Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (4): 43602   https://doi.org/10.1007/s11467-023-1260-z
  本期目录
Transport in electron−photon systems
Jian-Sheng Wang1(), Jiebin Peng2, Zu-Quan Zhang3, Yong-Mei Zhang4, Tao Zhu5,6
1. Department of Physics, National University of Singapore, Singapore 117551, Republic of Singapore
2. Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
3. Department of Physics, Zhejiang Normal University, Jinhua 321004, China
4. College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
5. School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
6. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(6659 KB)   HTML
Abstract

We review the description and modeling of transport phenomena among the electron systems coupled via scalar or vector photons. It consists of three parts. The first part is about scalar photons, i.e., Coulomb interactions. The second part is with transverse photons described by vector potentials. The third part is on ϕ = 0 or temporal gauge, which is a full theory of the electrodynamics. We use the nonequilibrium Green’s function (NEGF) formalism as a basic tool to study steady-state transport. Although with local equilibrium it is equivalent to the fluctuational electrodynamics (FE), the advantage of NEGF is that it can go beyond FE due to its generality. We have given a few examples in the review, such as transfer of heat between graphene sheets driven by potential bias, emission of light by a double quantum dot, and emission of energy, momentum, and angular momentum from a graphene nanoribbon. All of these calculations are based on a generalization of the Meir−Wingreen formula commonly used in electronic transport in mesoscopic systems, with materials properties represented by photon self-energy, coupled with the Keldysh equation and the solution to the Dyson equation.

Key wordsquantum transport    thermal radiation    scalar and vector photons    nonequilibrium Green's function
收稿日期: 2022-11-27      出版日期: 2023-03-17
Corresponding Author(s): Jian-Sheng Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(4): 43602.
Jian-Sheng Wang, Jiebin Peng, Zu-Quan Zhang, Yong-Mei Zhang, Tao Zhu. Transport in electron−photon systems. Front. Phys. , 2023, 18(4): 43602.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1260-z
https://academic.hep.com.cn/fop/CN/Y2023/V18/I4/43602
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
1 Tannoudji C.Dupont-Roc J.Grynberg G., Photons and Atoms: Introduction to Quantum Electrodynamics, Wiley, 1989
2 Bloch J., Cavalleri A., Galitski V., Hafezi M., Rubio A.. Strongly correlated electron–photon systems. Nature, 2022, 606(7912): 41
https://doi.org/10.1038/s41586-022-04726-w
3 Planck M., The Theory of Heat Radiation, 2nd Ed., P. Blakiston’s Son & Co., Philadelphia, 1914
4 M. Hargreaves C.. Anomalous radiative transfer between closely-spaced bodies. Phys. Lett. A, 1969, 30(9): 491
https://doi.org/10.1016/0375-9601(69)90264-3
5 A. Domoto G., F. Boehm R., L. Tien C.. Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J. Heat Transfer, 1970, 92(3): 412
https://doi.org/10.1115/1.3449677
6 Polder D., van Hove M.. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B, 1971, 4(10): 3303
https://doi.org/10.1103/PhysRevB.4.3303
7 M. Rytov S., Theory of Electric Fluctuations and Thermal Radiation, Air Force Cambridge Research Center, Bedford, MA, 1953
8 M. Rytov S.A. Kravtsov Y.I. Tatarskii V., Principles of Statistical Radiophysics 3, Springer, Berlin, 1989
9 B. Callen H., A. Welton T.. Irreversibility and generalized noise. Phys. Rev., 1951, 83(1): 34
https://doi.org/10.1103/PhysRev.83.34
10 Krüger M., Emig T., Kardar M.. Nonequilibrium Electromagnetic Fluctuations: Heat transfer and interactions. Phys. Rev. Lett., 2011, 106(21): 210404
https://doi.org/10.1103/PhysRevLett.106.210404
11 R. Otey C., Zhu L., Sandhu S., Fan S.. Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview. J. Quant. Spectrosc. Radiat. Transf., 2014, 132: 3
https://doi.org/10.1016/j.jqsrt.2013.04.017
12 Tang G., Zhang L., Zhang Y., Chen J., T. Chan C.. Near-field energy transfer between graphene and magneto−optic media. Phys. Rev. Lett., 2021, 127(24): 247401
https://doi.org/10.1103/PhysRevLett.127.247401
13 Joulain K., P. Mulet J., Marquier F., Carminati R., J. Greffet J.. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep., 2005, 57(3−4): 59
https://doi.org/10.1016/j.surfrep.2004.12.002
14 Basu S., M. Zhang Z., J. Fu C.. Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res., 2009, 33(13): 1203
https://doi.org/10.1002/er.1607
15 Song B., Fiorino A., Meyhofer E., Reddy P.. Near-field radiative thermal transport: From theory to experiment. AIP Adv., 2015, 5(5): 053503
https://doi.org/10.1063/1.4919048
16 I. Volokitin A., N. J. Persson B.. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys., 2007, 79(4): 1291
https://doi.org/10.1103/RevModPhys.79.1291
17 A. Biehs S., Messina R., S. Venkataram P., W. Rodriguez A., C. Cuevas J., Ben-Abdallah P.. Near-field radiative heat transfer in many-body systems. Rev. Mod. Phys., 2021, 93(2): 025009
https://doi.org/10.1103/RevModPhys.93.025009
18 Bimonte G., Emig T., Kardar M., Krüger M.. Nonequilibrium fluctuational quantum electrodynamics: Heat radiation, heat transfer, and force. Annu. Rev. Condens. Matter Phys., 2017, 8(1): 119
https://doi.org/10.1146/annurev-conmatphys-031016-025203
19 Henkel C.. Nanoscale thermal transfer – An invitation to fluctuation electrodynamics. Zeitschrift für Naturforshchung A, 2017, 72(2): 99
https://doi.org/10.1515/zna-2016-0372
20 Pascale M.Giteau M.T. Papadakis G., Perspective on near-field radiative heat transfer, arXiv: 2210.00929 (2022)
21 Kittel A., Müller-Hirsch W., Parisi J., A. Biehs S., Reddig D., Holthaus M.. Near-field heat transfer in a scanning thermal microscope. Phys. Rev. Lett., 2005, 95(22): 224301
https://doi.org/10.1103/PhysRevLett.95.224301
22 Shen S., Narayanaswamy A., Chen G.. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett., 2009, 9(8): 2909
https://doi.org/10.1021/nl901208v
23 S. Ottens R., Quetschke V., Wise S., A. Alemi A., Lundock R., Mueller G., H. Reitze D., B. Tanner D., F. Whiting B.. Near-field radiative heat transfer between macroscopic planar surfaces. Phys. Rev. Lett., 2011, 107(1): 014301
https://doi.org/10.1103/PhysRevLett.107.014301
24 Kim K., Song B., Fernández-Hurtado V., Lee W., Jeong W., Cui L., Thompson D., Feist J., T. H. Reid M., J. García-Vidal F., C. Cuevas J., Meyhofer E., Reddy P.. Radiative heat transfer in the extreme near field. Nature, 2015, 528(7582): 387
https://doi.org/10.1038/nature16070
25 Cui L., Jeong W., Fernández-Hurtado V., Feist J., J. García-Vidal F., C. Cuevas J., Meyhofer E., Reddy P.. Study of radiative heat transfer in Ångström- and nanometre-sized gaps. Nat. Commun., 2017, 8(1): 14479
https://doi.org/10.1038/ncomms14479
26 Kloppstech K., Könne N., A. Biehs S., W. Rodriguez A., Worbes L., Hellmann D., Kittel A.. Giant heat transfer in the crossover regime between conduction and radiation. Nat. Commun., 2017, 8(1): 14475
https://doi.org/10.1038/ncomms14475
27 Tokunaga T., Jarzembski A., Shiga T., Park K., Francoeur M.. Extreme near-field heat transfer between gold surfaces. Phys. Rev. B, 2021, 104(12): 125404
https://doi.org/10.1103/PhysRevB.104.125404
28 Fernández-Hurtado V., I. Fernández-Domínguez A., Feist J., J. García-Vidal F., C. Cuevas J.. Super-Planckian far-field radiative heat transfer. Phys. Rev. B, 2018, 97(4): 045408
https://doi.org/10.1103/PhysRevB.97.045408
29 C. Cuevas J.. Thermal radiation from subwavelength objects and the violation of Planck’s law. Nat. Commun., 2019, 10(1): 3342
https://doi.org/10.1038/s41467-019-11287-6
30 Thompson D., Zhu L., Mittapally R., Sadat S., Xing Z., McArdle P., Qazilbash M., Reddy P., Meyhofer E.. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature, 2018, 561(7722): 216
https://doi.org/10.1038/s41586-018-0480-9
31 B. G. Casimir H.. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet., 1948, 51: 793
32 M. Lifshitz E.. The theory of molecular attractive forces between solids. Sov. Phys. JETP, 1956, 2: 73
33 H. G. M. van Blokland P.T. G. Overbeek J., van der Waals forces between objects covered with a chromium layer, J. Chem. Soc. Faraday Trans. I 74(0), 2637 (1978)
34 K. Lamoreaux S.. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett., 1997, 78(1): 5
https://doi.org/10.1103/PhysRevLett.78.5
35 Mohideen U., Roy A.. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett., 1998, 81(21): 4549
https://doi.org/10.1103/PhysRevLett.81.4549
36 M. Obrecht J., J. Wild R., Antezza M., P. Pitaevskii L., Stringari S., A. Cornell E.. Measurement of the temperature dependence of the Casimir−Polder force. Phys. Rev. Lett., 2007, 98(6): 063201
https://doi.org/10.1103/PhysRevLett.98.063201
37 L. Klimchitskaya G., Mohideen U., M. Mostepanenko V.. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys., 2009, 81(4): 1827
https://doi.org/10.1103/RevModPhys.81.1827
38 L. Garrett J., A. T. Somers D., N. Munday J.. Measurement of the Casimir force between two spheres. Phys. Rev. Lett., 2018, 120(4): 040401
https://doi.org/10.1103/PhysRevLett.120.040401
39 Stange A., K. Campbell D., J. Bishop D.. Science and technology of the Casimir effect. Phys. Today, 2021, 74(1): 42
https://doi.org/10.1063/PT.3.4656
40 M. Wilson C., Johansson G., Pourkabirian A., Simoen M., R. Johansson J., Duty T., Nori F., Delsing P.. Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 2011, 479(7373): 376
https://doi.org/10.1038/nature10561
41 Vezzoli S., Mussot A., Westerberg N., Kudlinski A., Dinparasti Saleh H., Prain A., Biancalana F., Lantz E., Faccio D.. Optical analogue of the dynamical Casimir effect in a dispersion-oscillating fibre. Commun. Phys., 2019, 2(1): 84
https://doi.org/10.1038/s42005-019-0183-z
42 Y. Fong K., K. Li H., Zhao R., Yang S., Wang Y., Zhang X.. Phonon heat transfer across a vacuum through quantum fluctuations. Nature, 2019, 576(7786): 243
https://doi.org/10.1038/s41586-019-1800-4
43 F. Maghrebi M., V. Gorshkov A., D. Sau J.. Fluctuation-induced torque on a topological insulator out of thermal equilibrium. Phys. Rev. Lett., 2019, 123(5): 055901
https://doi.org/10.1103/PhysRevLett.123.055901
44 Katoh M., Fujimoto M., Kawaguchi H., Tsuchiya K., Ohmi K., Kaneyasu T., Taira Y., Hosaka M., Mochihashi A., Takashima Y.. Angular momentum of twisted radiation from an electron in spiral motion. Phys. Rev. Lett., 2017, 118(9): 094801
https://doi.org/10.1103/PhysRevLett.118.094801
45 Gao X., Khandekar C., Jacob Z., Li T.. Thermal equilibrium spin torque: Near-field radiative angular momentum transfer in magneto−optical media. Phys. Rev. B, 2021, 103(12): 125424
https://doi.org/10.1103/PhysRevB.103.125424
46 L. N. Chen M., J. Jiang L., E. I. Sha W.. Orbital angular momentum generation and detection by geometric-phase based metasurfaces. Appl. Sci. (Basel), 2018, 8(3): 362
https://doi.org/10.3390/app8030362
47 Nagali E., Sciarrino F., De Martini F., Marrucci L., Piccirillo B., Karimi E., Santamato E.. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett., 2009, 103(1): 013601
https://doi.org/10.1103/PhysRevLett.103.013601
48 S. Asadchy V., S. Mirmoosa M., Dìaz-Rubio A., Fan S., A. Tretyakov S.. Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE, 2020, 108(10): 1684
https://doi.org/10.1109/JPROC.2020.3012381
49 Khandekar C., Buddhiraju S., R. Wilkinson P., K. Gimzewski J., W. Rodriguez A., Chase C., Fan S.. Nonequilibrium lateral force and torque by thermally excited nonreciprocal surface electromagnetic waves. Phys. Rev. B, 2021, 104(24): 245433
https://doi.org/10.1103/PhysRevB.104.245433
50 Messina R., Antezza M.. Casimir−Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies. Europhys. Lett., 2011, 95(6): 61002
https://doi.org/10.1209/0295-5075/95/61002
51 Messina R., Antezza M.. Scattering-matrix approach to Casimir−Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies. Phys. Rev. A, 2011, 84(4): 042102
https://doi.org/10.1103/PhysRevA.84.042102
52 Krüger M., Bimonte G., Emig T., Kardar M.. Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects. Phys. Rev. B, 2012, 86(11): 115423
https://doi.org/10.1103/PhysRevB.86.115423
53 A. Lippmann B., Schwinger J.. Variational principles for scattering processes I. Phys. Rev., 1950, 79(3): 469
https://doi.org/10.1103/PhysRev.79.469
54 Ben-Abdallah P., A. Biehs S., Joulain K.. Many-body radiative heat transfer theory. Phys. Rev. Lett., 2011, 107(11): 114301
https://doi.org/10.1103/PhysRevLett.107.114301
55 W. Rodriguez A., Ilic O., Bermel P., Celanovic I., D. Joannopoulos J., Soljačić M., G. Johnson S.. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: A computational approach for arbitrary geometries and materials. Phys. Rev. Lett., 2011, 107(11): 114302
https://doi.org/10.1103/PhysRevLett.107.114302
56 W. Rodriguez A.T. H. Reid M.G. Johnson S., Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries, Phys. Rev. B 86, 220302(R) (2012)
57 Datta S., Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, 1995
58 D. Ventra M., Electrical Transport in Nanoscale Systems, Cambridge Univ. Press, 2008
59 S. Wang J., Wang J., T. Lü J.. Quantum thermal transport in nanostructures. Eur. Phys. J. B, 2008, 62(4): 381
https://doi.org/10.1140/epjb/e2008-00195-8
60 Z. Yu Z.H. Xiong G.F. Zhang L., A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
61 Janowicz M., Reddig D., Holthaus M.. Quantum approach to electromagnetic energy transfer between two dielectric bodies. Phys. Rev. A, 2003, 68(4): 043823
https://doi.org/10.1103/PhysRevA.68.043823
62 Aeberhard U.. Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism. J. Comput. Electron., 2011, 10(4): 394
https://doi.org/10.1007/s10825-011-0375-6
63 Haug H.P. Jauho A., Quantum Kinetics in Transport and Optics of Semiconductors, 2nd Ed., Springer-Verlag, 2008
64 Eckhardt W.. Macroscopic theory of electromagnetic fluctuations and stationary radiative heat transfer. Phys. Rev. A, 1984, 29(4): 1991
https://doi.org/10.1103/PhysRevA.29.1991
65 V. Keldysh L.. Diagram technique for nonequilibrium processes. Sov. Phys. JETP, 1965, 20: 1018
66 S. Wang J., K. Agarwalla B., Li H., Thingna J.. Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys., 2014, 9(6): 673
https://doi.org/10.1007/s11467-013-0340-x
67 D. Mahan G.. Tunneling of heat between metals. Phys. Rev. B, 2017, 95(11): 115427
https://doi.org/10.1103/PhysRevB.95.115427
68 D. Jackson J., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999
69 Smolić I., Klajn B.. Capacitance matrix revisited. Prog. Electromagn. Res. B Pier B, 2021, 92: 1
https://doi.org/10.2528/PIERB21011501
70 S. Wang J., Q. Zhang Z., T. Lü J.. Coulomb-force-mediated heat transfer in the near field: Geometric effect. Phys. Rev. E, 2018, 98(1): 012118
https://doi.org/10.1103/PhysRevE.98.012118
71 Kubo R.Toda M.Hashitsume N., Statistical Physics II — Nonequilibrium Statistical Mechanics, 2nd Ed., Springer, 1991
72 F. Giuliani G.Vignale G., Quantum Theory of the Electron Liquid, Cambridge Univ. Press, 2005
73 Yu R., Manjavacas A., J. García de Abajo F.. Ultrafast radiative heat transfer. Nat. Commun., 2017, 8(1): 2
https://doi.org/10.1038/s41467-016-0013-x
74 Landauer R.. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM J. Res. Develop., 1957, 1(3): 223
https://doi.org/10.1147/rd.13.0223
75 Caroli C., Combescot R., Nozieres P., Saint-James D.. Direct calculation of the tunneling current. J. Phys. C, 1971, 4(8): 916
https://doi.org/10.1088/0022-3719/4/8/018
76 S. Wang J., Peng J.. Capacitor physics in ultra-near-field heat transfer. Europhys. Lett., 2017, 118(2): 24001
https://doi.org/10.1209/0295-5075/118/24001
77 H. Jiang J., S. Wang J.. Caroli formalism in near-field heat transfer between parallel graphene sheets. Phys. Rev. B, 2017, 96(15): 155437
https://doi.org/10.1103/PhysRevB.96.155437
78 Zhu T., S. Wang J.. Generalized first-principles method to study near-field heat transfer mediated by Coulomb interaction. Phys. Rev. B, 2021, 104(12): L121409
https://doi.org/10.1103/PhysRevB.104.L121409
79 Meir Y., S. Wingreen N.. Landauer formula for the current through an interacting electron region. Phys. Rev. Lett., 1992, 68(16): 2512
https://doi.org/10.1103/PhysRevLett.68.2512
80 P. Jauho A., S. Wingreen N., Meir Y.. Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B, 1994, 50(8): 5528
https://doi.org/10.1103/PhysRevB.50.5528
81 Stefanucci G.van Leeuwen R., Nonequilibrium Many-Body Theory of Quantum Systems, Cambridge Univ. Press, 2013
82 C. Langreth D., in: Linear and Nonlinear Electron Transport in Solids, NATO Advanced Study Institute Series, Vol. 17, edited by J. T. Devreese and V. E. van Doren, Springer, Boston, MA, 1976, p. 3
83 T. Lü J., S. Wang J.. Coupled electron and phonon transport in one-dimensional atomic junctions. Phys. Rev. B, 2007, 76(16): 165418
https://doi.org/10.1103/PhysRevB.76.165418
84 Bohm D.Pines D., A collective description of electron interactions (III): Coulomb interactions in a degenerate electron gas, Phys. Rev. 92(3), 609 (1953)
85 Paulsson M.Frederiksen T.Brandbyge M., Modeling inelastic phonon scattering in atomic- and molecular-wire junctions, Phys. Rev. B 72, 201101(R) (2005)
86 K. Dash L., Ness H., W. Godby R.. Nonequilibrium electronic structure of interacting single-molecule nanojunctions: Vertex corrections and polarization effects for the electron−vibron coupling. J. Chem. Phys., 2010, 132(10): 104113
https://doi.org/10.1063/1.3339390
87 A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971
88 W. Ford G., Kac M., Mazur P.. Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys., 1965, 6(4): 504
https://doi.org/10.1063/1.1704304
89 J. Peng and J. S. Wang, Current-induced heat transfer in double-layer graphene, arXiv: 1805.09493 (2019)
90 Q. Zhang Z., T. Lü J., S. Wang J.. Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuations and electron tunneling. Phys. Rev. B, 2018, 97(19): 195450
https://doi.org/10.1103/PhysRevB.97.195450
91 Büttiker M.. Symmetry of electrical conduction. IBM J. Res. Develop., 1988, 32(3): 317
https://doi.org/10.1147/rd.323.0317
92 Hedin L.. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev., 1965, 139(3A): A796
https://doi.org/10.1103/PhysRev.139.A796
93 R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Electrons, Cambridge Univ. Press, 2016
94 G. D. Mahan, Many-Particle Physics, 3rd Ed., Kluwer Academic, 2000
95 J. Peng, H. H. Yap, G. Zhang, and J. S. Wang, A scalar photon theory for near-field radiative heat transfer, arXiv: 1703.07113 (2017)
96 S. Weinberg, The Quantum Theory of Fields, Volume 1: Foundations, Cambridge Univ. Press, 2005
97 J. Glauber R.. Attenuators, and Schrödinger’s Cat. Ann. N. Y. Acad. Sci., 1986, 480(1): 336
https://doi.org/10.1111/j.1749-6632.1986.tb12437.x
98 R. A. Jishi, Feynman Diagram Techniques in Condensed Matter Physics, Cambridge Univ. Press, 2013
99 J. Rammer, Quantum Field Theory of Non-equilibrium States, Cambridge Univ. Press, 2007
100 H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, Oxford Univ. Press, 2004
101 Datta S.. Nanoscale device modeling: The Green’s function method. Superlattices Microstruct., 2000, 28(4): 253
https://doi.org/10.1006/spmi.2000.0920
102 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, W. A. Benjamin, Inc, 1962
103 J. M. Ziman, Electrons and Phonons, Clarendon Press, Oxford, 1960
104 van Duppen B., Tomadin A., N. Grigorenko A., Polini M.. Current-induced birefringent absorption and non-reciprocal plasmons in grapheme. 2D Mater., 2016, 3: 015011
https://doi.org/10.1088/2053-1583/3/1/015011
105 Svintsov D., Ryzhii V.. Comment on “Negative Landau damping in bilayer graphene”. Phys. Rev. Lett., 2019, 123(21): 219401
https://doi.org/10.1103/PhysRevLett.123.219401
106 A. Morgado T., G. Silveirinha M.. Negative Landau damping in bilayer graphene. Phys. Rev. Lett., 2017, 119(13): 133901
https://doi.org/10.1103/PhysRevLett.119.133901
107 Shapiro B.. Fluctuation-induced forces in the presence of mobile carrier drift. Phys. Rev. B, 2017, 96(7): 075407
https://doi.org/10.1103/PhysRevB.96.075407
108 Ilic O., Jablan M., D. Joannopoulos J., Celanovic I., Buljan H., Soljačić M.. Near-field thermal radiation transfer controlled by plasmons in graphene. Phys. Rev. B, 2012, 85(15): 155422
https://doi.org/10.1103/PhysRevB.85.155422
109 B. Pendry J.. Radiative exchange of heat between nanostructures. J. Phys.: Condens. Matter, 1999, 11(35): 6621
https://doi.org/10.1088/0953-8984/11/35/301
110 Herz F., Kathmann C., A. Biehs S.. General trace formula for heat flux fluctuations. Europhys. Lett., 2020, 130(4): 44003
https://doi.org/10.1209/0295-5075/130/44003
111 L. Wise J., Roubinowitz N., Belzig W., M. Basko D.. Signature of resonant modes in radiative heat current noise spectrum. Phys. Rev. B, 2022, 106(16): 165407
https://doi.org/10.1103/PhysRevB.106.165407
112 S. Wang J., K. Agarwalla B., Li H.. Transient behavior of full counting statistics in thermal transport. Phys. Rev. B, 2011, 84(15): 153412
https://doi.org/10.1103/PhysRevB.84.153412
113 Tang G., S. Wang J.. Heat transfer statistics in extreme-near-field radiation. Phys. Rev. B, 2018, 98(12): 125401
https://doi.org/10.1103/PhysRevB.98.125401
114 Campisi M., Hänggi P., Talkner P.. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys., 2011, 83(3): 771
https://doi.org/10.1103/RevModPhys.83.771
115 K. Agarwalla B., Li B., S. Wang J.. Full-counting statistics of heat transport in harmonic junctions: Transient, steady states, and fluctuation theorems. Phys. Rev. E, 2012, 85(5): 051142
https://doi.org/10.1103/PhysRevE.85.051142
116 S. Levitov L., B. Lesovik G.. Charge distribution in quantum shot noise. JETP Lett., 1993, 58(3): 230
117 Tang G., H. Yap H., Ren J., S. Wang J.. Anomalous near-field heat transfer in carbon-based nanostructures with edge states. Phys. Rev. Appl., 2019, 11(3): 031004
https://doi.org/10.1103/PhysRevApplied.11.031004
118 R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press, 1989
119 N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976
120 L. Adler S.. Quantum theory of the dielectric constant in real solids. Phys. Rev., 1962, 126(2): 413
https://doi.org/10.1103/PhysRev.126.413
121 Wiser N.. Dielectric constant with local field effects included. Phys. Rev., 1963, 129(1): 62
https://doi.org/10.1103/PhysRev.129.62
122 S. Hybertsen M., G. Louie S.. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B, 1986, 34(8): 5390
https://doi.org/10.1103/PhysRevB.34.5390
123 Deslippe J., Samsonidze G., A. Strubbe D., Jain M., L. Cohen M., G. Louie S.. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun., 2012, 183(6): 1269
https://doi.org/10.1016/j.cpc.2011.12.006
124 Xuan F., Chen Y., Y. Quek S.. Quasiparticle levels at large interface systems from many-body perturbation theory: The XAF-GW method. J. Chem. Theory Comput., 2019, 15(6): 3824
https://doi.org/10.1021/acs.jctc.9b00229
125 F. A. Rasmussen, First Principles Calculations of Electronic Excitations in 2D Materials, Ph. D. thesis, Technical University of Denmark, 2016
126 E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd Ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999
127 Zhu T., Q. Zhang Z., Gao Z., S. Wang J.. First-principles method to study near-field radiative heat transfer. Phys. Rev. Appl., 2020, 14(2): 024080
https://doi.org/10.1103/PhysRevApplied.14.024080
128 Zhu T., Antezza M., S. Wang J.. Dynamical polarizability of graphene with spatial dispersion. Phys. Rev. B, 2021, 103(12): 125421
https://doi.org/10.1103/PhysRevB.103.125421
129 Giannozzi P., Baroni S., Bonini N., Calandra M., Car R.. et al.. Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 2009, 21(39): 395502
https://doi.org/10.1088/0953-8984/21/39/395502
130 Giannozzi P., Andreussi O., Brumme T., Bunau O., B. Nardelli M.. et al.. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter, 2017, 29(46): 465901
https://doi.org/10.1088/1361-648X/aa8f79
131 Troullier N., L. Martins J.. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 1991, 43(3): 1993
https://doi.org/10.1103/PhysRevB.43.1993
132 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
133 J. Monkhorst H., D. Pack J.. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
134 Zhu T., E. Trevisanutto P., C. Asmara T., Xu L., P. Feng Y., Rusydi A.. Generation of multiple plasmons in strontium niobates mediated by local field effects. Phys. Rev. B, 2018, 98(23): 235115
https://doi.org/10.1103/PhysRevB.98.235115
135 O. Chapuis P., Volz S., Henkel C., Joulain K., J. Greffet J.. Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces. Phys. Rev. B, 2008, 77(3): 035431
https://doi.org/10.1103/PhysRevB.77.035431
136 Rodriguez-López P., Tse W.-K., A. R. Dalvit D.. Radiative heat transfer in 2D dirac materials. J. Phys. :Condens. Matter, 2015, 27: 214019
https://doi.org/10.1088/0953-8984/27/21/214019
137 Peierls R.. Zur Theorie des Diamagnetismus von Leitungselektronen. Eur. Phys. J. A, 1933, 80(11−12): 763
https://doi.org/10.1007/BF01342591
138 Graf M., Vogl P.. Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B, 1995, 51(8): 4940
https://doi.org/10.1103/PhysRevB.51.4940
139 Li J., Golez D., Mazza G., J. Millis A., Georges A., Eckstein M.. Electromagnetic coupling in tight-binding models for strongly correlated light and matter. Phys. Rev. B, 2020, 101(20): 205140
https://doi.org/10.1103/PhysRevB.101.205140
140 P. G. de Gennes, Superconductivity of Metals and Alloys, CRC Press, 1999
141 R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford Univ. Press, 2000
142 G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, 7th Ed., Academic Press, 2013
143 O. Keller, Quantum Theory of Near-Field Electrodynamics, Springer, Berlin, 2011
144 J. S. Wang and J. Peng, A microscopic theory for ultra-near-field radiation, arXiv: 1607.02840 (2016)
145 D. J. Griffiths, Introduction to Electrodynamics, 4th Ed., Cambridge Univ. Press, 2017
146 N. N. Bogoliubov and D. V. Shirkov, Quantum Fields, Addison-Wesley, 1982
147 S. Agarwal G.. Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries. Phys. Rev. A Gen. Phys., 1975, 11(1): 230
https://doi.org/10.1103/PhysRevA.11.230
148 Zhang Z.-Q.Lü J.-T.Wang J.-S., Angular momentum radiation from current-carrying molecular junctions, Phys. Rev. B 101, 161406(R) (2020)
149 Kuhnke K., Große C., Merino P., Kern K.. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev., 2017, 117(7): 5174
https://doi.org/10.1021/acs.chemrev.6b00645
150 Q. Zhang Z., S. Wang J.. Electroluminescence and thermal radiation from metallic armchair carbon nanotubes with defects. Phys. Rev. B, 2021, 104(8): 085422
https://doi.org/10.1103/PhysRevB.104.085422
151 Weisskopf V., Wigner E.. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Eur. Phys. J. A, 1930, 63(1−2): 54
https://doi.org/10.1007/BF01336768
152 Heisenberg W., Pauli W.. Zur Quantentheorie der Wellenfelder II. Eur. Phys. J. A, 1930, 59(3−4): 168
https://doi.org/10.1007/BF01341423
153 Creutz M.. Quantum electrodynamics in the temporal gauge. Ann. Phys., 1979, 117(2): 471
https://doi.org/10.1016/0003-4916(79)90365-8
154 E. Fradkin, Quantum Field Theory: An Integrated Approach, Princeton Univ. Press, 2021
155 L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd Ed., Cambridge Univ. Press, 2012
156 M. Barnett S.. Optical angular-momentum flux. J. Opt. B, 2002, 4(2): S7
https://doi.org/10.1088/1464-4266/4/2/361
157 M. Barnett S., Allen L., P. Cameron R., R. Gilson C., J. Padgett M., C. Speirits F., M. Yao A.. On the natures of the spin and orbital parts of optical angular momentum. J. Opt., 2016, 18(6): 064004
https://doi.org/10.1088/2040-8978/18/6/064004
158 M. Zhang Y., Zhu T., Q. Zhang Z., S. Wang J.. Microscopic theory of photon-induced energy, momentum, and angular momentum transport in the nonequilibrium regime. Phys. Rev. B, 2022, 105(20): 205421
https://doi.org/10.1103/PhysRevB.105.205421
159 M. Abraham Ekeroth R., García-Martín A., C. Cuevas J.. Thermal discrete dipole approximation for the description of thermal emission and radiative heat transfer of magneto-optical systems. Phys. Rev. B, 2017, 95(23): 235428
https://doi.org/10.1103/PhysRevB.95.235428
160 Zhu L., Fan S.. Persistent directional current at equilibrium in nonreciprocal many-body near field electromagnetic heat transfer. Phys. Rev. Lett., 2016, 117(13): 134303
https://doi.org/10.1103/PhysRevLett.117.134303
161 Latella I., Ben-Abdallah P.. Giant thermal magnetoresistance in plasmonic structures. Phys. Rev. Lett., 2017, 118(17): 173902
https://doi.org/10.1103/PhysRevLett.118.173902
162 G. Aslamazov L., I. Larkin A.. Effect of fluctuations on the properties of a superconductor above the critical temperature. Sov. Phys. Solid State., 1968, 10: 875
https://doi.org/10.1142/9789814317344_0004
163 H. A. Lorentz, Het theorema van Poynting over de energie in het electromagnetisch veld en een paar algemeene stellingen over de voortplanting van het licht, Verslagen der Afdeeling Natuurkunde van de Koninklijke Akademie van Wetenschappen 4, 176 (1895)
164 Strekha B., Molesky S., Chao P., Krüger M., W. Rodriguez A.. Trace expressions and associated limits for nonequilibrium Casimir torque. Phys. Rev. A, 2022, 106(4): 042222
https://doi.org/10.1103/PhysRevA.106.042222
165 Khrapko R.. Unknown spin radiation. J. Phys. Conf. Ser., 2019, 1172(1): 012055
https://doi.org/10.1088/1742-6596/1172/1/012055
166 M. Zhang Y., S. Wang J.. Far-field heat and angular momentum radiation of the Haldane model. J. Phys.: Condens. Matter, 2021, 33(5): 055301
https://doi.org/10.1088/1361-648X/abbe7c
167 V. Kibis O., R. da Costa M., E. Portnoi M.. Generation of terahertz radiation by hot electrons in carbon nanotubes. Nano Lett., 2007, 7(11): 3414
https://doi.org/10.1021/nl0718418
168 V. Dolgov O., G. Maksimov E.. The dielectric function of crystalline systems. Modern Problems in Condensed Matter Sciences, 1989, 24: 221
https://doi.org/10.1016/B978-0-444-87366-8.50010-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed