonabelian anyons and topological quantum computation. Rev. Mod. Phys., 2008, 80(3): 1083
https://doi.org/10.1103/RevModPhys.80.1083
137 D. Sarma S., Freedman M., Nayak C.. Majorana zero modes and topological quantum computation. npj Quantum Inf., 2015, 1: 15001
https://doi.org/10.1038/npjqi.2015.1
138 Mourik V., Zuo K., M. Frolov S., R. Plissard S., P. A. M. Bakkers E., P. Kouwenhoven L.. Signatures of Majorana fermions in hybrid superconductor semiconductor nanowire devices. Science, 2012, 336(6084): 1003
https://doi.org/10.1126/science.1222360
139 Deng M., Yu C., Huang G., Larsson M., Caroff P., Xu H.. Anomalous zerobias conductance peak in a NbInSb nanowire–Nb hybrid device. Nano Lett., 2012, 12(12): 6414
https://doi.org/10.1021/nl303758w
140 Das A., Ronen Y., Most Y., Oreg Y., Heiblum M., Shtrikman H.. Zero bias peaks and splitting in an AlInAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys., 2012, 8(12): 887
https://doi.org/10.1038/nphys2479
141 D. K. Finck A., J. Van Harlingen D., K. Mohseni P., Jung K., Li X.. Anomalous modulation of a zero bias peak in a hybrid nanowire superconductor device. Phys. Rev. Lett., 2013, 110(12): 126406
https://doi.org/10.1103/PhysRevLett.110.126406
142 O. H. Churchill H., Fatemi V., Grove-Rasmussen K., T. Deng M., Caroff P., Q. Xu H., M. Marcus C.. Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B, 2013, 87(24): 241401
https://doi.org/10.1103/PhysRevB.87.241401
143 T. Deng M., Vaitieke˙nas S., B. Hansen E., Danon J., Leijnse M., Flensberg K., Nygård J., Krogstrup P., M. Marcus C.. Majorana bound state in a coupled quantum dot hybrid nanowire system. Science, 2016, 354(6319): 1557
https://doi.org/10.1126/science.aaf3961
144 Chen J., Yu P., Stenger J., Hocevar M., Car D., R. Plissard S., P. A. M. Bakkers E., D. Stanescu T., M. Frolov S.. Experimental phase diagram of zero bias conductance peaks in superconductor/semiconductor nanowire devices. Sci. Adv., 2017, 3(9): e1701476
https://doi.org/10.1126/sciadv.1701476
145 J. Suominen H., Kjaergaard M., R. Hamilton A., Shabani J., J. Palmstrøm C., M. Marcus C., Nichele F.. Zero energy modes from coalescing Andreev states in a two-dimensional semiconductor−superconductor hybrid platform. Phys. Rev. Lett., 2017, 119(17): 176805
https://doi.org/10.1103/PhysRevLett.119.176805
146 Nichele F., C. C. Drachmann A., M. Whiticar A., C. T. O’Farrell E., J. Suominen H., Fornieri A., Wang T., C. Gardner G., Thomas C., T. Hatke A., Krogstrup P., J. Manfra M., Flensberg K., M. Marcus C.. Scaling of Majorana zero bias conductance peaks. Phys. Rev. Lett., 2017, 119(13): 136803
https://doi.org/10.1103/PhysRevLett.119.136803
147 Zhang H., X. Liu C., Gazibegovic S., Xu D., A. Logan J., Wang G., van Loo N., D. S. Bommer J., W. A. de Moor M., Car D., L. M. Op het Veld R., J. van Veldhoven P., Koelling S., A. Verheijen M., Pendharkar M., J. Pennachio D., Shojaei B., S. Lee J., J. Palmstrøm C., P. A. M. Bakkers E., D. Sarma S., P. Kouwenhoven L.. Retracted article: Quantized Majorana conductance. Nature, 2018, 556(7699): 74
https://doi.org/10.1038/nature26142
148 E. Sestoft J., Kanne T., N. Gejl A., von Soosten M., S. Yodh J., Sherman D., Tarasinski B., Wimmer M., Johnson E., Deng M., Nygård J., S. Jespersen T., M. Marcus C., Krogstrup P.. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection. Phys. Rev. Mater., 2018, 2(4): 044202
https://doi.org/10.1103/PhysRevMaterials.2.044202
149 Vaitiekėnas S., T. Deng M., Nygård J., Krogstrup P., M. Marcus C.. Effective g factor of subgap states in hybrid nanowires. Phys. Rev. Lett., 2018, 121(3): 037703
https://doi.org/10.1103/PhysRevLett.121.037703
150 T. Deng M., Vaitieke˙nas S., Prada E., SanJose P., Nygård J., Krogstrup P., Aguado R., M. Marcus C.. Nonlocality of Majorana modes in hybrid nanowires. Phys. Rev. B, 2018, 98(8): 085125
https://doi.org/10.1103/PhysRevB.98.085125
151 W. A. de Moor M., D. S. Bommer J., Xu D., W. Winkler G., E. Antipov A., Bargerbos A., Wang G., Loo N., L. M. Op het Veld R., Gazibegovic S., Car D., A. Logan J., Pendharkar M., S. Lee J., P. A. M Bakkers E., J. Palmstrøm C., M. Lutchyn R., P. Kouwenhoven L., Zhang H.. Electric field tunable superconductor semiconductor coupling in Majorana nanowires. New J. Phys., 2018, 20(10): 103049
https://doi.org/10.1088/1367-2630/aae61d
152 Zhu Z., Zheng H., F. Jia J.. Majorana zero mode in the vortex of artificial topological superconductor. J. Appl. Phys., 2021, 129(15): 151104
https://doi.org/10.1063/5.0043694
153 M. Lutchyn R., D. Sau J., Das Sarma S.. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett., 2010, 105(7): 077001
https://doi.org/10.1103/PhysRevLett.105.077001
154 Oreg Y., Refael G., von Oppen F.. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett., 2010, 105(17): 177002
https://doi.org/10.1103/PhysRevLett.105.177002
155 M. Lutchyn R., P. Bakkers E., P. Kouwenhoven L., Krogstrup P., M. Marcus C., Oreg Y.. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater., 2018, 3(5): 52
https://doi.org/10.1038/s41578-018-0003-1
156 Prada E., San-Jose P., Aguado R.. Transport spectroscopy of NS nanowire junctions with Majorana fermions. Phys. Rev. B, 2012, 86(18): 180503
https://doi.org/10.1103/PhysRevB.86.180503
157 Das Sarma S., D. Sau J., D. Stanescu T.. Splitting of the zero bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor−semiconductor nanowire. Phys. Rev. B, 2012, 86(22): 220506
https://doi.org/10.1103/PhysRevB.86.220506
158 Rainis D., Trifunovic L., Klinovaja J., Loss D.. Towards a realistic transport modeling in a superconducting nanowire with majorana fermions. Phys. Rev. B, 2013, 87(2): 024515
https://doi.org/10.1103/PhysRevB.87.024515
159 M. Albrecht S., P. Higginbotham A., Madsen M., Kuemmeth F., S. Jespersen T., Nygård J., Krogstrup P., Marcus C.. Exponential protection of zero modes in Majorana islands. Nature, 2016, 531(7593): 206
https://doi.org/10.1038/nature17162
160 Sherman D., Yodh J., Albrecht S., Nygård J., Krogstrup P., Marcus C.. Normal, superconducting and topological regimes of hybrid double quantum dots. Nat. Nanotechnol., 2017, 12(3): 212
https://doi.org/10.1038/nnano.2016.227
161 M. Albrecht S., B. Hansen E., P. Higginbotham A., Kuemmeth F., S. Jespersen T., Nygård J., Krogstrup P., Danon J., Flensberg K., M. Marcus C.. Transport signatures of quasiparticle poisoning in a Majorana island. Phys. Rev. Lett., 2017, 118(13): 137701
https://doi.org/10.1103/PhysRevLett.118.137701
162 C. T. O’Farrell E., C. C. Drachmann A., Hell M., Fornieri A., M. Whiticar A., B. Hansen E., Gronin S., C. Gardner G., Thomas C., J. Manfra M., Flensberg K., M. Marcus C., Nichele F.. Hybridization of subgap states in one-dimensional superconductor semiconductor Coulomb islands. Phys. Rev. Lett., 2018, 121(25): 256803
https://doi.org/10.1103/PhysRevLett.121.256803
163 Kells G., Meidan D., W. Brouwer P.. Nearzero energy end states in topologically trivial spin−orbit coupled superconducting nanowires with a smooth confinement. Phys. Rev. B, 2012, 86(10): 100503
https://doi.org/10.1103/PhysRevB.86.100503
164 D. Stanescu T., Tewari S.. Disentangling Majorana fermions from topologically trivial low energy states in semiconductor Majorana wires. Phys. Rev. B, 2013, 87(14): 140504
https://doi.org/10.1103/PhysRevB.87.140504
165 X. Liu C., D. Sau J., D. Stanescu T., Das Sarma S.. Andreev bound states versus Majorana bound states in quantum dot nanowire superconductor hybrid structures: Trivial versus topological zero bias conductance peaks. Phys. Rev. B, 2017, 96(7): 075161
https://doi.org/10.1103/PhysRevB.96.075161
166 Moore C., D. Stanescu T., Tewari S.. Two terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor−superconductor heterostructures. Phys. Rev. B, 2018, 97(16): 165302
https://doi.org/10.1103/PhysRevB.97.165302
167 I. Halperin B.. Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn. J. Appl. Phys., 1987, 26(S3-3): 1913
https://doi.org/10.7567/JJAPS.26S3.1913
168 Zilberberg O., Huang S., Guglielmon J., Wang M., P. Chen K., E. Kraus Y., C. Rechtsman M.. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature, 2018, 553(7686): 59
https://doi.org/10.1038/nature25011
169 Montambaux G., Kohmoto M.. Quantized Hall effect in three dimensions. Phys. Rev. B, 1990, 41(16): 11417
https://doi.org/10.1103/PhysRevB.41.11417
170 Kohmoto M., I. Halperin B., S. Wu Y.. Diophan tine equation for the three-dimensional quantum Hall effect. Phys. Rev. B, 1992, 45(23): 13488
https://doi.org/10.1103/PhysRevB.45.13488
171 Koshino M., Aoki H., Kuroki K., Kagoshima S., Osada T.. Hofstadter butterfly and integer quantum Hall effect in three dimensions. Phys. Rev. Lett., 2001, 86(6): 1062
https://doi.org/10.1103/PhysRevLett.86.1062
172 A. Bernevig B., L. Hughes T., Raghu S., P. Arovas D.. Theory of the three-dimensional quantum Hall effect in graphite. Phys. Rev. Lett., 2007, 99(14): 146804
https://doi.org/10.1103/PhysRevLett.99.146804
173 L. Störmer H., P. Eisenstein J., C. Gossard A., Wiegmann W., Baldwin K.. Quantization of the Hall effect in an anisotropic three-dimensional electronic system. Phys. Rev. Lett., 1986, 56(1): 85
https://doi.org/10.1103/PhysRevLett.56.85
174 R. Cooper J., Kang W., Auban P., Montambaux G., Jérome D., Bechgaard K.. Quantized Hall effect and a new field-induced phase transition in the organic superconductor (TMTSF)2PF6. Phys. Rev. Lett., 1989, 63(18): 1984
https://doi.org/10.1103/PhysRevLett.63.1984
175 T. Hannahs S., S. Brooks J., Kang W., Y. Chiang L., M. Chaikin P.. Quantum Hall effect in a bulk crystal. Phys. Rev. Lett., 1989, 63(18): 1988
https://doi.org/10.1103/PhysRevLett.63.1988
176 Hill S., Uji S., Takashita M., Terakura C., Terashima T., Aoki H., S. Brooks J., Fisk Z., Sarrao J.. Bulk quantum Hall effect in η-Mo4O11. Phys. Rev. B, 1998, 58(16): 10778
https://doi.org/10.1103/PhysRevB.58.10778
177 Cao H., Tian J., Miotkowski I., Shen T., Hu J., Qiao S., P. Chen Y.. Quantized Hall effect and Shubnikov–de Haas oscillations in highly doped Bi2Se3: Evidence for layered transport of bulk carriers. Phys. Rev. Lett., 2012, 108(21): 216803
https://doi.org/10.1103/PhysRevLett.108.216803
178 Masuda H., Sakai H., Tokunaga M., Yamasaki Y., Miyake A., Shiogai J., Nakamura S., Awaji S., Tsukazaki A., Nakao H., Murakami Y., Arima T., Tokura Y., Ishiwata S.. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv., 2016, 2(1): e1501117
https://doi.org/10.1126/sciadv.1501117
179 Liu Y., Yuan X., Zhang C., Jin Z., Narayan A., Luo C., Chen Z., Yang L., Zou J., Wu X., Sanvito S., Xia Z., Li L., Wang Z., Xiu F.. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5. Nat. Commun., 2016, 7(1): 12516
https://doi.org/10.1038/ncomms12516
180 Liu J., Yu J., L. Ning J., M. Yi H., Miao L., J. Min L., F. Zhao Y., Ning W., A. Lopez K., L. Zhu Y., Pillsbury T., B. Zhang Y., Wang Y., Hu J., B. Cao H., C. Chakoumakos B., Balakirev F., Weickert F., Jaime M., Lai Y., Yang K., W. Sun J., Alem N., Gopalan V., Z. Chang C., Samarth N., X. Liu C., D. McDonald R., Q. Mao Z.. Spin-valley locking and bulk quantum Hall effect in a noncentrosymmetric Dirac semimetal BaMnSb2. Nat. Commun., 2021, 12(1): 4062
https://doi.org/10.1038/s41467-021-24369-1
181 Tang F., Ren Y., Wang P., Zhong R., Schneeloch J., A. Yang S., Yang K., A. Lee P., Gu G., Qiao Z., Zhang L.. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature, 2019, 569(7757): 537
https://doi.org/10.1038/s41586-019-1180-9
182 Li H.Liu H. Jiang H.C. Xie X., 3D quantum Hall effect and a global picture of edge states in Weyl semimetals, Phys. Rev. Lett. 125(3), 036602 (2020)
183 G. Cheng S., Jiang H., F. Sun Q., C. Xie X.. Quantum Hall effect in wedge-shaped samples. Phys. Rev. B, 2020, 102(7): 075304
https://doi.org/10.1103/PhysRevB.102.075304
184 Wang P., Ren Y., Tang F., Wang P., Hou T., Zeng H., Zhang L., Qiao Z.. Approaching three-dimensional quantum Hall effect in bulk HfTe5. Phys. Rev. B, 2020, 101(16): 161201
https://doi.org/10.1103/PhysRevB.101.161201
185 Ma R., N. Sheng D., Sheng L.. Three-dimensional quantum Hall effect and magnetothermoelectric properties in Weyl semimetals. Phys. Rev. B, 2021, 104(7): 075425
https://doi.org/10.1103/PhysRevB.104.075425
186 C. Zhang S.Hu J., A four-dimensional generalization of the quantum Hall effect, Science 294(5543), 823 (2001)
187 Lohse M., Schweizer C., M. Price H., Zilberberg O., Bloch I.. Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature, 2018, 553(7686): 55
https://doi.org/10.1038/nature25000
188 M. Price H., Zilberberg O., Ozawa T., Carusotto I., Goldman N.. Four-dimensional quantum Hall effect with ultracold atoms. Phys. Rev. Lett., 2015, 115(19): 195303
https://doi.org/10.1103/PhysRevLett.115.195303
189 J. Jin Y., Wang R., W. Xia B., B. Zheng B., Xu H.. Three-dimensional quantum anomalous Hall effect in ferromagnetic insulators. Phys. Rev. B, 2018, 98(8): 081101
https://doi.org/10.1103/PhysRevB.98.081101
190 A. Molina R., González J.. Surface and 3D quantum Hall effects from engineering of exceptional points in nodal line semimetals. Phys. Rev. Lett., 2018, 120(14): 146601
https://doi.org/10.1103/PhysRevLett.120.146601
191 Benito-Matías E., A. Molina R., González J.. Surface and bulk Landau levels in thin films of Weyl semimetals. Phys. Rev. B, 2020, 101(8): 085420
https://doi.org/10.1103/PhysRevB.101.085420
192 Chang M., Sheng L.. Three-dimensional quantum Hall effect in the excitonic phase of a Weyl semimetal. Phys. Rev. B, 2021, 103(24): 245409
https://doi.org/10.1103/PhysRevB.103.245409
193 Chang M., Geng H., Sheng L., Y. Xing D.. Three-dimensional quantum Hall effect in Weyl semimetals. Phys. Rev. B, 2021, 103(24): 245434
https://doi.org/10.1103/PhysRevB.103.245434
194 Klitzing K., Dorda G., Pepper M.. New method for high accuracy determination of the fine structure constant based on quantized Hall resistance. Phys. Rev. Lett., 1980, 45(6): 494
https://doi.org/10.1103/PhysRevLett.45.494
195 J. Thouless D., Kohmoto M., P. Nightingale M., den Nijs M.. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 1982, 49(6): 405
https://doi.org/10.1103/PhysRevLett.49.405
196 Z. Lu H., 3D quantum Hall effect, Natl. Sci. Rev. 6(2), 208 (2019)
197 Liu F., Y. Deng H., Wakabayashi K.. Helical topological edge states in a quadrupole phase. Phys. Rev. Lett., 2019, 122(8): 086804
https://doi.org/10.1103/PhysRevLett.122.086804
198 Roy B.. Antiunitary symmetry protected higher-order topological phases. Phys. Rev. Res., 2019, 1(3): 032048
https://doi.org/10.1103/PhysRevResearch.1.032048
199 B. Hua C., Chen R., Zhou B., H. Xu D.. Higher-order topological insulator in a dodecagonal quasicrystal. Phys. Rev. B, 2020, 102(24): 241102
https://doi.org/10.1103/PhysRevB.102.241102
200 R. Liu Z., H. Hu L., Z. Chen C., Zhou B., H. Xu D.. Topological excitonic corner states and nodal phase in bilayer quantum spin Hall insulators. Phys. Rev. B, 2021, 103(20): L201115
https://doi.org/10.1103/PhysRevB.103.L201115
201 Queiroz R., Stern A.. Splitting the hinge mode of higher-order topological insulators. Phys. Rev. Lett., 2019, 123(3): 036802
https://doi.org/10.1103/PhysRevLett.123.036802
202 Sitte M., Rosch A., Altman E., Fritz L.. Topological insulators in magnetic fields: Quantum Hall effect and edge channels with a nonquantized θ term. Phys. Rev. Lett., 2012, 108(12): 126807
https://doi.org/10.1103/PhysRevLett.108.126807
203 Zhang F., L. Kane C., J. Mele E.. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett., 2013, 110(4): 046404
https://doi.org/10.1103/PhysRevLett.110.046404
204 Otaki Y., Fukui T.. Higher-order topological insulators in a magnetic field. Phys. Rev. B, 2019, 100: 245108
https://doi.org/10.1103/PhysRevB.100.245108
205 Yan Z., Song F., Wang Z.. Majorana corner modes in a high temperature platform. Phys. Rev. Lett., 2018, 121(9): 096803
https://doi.org/10.1103/PhysRevLett.121.096803
206 Yan Z.. Higher-order topological odd parity superconductors. Phys. Rev. Lett., 2019, 123(17): 177001
https://doi.org/10.1103/PhysRevLett.123.177001
207 Varjas D., Lau A., Pöyhönen K., R. Akhmerov A., I. Pikulin D., C. Fulga I.. Topological phases without crystalline counterparts. Phys. Rev. Lett., 2019, 123(19): 196401
https://doi.org/10.1103/PhysRevLett.123.196401
208 A. A. Ghorashi S., Li T., L. Hughes T.. Higher-order Weyl semimetals. Phys. Rev. Lett., 2020, 125(26): 266804
https://doi.org/10.1103/PhysRevLett.125.266804
209 X. Wang H., K. Lin Z., Jiang B., Y. Guo G., H. Jiang J.. Higher-order weyl semimetals. Phys. Rev. Lett., 2020, 125(14): 146401
https://doi.org/10.1103/PhysRevLett.125.146401
210 Wang K., X. Dai J., B. Shao L., A. Yang S., X. Zhao Y.. Boundary criticality of PT invariant topology and secondorder nodalline semimetals. Phys. Rev. Lett., 2020, 125(12): 126403
https://doi.org/10.1103/PhysRevLett.125.126403
211 A. Hassani Gangaraj S., Valagiannopoulos C., Monticone F.. Topological scattering resonances at ultralow frequencies. Phys. Rev. Res., 2020, 2(2): 023180
https://doi.org/10.1103/PhysRevResearch.2.023180
212 Z. Li C., Q. Wang A., Li C., Z. Zheng W., Brinkman A., P. Yu D., M. Liao Z.. Reducing electronic trans port dimension to topological hinge states by increasing geometry size of Dirac semimetal Josephson junctions. Phys. Rev. Lett., 2020, 124(15): 156601
https://doi.org/10.1103/PhysRevLett.124.156601
213 Călugăru D., Juričič V., Roy B.. Higher-order topological phases: A general principle of construction. Phys. Rev. B, 2019, 99(4): 041301
https://doi.org/10.1103/PhysRevB.99.041301
214 Hu H., Huang B., Zhao E., V. Liu W.. Dynamical singularities of floquet higher-order topological insulators. Phys. Rev. Lett., 2020, 124(5): 057001
https://doi.org/10.1103/PhysRevLett.124.057001
215 Huang B., V. Liu W.. Floquet higher-order topological insulators with anomalous dynamical polarization. Phys. Rev. Lett., 2020, 124(21): 216601
https://doi.org/10.1103/PhysRevLett.124.216601
216 Kheirkhah M., Yan Z., Nagai Y., Marsiglio F.. First and second order topological superconductivity and temperature driven topological phase transitions in the extended Hubbard model with spin−orbit coupling. Phys. Rev. Lett., 2020, 125(1): 017001
https://doi.org/10.1103/PhysRevLett.125.017001
217 Kheirkhah M., Nagai Y., Chen C., Marsiglio F.. Majorana corner flatbands in two-dimensional second order topological superconductors. Phys. Rev. B, 2020, 101(10): 104502
https://doi.org/10.1103/PhysRevB.101.104502
218 Sarsen A., Valagiannopoulos C.. Robust polarization twist by pairs of multilayers with tilted optical axes. Phys. Rev. B, 2019, 99(11): 115304
https://doi.org/10.1103/PhysRevB.99.115304
219 Noh J., A. Benalcazar W., Huang S., J. Collins M., P. Chen K., L. Hughes T., C. Rechtsman M.. Topological protection of photonic midgap defect modes. Nat. Photonics, 2018, 12(7): 408
https://doi.org/10.1038/s41566-018-0179-3
220 B. Choi Y., Xie Y., Z. Chen C., Park J., B. Song S., Yoon J., J. Kim B., Taniguchi T., Watanabe K., Kim J., C. Fong K., N. Ali M., T. Law K., H. Lee G.. Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states. Nat. Mater., 2020, 19(9): 974
https://doi.org/10.1038/s41563-020-0721-9
221 J. Wieder B., Wang Z., Cano J., Dai X., M. Schoop L., Bradlyn B., A. Bernevig B.. Strong and fragile topological Dirac semimetals with higher-order Fermi arcs. Nat. Commun., 2020, 11(1): 627
https://doi.org/10.1038/s41467-020-14443-5
222 Xie B., X. Wang H., Zhang X., Zhan P., H. Jiang J., Lu M., Chen Y.. Higher-order band topology. Nat. Rev. Phys., 2021, 3(7): 520
https://doi.org/10.1038/s42254-021-00323-4
223 A. Kealhofer D., Galletti L., Schumann T., Suslov A., Stemmer S.. Topological insulator state and collapse of the quantum Hall effect in a three-dimensional Dirac semimetal heterojunction. Phys. Rev. X, 2020, 10(1): 011050
https://doi.org/10.1103/PhysRevX.10.011050
224 C. Lin B., Wang S., Wiedmann S., M. Lu J., Z. Zheng W., Yu D., M. Liao Z.. Observation of an odd integer quantum Hall effect from topological surface states in Cd3As2. Phys. Rev. Lett., 2019, 122(3): 036602
https://doi.org/10.1103/PhysRevLett.122.036602
225 Wang S., C. Lin B., Z. Zheng W., Yu D., M. Liao Z.. Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire. Phys. Rev. Lett., 2018, 120(25): 257701
https://doi.org/10.1103/PhysRevLett.120.257701
226 Nishihaya S., Uchida M., Nakazawa Y., Kriener M., Kozuka Y., Taguchi Y., Kawasaki M.. Gate-tuned quantum Hall states in Dirac semimetal. Sci. Adv., 2018, 4(5): eaar5668
https://doi.org/10.1126/sciadv.aar5668
227 Galletti L., Schumann T., F. Shoron O., Goyal M., A. Kealhofer D., Kim H., Stemmer S.. Two-dimensional Dirac fermions in thin films of Cd3As2. Phys. Rev. B, 2018, 97(11): 115132
https://doi.org/10.1103/PhysRevB.97.115132
228 Schumann T., Galletti L., A. Kealhofer D., Kim H., Goyal M., Stemmer S.. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett., 2018, 120(1): 016801
https://doi.org/10.1103/PhysRevLett.120.016801
229 Z. Chang C., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., L. Wang L., Q. Ji Z., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., C. Zhang S., He K., Wang Y., Lu L., C. Ma X., K. Xue Q.. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
https://doi.org/10.1126/science.1234414
230 Zhang C., Narayan A., Lu S., Zhang J., Zhang H., Ni Z., Yuan X., Liu Y., H. Park J., Zhang E., Wang W., Liu S., Cheng L., Pi L., Sheng Z., Sanvito S., Xiu F.. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat. Commun., 2017, 8(1): 1272
https://doi.org/10.1038/s41467-017-01438-y
231 Uchida M., Nakazawa Y., Nishihaya S., Akiba K., Kriener M., Kozuka Y., Miyake A., Taguchi Y., Tokunaga M., Nagaosa N., Tokura Y., Kawasaki M.. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat. Commun., 2017, 8(1): 2274
https://doi.org/10.1038/s41467-017-02423-1
232 Zhang C., Zhang Y., Yuan X., Lu S., Zhang J., Narayan A., Liu Y., Zhang H., Ni Z., Liu R., S. Choi E., Suslov A., Sanvito S., Pi L., Z. Lu H., C. Potter A., Xiu F.. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature, 2019, 565(7739): 331
https://doi.org/10.1038/s41586-018-0798-3
233 Nishihaya S., Uchida M., Nakazawa Y., Kurihara R., Akiba K., Kriener M., Miyake A., Taguchi Y., Tokunaga M., Kawasaki M.. Quantized surface transport in topological Dirac semimetal films. Nat. Commun., 2019, 10(1): 2564
https://doi.org/10.1038/s41467-019-10499-0
234 Schumann T., Galletti L., A. Kealhofer D., Kim H., Goyal S., Stemmer S.. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett., 2018, 120(1): 016801
https://doi.org/10.1103/PhysRevLett.120.016801
235 J. W. Moll P., L. Nair N., Helm T., C. Potter A., Kimchi I., Vishwanath A., G. Analytis J.. Transport evidence for Fermi arc mediated chirality transfer in the Dirac semimetal Cd3As2. Nature, 2016, 535(7611): 266
https://doi.org/10.1038/nature18276
236 N. Argyres P., N. Adams E.. Longitudinal magnetoresistance in the quantum limit. Phys. Rev., 1956, 104(4): 900
https://doi.org/10.1103/PhysRev.104.900
237 A. Lee P., V. Ramakrishnan T.. Disordered electronic systems. Rev. Mod. Phys., 1985, 57(2): 287
https://doi.org/10.1103/RevModPhys.57.287
238 Wang J., Li H., Chang C., He K., S. Lee J., Lu H., Sun Y., Ma X., Samarth N., Shen S., Xue Q., Xie M., H. W. Chan M.. Anomalous anisotropic magnetoresistance in topological insulator films. Nano Res., 2012, 5(10): 739
https://doi.org/10.1007/s12274-012-0260-z
239 T. He H., C. Liu H., K. Li B., Guo X., J. Xu Z., H. Xie M., N. Wang J.. Disorderinduced linear magnetoresistance in (221) topological insulator Bi2Se3 films. Appl. Phys. Lett., 2013, 103(3): 031606
https://doi.org/10.1063/1.4816078
240 Wiedmann S., Jost A., Fauqué B., van Dijk J., J. Meijer M., Khouri T., Pezzini S., Grauer S., Schreyeck S., Brüne C., Buhmann H., W. Molenkamp L., E. Hussey N.. Anisotropic and strong negative magnetoresistance in the three-dimensional topological insulator Bi2Se3. Phys. Rev. B, 2016, 94(8): 081302
https://doi.org/10.1103/PhysRevB.94.081302
241 X. Wang L., Yan Y., Zhang L., M. Liao Z., C. Wu H., P. Yu D.. Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons. Nanoscale, 2015, 7(40): 16687
https://doi.org/10.1039/C5NR05250E
242 Breunig O., Wang Z., A. Taskin A., Lux J., Rosch A., Ando Y.. Gigantic negative magnetoresistance in the bulk of a disordered topological insulator. Nat. Commun., 2017, 8(1): 15545
https://doi.org/10.1038/ncomms15545
243 A. Assaf B., Phuphachong T., Kampert E., V. Volobuev V., S. Mandal P., Sánchez-Barriga J., Rader O., Bauer G., Springholz G., A. de Vaulchier L., Guldner Y.. Negative longitudinal magnetoresistance from the anomalous N = 0 Landau level in topo logical materials. Phys. Rev. Lett., 2017, 119(10): 106602
https://doi.org/10.1103/PhysRevLett.119.106602
244 J. Kim H., S. Kim K., F. Wang J., Sasaki M., Satoh T., Ohnishi A., Kitaura M., Yang M., Li L.. Dirac versus Weyl fermions in topological insulators: Adler−Bell−Jackiw anomaly in transport phenomena. Phys. Rev. Lett., 2013, 111(24): 246603
https://doi.org/10.1103/PhysRevLett.111.246603
245 S. Kim K., J. Kim H., Sasaki M.. Boltzmann equation approach to anomalous transport in a Weyl metal. Phys. Rev. B, 2014, 89(19): 195137
https://doi.org/10.1103/PhysRevB.89.195137
246 Li Q., E. Kharzeev D., Zhang C., Huang Y., Pletikosic I., V. Fedorov A., D. Zhong R., A. Schneeloch J., D. Gu G., Valla T.. Chiral magnetic effect in ZrTe5. Nat. Phys., 2016, 12(6): 550
https://doi.org/10.1038/nphys3648
247 L. Zhang C., Y. Xu S., Belopolski I., Yuan Z., Lin Z., Tong B., Bian G., Alidoust N., C. Lee C., M. Huang S., R. Chang T., Chang G., H. Hsu C., T. Jeng H., Neupane M., S. Sanchez D., Zheng H., Wang J., Lin H., Zhang C., Z. Lu H., Q. Shen S., Neupert T., Zahid Hasan M., Jia S.. Signatures of the Adler−Bell−Jackiw chiral anomaly in a Weyl Fermion semimetal. Nat. Commun., 2016, 7(1): 10735
https://doi.org/10.1038/ncomms10735
248 C. Huang X., Zhao L., Long Y., Wang P., Chen D., Yang Z., Liang H., Xue M., Weng H., Fang Z., Dai X., Chen G.. Observation of the chiral anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X, 2015, 5(3): 031023
https://doi.org/10.1103/PhysRevX.5.031023
249 Xiong J., K. Kushwaha S., Liang T., W. Krizan J., Hirschberger M., Wang W., J. Cava R., P. Ong N.. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science, 2015, 350(6259): 413
https://doi.org/10.1126/science.aac6089
250 Z. Li C., X. Wang L., W. Liu H., Wang J., M. Liao Z., P. Yu D.. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat. Commun., 2015, 6(1): 10137
https://doi.org/10.1038/ncomms10137
251 Zhang C., Zhang E., Wang W., Liu Y., G. Chen Z., Lu S., Liang S., Cao J., Yuan X., Tang L., Li Q., Zhou C., Gu T., Wu Y., Zou J., Xiu F.. Room temperature chiral charge pumping in Dirac semimetals. Nat. Commun., 2017, 8(1): 13741
https://doi.org/10.1038/ncomms13741
252 Arnold F., Shekhar C., Wu S.-C., Sun Yan, D. Reis R., Kumar N., Naumann M., O. Ajeesh M., Schmidt M., G. Grushin A., H. Bardarson J., Baenitz M., Sokolov D., Borrmann H., Nicklas M., Felser C., Hassinger E., Yan B.. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun., 2016, 7: 11615
https://doi.org/10.1038/ncomms11615
253 J. Yang X.P. Liu Y.Wang Z.Zheng Y.A. Xu Z., Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
254 Yang X.Li Y.Wang Z.Zhen Y.A. Xu Z., Observation of negative magnetoresistance and nontrivial π Berry’s phase in 3D Weyl semimetal NbAs, arXiv: 1506.02283 (2015)
255 Wang H., K. Li C., Liu H., Yan J., Wang J., Liu J., Lin Z., Li Y., Wang Y., Li L., Mandrus D., C. Xie X., Feng J., Wang J.. Chiral anomaly and ultrahigh mobility in crystalline HfTe5. Phys. Rev. B, 2016, 93(16): 165127
https://doi.org/10.1103/PhysRevB.93.165127
256 L. Adler S.. Axial vector vertex in spinor electrodynamics. Phys. Rev., 1969, 177(5): 2426
https://doi.org/10.1103/PhysRev.177.2426
257 S. Bell J.Jackiw R., A PCAC puzzle: π0 → γγ in the σmodel, Nuovo Cim., A 60(1), 47 (1969)
258 B. Nielsen H., Ninomiya M.. Absence of neutrinos on a lattice (i): Proof by homotopy theory. Nucl. Phys. B, 1981, 185(1): 20
https://doi.org/10.1016/0550-3213(81)90361-8
259 Bradlyn B., Cano J., Wang Z., G. Vergniory M., Felser C., J. Cava R., A. Bernevig B.. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science, 2016, 353(6299): aaf5037
https://doi.org/10.1126/science.aaf5037
260 Chang G., J. Wieder B., Schindler F., S. Sanchez D., Belopolski I., M. Huang S., Singh B., Wu D., R. Chang T., Neupert T., Y. Xu S., Lin H., Z. Hasan M.. Topological quantum properties of chiral crystals. Nat. Mater., 2018, 17(11): 978
https://doi.org/10.1038/s41563-018-0169-3
261 Goswami P., H. Pixley J., Das Sarma S.. Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal. Phys. Rev. B, 2015, 92(7): 075205
https://doi.org/10.1103/PhysRevB.92.075205
262 N. Basov D., M. Fogler M., Lanzara A., Wang F., Zhang Y.. Colloquium: Graphene spectroscopy. Rev. Mod. Phys., 2014, 86(3): 959
https://doi.org/10.1103/RevModPhys.86.959
263 Z. Hasan M., L. Kane C.. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
264 C. Charlier J., Blase X., Roche S.. Electronic and transport properties of nanotubes. Rev. Mod. Phys., 2007, 79(2): 677
https://doi.org/10.1103/RevModPhys.79.677
265 S. Novoselov K.I. Fal′ko V.Colombo L.R. Gellert P.G. Schwab M.Kim K., A roadmap for graphene, Nature 490(7419), 192 (2012)
266 Liang T., Gibson Q., N. Ali M., H. Liu M., J. Cava R., P. Ong N.. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater., 2015, 14(3): 280
https://doi.org/10.1038/nmat4143
267 Wang Z., Sun Y., Q. Chen X., Franchini C., Xu G., Weng S., Dai X., Fang Z., Dirac semimetal, topological phase transitions in A3Bi (A = Na. Rb). Phys. Rev. B, 2012, 85(19): 195320
https://doi.org/10.1103/PhysRevB.85.195320
268 K. Liu Z., Zhou B., Zhang Y., J. Wang Z., M. Weng H., Prabhakaran D., K. Mo S., X. Shen Z., Fang Z., Dai X., Hussain Z., L. Chen Y., of a three-dimensional topological Dirac semimetal Discovery. Na3Bi. Science, 2014, 343(6173): 864
https://doi.org/10.1126/science.1245085
269 K. Liu Z.Jiang J.Zhou B.J. Wang Z.Zhang Y. M. Weng H.Prabhakaran D.K. Mo S.Peng H.Dudin P. Kim T.Hoesch M.Fang Z.Dai X.X. Shen Z. L. Feng D.Hussain Z.L. Chen Y., A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13(7), 677 (2014)
270 M. Huang S.Y. Xu S.Belopolski I.C. Lee C.Chang G. K. Wang B.Alidoust N.Bian G.Neupane M.Zhang C. Jia S.Bansil A.Lin H.Z. Hasan M., A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6(1), 7373 (2015)
271 M. Weng H., Fang C., Fang Z., A. Bernevig B., Dai T.. Weyl semimetal phase in noncentrosymmetric transition metal monophosphides. Phys. Rev. X, 2015, 5(1): 011029
https://doi.org/10.1103/PhysRevX.5.011029
272 Y. Xu S., Belopolski I., Alidoust N., Neupane M., Bian G., Zhang C., Sankar R., Chang G., Yuan Z., C. Lee C., M. Huang S., Zheng H., Ma J., S. Sanchez D., K. Wang B., Bansil A., Chou F., P. Shibayev P., Lin H., Jia S., Z. Hasan M.. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015, 349(6248): 613
https://doi.org/10.1126/science.aaa9297
273 Q. Lv B., M. Weng H., B. Fu B., P. Wang X., Miao H., Ma J., Richard P., C. Huang X., X. Zhao L., F. Chen G., Fang Z., Dai X., Qian T., Ding H.. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X, 2015, 5(3): 031013
https://doi.org/10.1103/PhysRevX.5.031013
274 Wan X., M. Turner A., Vishwanath A., Y. Savrasov S.. Topological semimetal and Fermi arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 2011, 83(20): 205101
https://doi.org/10.1103/PhysRevB.83.205101
275 Y. Yang K., M. Lu Y., Ran Y.. Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates. Phys. Rev. B, 2011, 84(7): 075129
https://doi.org/10.1103/PhysRevB.84.075129
276 A. Burkov A., Balents L.. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett., 2011, 107(12): 127205
https://doi.org/10.1103/PhysRevLett.107.127205
277 B. Nielsen H., Ninomiya M.. The Adler−Bell− Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B, 1983, 130: 389
https://doi.org/10.1016/0370-2693(83)91529-0
278 T. Son D., Z. Spivak B.. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B, 2013, 88(10): 104412
https://doi.org/10.1103/PhysRevB.88.104412
279 Shoenberg D., Magnetic Oscillations in Metals, Cambridge University Press, 1984
280 E. Sebastian S.Harrison N.Palm E. P. Murphy T.H. Mielke C.Liang R.A. Bonn D.N. Hardy W. G. Lonzarich G., A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor, Nature 454(7201), 200 (2008)
281 Li L., G. Checkelsky J., S. Hor Y., Uher C., F. Hebard A., J. Cava R., P. Ong N.. Phase transitions of Dirac electrons in bismuth. Science, 2008, 321(5888): 547
https://doi.org/10.1126/science.1158908
282 Zhang Z., Wei W., Yang F., Zhu Z., Guo M., Feng Y., Yu D., Yao M., Harrison N., McDonald R., Zhang Y., Guan D., Qian D., Jia J., Wang Y.. Zeeman effect of the topological surface states revealed by quantum oscillations up to 91 Tesla. Phys. Rev. B, 2015, 92(23): 235402
https://doi.org/10.1103/PhysRevB.92.235402
283 L. Brignall N.. The de Haasvan−Alphen effect in n-InSb and n-InAs. J. Phys. C, 1974, 7(23): 4266
https://doi.org/10.1088/0022-3719/7/23/013
284 Zhang Y., W. Tan Y., L. Stormer H., Kim P.. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201
https://doi.org/10.1038/nature04235
285 Imada M., Fujimori A., Tokura Y.. Metal−insulator transitions. Rev. Mod. Phys., 1998, 70(4): 1039
https://doi.org/10.1103/RevModPhys.70.1039
286 L. Sondhi S., M. Girvin S., P. Carini J., Shahar D.. Continuous quantum phase transitions. Rev. Mod. Phys., 1997, 69(1): 315
https://doi.org/10.1103/RevModPhys.69.315
287 V. Kravchenko S., P. Sarachik M.. Metal–insulator transition in two-dimensional electron systems. Rep. Prog. Phys., 2004, 67(1): 1
https://doi.org/10.1088/0034-4885/67/1/R01
288 J. Newson D., Pepper M.. Critical conductivity at the magnetic field-induced metal−insulator transition in n-GaAs and n-InSb. J. Phys. C, 1986, 19(21): 3983
https://doi.org/10.1088/0022-3719/19/21/005
289 J. Goldman V., Shayegan M., D. Drew H.. Anomalous Hall effect below the magnetic field induced metal−insulator transition in narrow gap semiconductors. Phys. Rev. Lett., 1986, 57(8): 1056
https://doi.org/10.1103/PhysRevLett.57.1056
290 C. Maliepaard M., Pepper M., Newbury R., E. F. Frost J., C. Peacock D., A. Ritchie D., A. C. Jones G., Hill G.. Evidence of a magneticfield-induced insulator metal−insulator transition. Phys. Rev. B, 1989, 39(2): 1430
https://doi.org/10.1103/PhysRevB.39.1430
291 Dai P., Zhang Y., P. Sarachik M.. Effect of a magnetic field on the critical conductivity exponent at the metal−insulator transition. Phys. Rev. Lett., 1991, 67(1): 136
https://doi.org/10.1103/PhysRevLett.67.136
292 Kivelson S., H. Lee D., C. Zhang S.. Global phase diagram in the quantum Hall effect. Phys. Rev. B, 1992, 46(4): 2223
https://doi.org/10.1103/PhysRevB.46.2223
293 Wang T., P. Clark K., F. Spencer G., M. Mack A., P. Kirk W.. Magnetic field-induced metal−insulator transition in two dimensions. Phys. Rev. Lett., 1994, 72(5): 709
https://doi.org/10.1103/PhysRevLett.72.709
294 Tomioka Y., Asamitsu A., Kuwahara H., Moritomo Y., Tokura Y.. Magnetic field-induced metal-insulator phenomena in Pr1−xCaxMno3 with controlled charge ordering instability. Phys. Rev. B, 1996, 53(4): R1689
https://doi.org/10.1103/PhysRevB.53.R1689
295 Popović D., B. Fowler A., Washburn S.. Metal−insulator transition in two dimensions: Effects of dis order and magnetic field. Phys. Rev. Lett., 1997, 79(8): 1543
https://doi.org/10.1103/PhysRevLett.79.1543
296 C. Xie X., R. Wang X., Z. Liu D.. Kosterlitz−Thouless type metal−insulator transition of a 2D electron gas in a random magnetic field. Phys. Rev. Lett., 1998, 80(16): 3563
https://doi.org/10.1103/PhysRevLett.80.3563
297 An J., D. Gong C., Q. Lin H.. Theory of the magnetic field-induced metal−insulator transition. Phys. Rev. B, 2001, 63(17): 174434
https://doi.org/10.1103/PhysRevB.63.174434
298 Kempa H., Esquinazi P., Kopelevich Y.. Field induced metal−insulator transition in the c axis resistivity of graphite. Phys. Rev. B, 2002, 65(24): 241101
https://doi.org/10.1103/PhysRevB.65.241101
299 V. Gorbar E., P. Gusynin V., A. Miransky V., A. Shovkovy I.. Magnetic field driven metal−insulator phase transition in planar systems. Phys. Rev. B, 2002, 66(4): 045108
https://doi.org/10.1103/PhysRevB.66.045108
300 Kopelevich Y., C. M. Pantoja J., R. da Silva R., Moehlecke S.. Universal magnetic field driven metal insulator−metal transformations in graphite and bismuth. Phys. Rev. B, 2006, 73(16): 165128
https://doi.org/10.1103/PhysRevB.73.165128
301 J. W. Geldart D., Neilson D.. Quantum critical behavior in the insulating region of the two-dimensional metalinsulator transition. Phys. Rev. B, 2007, 76(19): 193304
https://doi.org/10.1103/PhysRevB.76.193304
302 Calder S., O. Garlea V., F. McMorrow D., D. Lumsden M., B. Stone M., C. Lang J., W. Kim J., A. Schlueter J., G. Shi Y., Yamaura K., S. Sun Y., Tsujimoto Y., D. Christianson A.. Magnetically driven metal−insulator transition in NaOsO3. Phys. Rev. Lett., 2012, 108(25): 257209
https://doi.org/10.1103/PhysRevLett.108.257209
303 Ueda K., Fujioka J., J. Yang B., Shiogai J., Tsukazaki A., Nakamura S., Awaji S., Nagaosa N., Tokura Y.. Magnetic field-induced insulator−semimetal transition in a pyrochlore Nd2Ir2O7. Phys. Rev. Lett., 2015, 115(5): 056402
https://doi.org/10.1103/PhysRevLett.115.056402
304 Tian Z., Kohama Y., Tomita T., Ishizuka H., H. Hsieh T., J. Ishikawa J., Kindo K., Balents L., Nakatsuji S.. Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7. Nat. Phys., 2016, 12(2): 134
https://doi.org/10.1038/nphys3567
305 Wang P., Ren Y., Tang F., Wang P., Hou T., Zeng H., Zhang L., Qiao Z.. Approaching three-dimensional quantum Hall effect in bulk HfTe5. Phys. Rev. B, 2020, 101(16): 161201
https://doi.org/10.1103/PhysRevB.101.161201
306 Vojta M.. Quantum phase transitions. Rep. Prog. Phys., 2003, 66(12): 2069
https://doi.org/10.1088/0034-4885/66/12/R01
307 Löhneysen H., Rosch A., Vojta M., Wölfle P.. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys., 2007, 79(3): 1015
https://doi.org/10.1103/RevModPhys.79.1015
308 Abrahams E., W. Anderson P., C. Licciardello D., V. Ramakrishnan T.. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 1979, 42(10): 673
https://doi.org/10.1103/PhysRevLett.42.673
309 J. Wegner F.. Electrons in disordered systems: scaling near the mobility edge. Z. Phys. B, 1976, 25: 327
310 L. McMillan W.. Scaling theory of the metal-insulator transition in amorphous materials. Phys. Rev. B, 1981, 24(5): 2739
https://doi.org/10.1103/PhysRevB.24.2739
311 A. Stafford C., J. Millis A.. Scaling theory of the Mott−Hubbard metal−insulator transition in one dimension. Phys. Rev. B, 1993, 48(3): 1409
https://doi.org/10.1103/PhysRevB.48.1409
312 Huckestein B.. Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys., 1995, 67(2): 357
https://doi.org/10.1103/RevModPhys.67.357
313 Dobrosavljević V., Abrahams E., Miranda E., Chakravarty S.. Scaling theory of two-dimensional metal−insulator transitions. Phys. Rev. Lett., 1997, 79(3): 455
https://doi.org/10.1103/PhysRevLett.79.455
314 Pelissetto A., Vicari E.. Critical phenomena and renormalization group theory. Phys. Rep., 2002, 368(6): 549
https://doi.org/10.1016/S0370-1573(02)00219-3
315 Grüner G., Density Waves in Solids, CRC Press, 2018
316 Giamarchi T., Quantum Physics in One Dimension, Vol. 121, Clarendon Press, 2003
317 Watanabe H., Yanase Y.. Nonlinear electric transport in odd parity magnetic multipole systems: Application to Mn-based compounds. Phys. Rev. Res., 2020, 2(4): 043081
https://doi.org/10.1103/PhysRevResearch.2.043081
318 Y. Xu S., Xia Y., A. Wray L., Jia S., Meier F., H. Dil J., Osterwalder J., Slomski B., Bansil A., Lin H., J. Cava R., Z. Hasan M.. Topological phase transition and texture inversion in a tunable topological insulator. Science, 2011, 332(6029): 560
https://doi.org/10.1126/science.1201607
319 Gong Y., Guo J., Li J., Zhu K., Liao M., Liu X., Zhang Q., Gu L., Tang L., Feng X., Zhang D., Li W., Song C., Wang L., Yu P., Chen X., Wang Y., Yao H., Duan W., Xu Y., C. Zhang S., Ma X., K. Xue Q., He K.. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett., 2019, 36(7): 076801
https://doi.org/10.1088/0256-307X/36/7/076801
320 M. Otrokov M., P. Rusinov I., Blanco-Rey M., Hoffmann M., Y. Vyazovskaya A., V. Eremeev S., Ernst A., M. Echenique P., Arnau A., V. Chulkov E.. Unique thickness dependent properties of the van Der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
https://doi.org/10.1103/PhysRevLett.122.107202
321 Reeg C., Dmytruk O., Chevallier D., Loss D., Klinovaja J.. Zero energy Andreev bound states from quantum dots in proximitized Rashba nanowires. Phys. Rev. B, 2018, 98(24): 245407
https://doi.org/10.1103/PhysRevB.98.245407
322 A. Li C., B. Zhang S., Li J., Trauzettel B.. Higher-order Fabry−Pérot interferometer from topological hinge states. Phys. Rev. Lett., 2021, 127(2): 026803
https://doi.org/10.1103/PhysRevLett.127.026803
323 D. Landau L.. Paramagnetism of metals. Eur. Phys. J. A, 1930, 64(9−10): 629
https://doi.org/10.1007/BF01397213
324 Zhu Z., McDonald R., Shekhter A., Ramshaw B., A. Modic K., Balakirev F., Harrison N.. Magnetic field tuning of an excitonic insulator between the weak and strong coupling regimes in quantum limit graphite. Sci. Rep., 2017, 7(1): 1733
https://doi.org/10.1038/s41598-017-01693-5
325 Galeski S., Zhao X., Wawrzyńczak R., Meng T., Förster T., M. Lozano P., Honnali S., Lamba N., Ehmcke T., Markou A., Li Q., Gu G., Zhu W., Wosnitza J., Felser C., F. Chen G., Gooth J.. Unconventional Hall response in the quantum limit of HfTe5. Nat. Commun., 2020, 11(1): 5926
https://doi.org/10.1038/s41467-020-19773-y
326 Wang S.E. Kovalev A.V. Suslov A.Siegrist T., A facility for X-ray diffraction in magnetic fields up to 25 t and temperatures between 15 and 295 K, Rev. Sci. Instrum. 86(12), 123902 (2015)
327 Narumi Y.Kindo K.Katsumata K.Kawauchi M.Broennimann C.Staub U.Toyokawa H.Tanaka Y. Kikkawa K.Yamamoto T.Hagiwara M.Ishikawa T.Kitamura H., X-ray diffraction studies in pulsed high magnetic fields, J. Phys. Conf. Ser. 51, 494 (2006)
328 Pototsching P.Gratz E.Kirchmayr H.Lindbaum A., X-ray diffraction in magnetic fields, J. Alloys Compd. 247(1–2), 234 (1997)
329 Wang P., Tang F., Wang P., Zhu H., W. Cho C., Wang J., Du X., Shao Y., Zhang L.. Quantum transport properties of β-Bi4I4 near and well beyond the extreme quantum limit. Phys. Rev. B, 2021, 103(15): 155201
https://doi.org/10.1103/PhysRevB.103.155201
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed