Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (4): 43303   https://doi.org/10.1007/s11467-023-1276-4
  本期目录
Anisotropic phonon thermal transport in two-dimensional layered materials
Yuxin Cai1, Muhammad Faizan1, Huimin Mu2, Yilin Zhang1, Hongshuai Zou1, Hong Jian Zhao2, Yuhao Fu2(), Lijun Zhang1()
1. State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, International Center of Computational Method and Software, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
2. State Key Laboratory of Superhard Materials, International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
 全文: PDF(4285 KB)   HTML
Abstract

Two-dimensional layered materials (2DLMs) have attracted growing attention in optoelectronic devices due to their intriguing anisotropic physical properties. Different members of 2DLMs exhibit unique anisotropic electrical, optical, and thermal properties, fundamentally related to their crystal structure. Among them, directional heat transfer plays a vital role in the thermal management of electronic devices. Here, we use density functional theory calculations to investigate the thermal transport properties of representative layered materials: β-InSe, γ-InSe, MoS2, and h-BN. We found that the lattice thermal conductivities of β-InSe, γ-InSe, MoS2, and h-BN display diverse anisotropic behaviors with anisotropy ratios of 10.4, 9.4, 64.9, and 107.7, respectively. The analysis of the phonon modes further indicates that the phonon group velocity is responsible for the anisotropy of thermal transport. Furthermore, the low lattice thermal conductivity of the layered InSe mainly comes from low phonon group velocity and atomic masses. Our findings provide a fundamental physical understanding of the anisotropic thermal transport in layered materials. We hope this study could inspire the advancement of 2DLMs thermal management applications in next-generation integrated electronic and optoelectronic devices.

Key wordsthermal conductivity    two-dimensional layered materials    first-principles calculation    Boltzmann transport theory
收稿日期: 2023-01-24      出版日期: 2023-04-10
Corresponding Author(s): Yuhao Fu,Lijun Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(4): 43303.
Yuxin Cai, Muhammad Faizan, Huimin Mu, Yilin Zhang, Hongshuai Zou, Hong Jian Zhao, Yuhao Fu, Lijun Zhang. Anisotropic phonon thermal transport in two-dimensional layered materials. Front. Phys. , 2023, 18(4): 43303.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1276-4
https://academic.hep.com.cn/fop/CN/Y2023/V18/I4/43303
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 K. Geim A., S. Novoselov K.. The rise of graphene. Nat. Mater., 2007, 6(3): 183
https://doi.org/10.1038/nmat1849
2 C. Meyer J., K. Geim A., I. Katsnelson M., S. Novoselov K., J. Booth T., Roth S.. The structure of suspended graphene sheets. Nature, 2007, 446(7131): 60
https://doi.org/10.1038/nature05545
3 S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
4 Scalise E., Houssa M., Pourtois G., Afanas’ev V., Stesmans A.. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res., 2012, 5(1): 43
https://doi.org/10.1007/s12274-011-0183-0
5 Chiappe D., Scalise E., Cinquanta E., Grazianetti C., van den Broek B., Fanciulli M., Houssa M., Molle A.. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater., 2014, 26(13): 2096
https://doi.org/10.1002/adma.201304783
6 Yang Z., Jie W., H. Mak C., Lin S., Lin H., Yang X., Yan F., P. Lau S., Hao J.. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse. ACS Nano, 2017, 11(4): 4225
https://doi.org/10.1021/acsnano.7b01168
7 Zhang K., Feng Y., Wang F., Yang Z., Wang J.. Two-dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C, 2017, 5(46): 11992
https://doi.org/10.1039/C7TC04300G
8 Wu L., Shi J., Zhou Z., Yan J., Wang A., Bian C., Ma J., Ma R., Liu H., Chen J., Huang Y., Zhou W., Bao L., Ouyang M., T. Pantelides S., J. Gao H.. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Res., 2020, 13(4): 1127
https://doi.org/10.1007/s12274-020-2757-1
9 W. Mudd G., A. Svatek S., Hague L., Makarovsky O., R. Kudrynskyi Z., J. Mellor C., H. Beton P., Eaves L., S. Novoselov K., D. Kovalyuk Z., E. Vdovin E., J. Marsden A., R. Wilson N., Patanè A.. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv. Mater., 2015, 27(25): 3760
https://doi.org/10.1002/adma.201500889
10 Buckley D., R. Kudrynskyi Z., Balakrishnan N., Vincent T., Mazumder D., Castanon E., D. Kovalyuk Z., Kolosov O., Kazakova O., Tzalenchuk A., Patanè A.. Anomalous low thermal conductivity of atomically thin InSe probed by scanning thermal microscopy. Adv. Funct. Mater., 2021, 31(11): 2008967
https://doi.org/10.1002/adfm.202008967
11 Arora H., Jung Y., Venanzi T., Watanabe K., Taniguchi T., Hübner R., Schneider H., Helm M., C. Hone J., Erbe A.. Effective hexagonal boron nitride passivation of few-layered InSe and GaSe to enhance their electronic and optical properties. ACS Appl. Mater. Interfaces, 2019, 11(46): 43480
https://doi.org/10.1021/acsami.9b13442
12 Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A.. Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6(3): 147
https://doi.org/10.1038/nnano.2010.279
13 Brotons-Gisbert M., Andres-Penares D., Suh J., Hidalgo F., Abargues R., J. Rodriguez-Canto P., Segura A., Cros A., Tobias G., Canadell E., Ordejón P., Wu J., P. Martínez-Pastor J., F. Sánchez-Royo J.. Nanotexturing to enhance photoluminescent response of atomically thin indium selenide with highly tunable band gap. Nano Lett., 2016, 16(5): 3221
https://doi.org/10.1021/acs.nanolett.6b00689
14 Y. Hui Y., Liu X., Jie W., Y. Chan N., Hao J., T. Hsu Y., J. Li L., Guo W., P. Lau S.. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano, 2013, 7(8): 7126
https://doi.org/10.1021/nn4024834
15 Moon S.Kim J.Park J.Im S.Kim J. Hwang I.K. Kim J., Hexagonal boron nitride for next‐generation photonics and electronics, Adv. Mater. 2204161 (2022)
16 Wu M., Xiao Y., Zeng Y., Zhou Y., Zeng X., Zhang L., Liao W.. Synthesis of two‐dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat, 2021, 3(4): 362
https://doi.org/10.1002/inf2.12161
17 Lei S., Ge L., Najmaei S., George A., Kappera R., Lou J., Chhowalla M., Yamaguchi H., Gupta G., Vajtai R., D. Mohite A., M. Ajayan P.. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano, 2014, 8(2): 1263
https://doi.org/10.1021/nn405036u
18 J. Late D., Liu B., Luo J., Yan A., S. S. R. Matte H., Grayson M., N. R. Rao C., P. Dravid V.. GaS and GaSe ultrathin layer transistors. Adv. Mater., 2012, 24(26): 3549
https://doi.org/10.1002/adma.201201361
19 Hu P., Wen Z., Wang L., Tan P., Xiao K.. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2012, 6(7): 5988
https://doi.org/10.1021/nn300889c
20 Xie J., Zhang L.. Optical emission enhancement of bent InSe thin films. Sci. China Inf. Sci., 2021, 64(4): 140405
https://doi.org/10.1007/s11432-020-3149-2
21 Hu T., Zhang H., Wang J., Li Z., Hu M., Tan J., Hou P., Li F., Wang X.. Anisotropic electronic conduction in stacked two-dimensional titanium carbide. Sci. Rep., 2015, 5(1): 16329
https://doi.org/10.1038/srep16329
22 J. Hamer M., Zultak J., V. Tyurnina A., Zólyomi V., Terry D., Barinov A., Garner A., Donoghue J., P. Rooney A., Kandyba V., Giampietri A., Graham A., Teutsch N., Xia X., Koperski M., J. Haigh S., I. Fal’ko V., V. Gorbachev R., R. Wilson N.. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS Nano, 2019, 13(2): 2136
https://doi.org/10.1021/acsnano.8b08726
23 V. Shubina T., Desrat W., Moret M., Tiberj A., Briot O., Yu. Davydov V., V. Platonov A., A. Semina M., Gil B.. InSe as a case between 3D and 2D layered crystals for excitons. Nat. Commun., 2019, 10(1): 3479
https://doi.org/10.1038/s41467-019-11487-0
24 J. Williams T., A. Aczel A., D. Lumsden M., E. Nagler S., B. Stone M., Q. Yan J., Mandrus D.. Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3. Phys. Rev. B, 2015, 92(14): 144404
https://doi.org/10.1103/PhysRevB.92.144404
25 Rai A., K. Sangwan V., T. Gish J., C. Hersam M., G. Cahill D.. Anisotropic thermal conductivity of layered indium selenide. Appl. Phys. Lett., 2021, 118(7): 073101
https://doi.org/10.1063/5.0042091
26 Jiang P., Qian X., Yang R., Lindsay L.. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys. Rev. Mater., 2018, 2(6): 064005
https://doi.org/10.1103/PhysRevMaterials.2.064005
27 Jiang P., Qian X., Gu X., Yang R., Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W = S. Se) using time‐domain thermoreflectance. Adv. Mater., 2017, 29(36): 1701068
https://doi.org/10.1002/adma.201701068
28 Yang N., Pei F., Dou J., Zhao Y., Huang Z., Ma Y., Ma S., Wang C., Zhang X., Wang H., Zhu C., Bai Y., Zhou H., Song T., Chen Y., Chen Q.. Improving heat transfer enables durable perovskite solar cells. Adv. Energy Mater., 2022, 12(24): 2200869
https://doi.org/10.1002/aenm.202200869
29 Chandra S., Dutta P., Biswas K.. High-performance thermoelectrics based on solution-grown SnSe nanostructures. ACS Nano, 2022, 16(1): 7
https://doi.org/10.1021/acsnano.1c10584
30 D. G. Greener J., de Lima Savi E., V. Akimov A., Raetz S., Kudrynskyi Z., D. Kovalyuk Z., Chigarev N., Kent A., Patané A., Gusev V.. High-frequency elastic coupling at the interface of van der Waals nanolayers imaged by picosecond ultrasonics. ACS Nano, 2019, 13(10): 11530
https://doi.org/10.1021/acsnano.9b05052
31 Peng J., He X., Shi C., Leng J., Lin F., Liu F., Zhang H., Shi W.. Investigation of graphene supported terahertz elliptical metamaterials. Physica E, 2020, 124: 114309
https://doi.org/10.1016/j.physe.2020.114309
32 Leng J., Peng J., Jin A., Cao D., Liu D., He X., Lin F., Liu F.. Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol., 2022, 146: 107570
https://doi.org/10.1016/j.optlastec.2021.107570
33 He X.Lin F. Liu F.Shi W., 3D Dirac semimetals supported tunable terahertz BIC metamaterials, Nanophotonics 11(21), 4705 (2022)
34 He X., Cao W.. Tunable terahertz hybrid metamaterials supported by 3D Dirac semimetals. Opt. Mater. Express, 2023, 13(2): 413
https://doi.org/10.1364/OME.478596
35 Yang J., Liu C., Xie H., Yu W.. Anisotropic heat transfer properties of two-dimensional materials. Nanotechnology, 2021, 32(16): 162001
https://doi.org/10.1088/1361-6528/abdb15
36 E. Kim S., Mujid F., Rai A., Eriksson F., Suh J., Poddar P., Ray A., Park C., Fransson E., Zhong Y., A. Muller D., Erhart P., G. Cahill D., Park J.. Extremely anisotropic van der Waals thermal conductors. Nature, 2021, 597(7878): 660
https://doi.org/10.1038/s41586-021-03867-8
37 Chen S., Sood A., Pop E., E. Goodson K., Donadio D.. Strongly tunable anisotropic thermal transport in MoS2 by strain and lithium intercalation: First-principles calculations. 2D Mater., 2019, 6(2): 025033
https://doi.org/10.1088/2053-1583/ab0715
38 E. Blöchl P.. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
39 Kresse G., Furthmüller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
40 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
41 Klimeš J., R. Bowler D., Michaelides A.. Chemical accuracy for the van der Waals density functional. J. Phys. :Condens. Matter, 2010, 22(2): 022201
https://doi.org/10.1088/0953-8984/22/2/022201
42 Omini M., Sparavigna A.. Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys. Rev. B, 1996, 53(14): 9064
https://doi.org/10.1103/PhysRevB.53.9064
43 A. Broido D., Malorny M., Birner G., Mingo N., A. Stewart D.. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett., 2007, 91(23): 231922
https://doi.org/10.1063/1.2822891
44 Ward A.A. Broido D.A. Stewart D.Deinzer G., Ab-initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B 80(12), 125203 (2009)
45 Li W., Lindsay L., A. Broido D., A. Stewart D., Mingo N.. Thermal conductivity of bulk and nanowire Mg2SixSn1-x alloys from first principles. Phys. Rev. B, 2012, 86(17): 174307
https://doi.org/10.1103/PhysRevB.86.174307
46 Li W., Mingo N.. Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes. Phys. Rev. B, 2015, 91(14): 144304
https://doi.org/10.1103/PhysRevB.91.144304
47 Togo A., Tanaka I.. First principles phonon calculations in materials science. Scr. Mater., 2015, 108: 1
https://doi.org/10.1016/j.scriptamat.2015.07.021
48 Giannozzi P.de Gironcoli S.Pavone P.Baroni S., Ab-initio calculation of phonon dispersions in semiconductors, Phys. Rev. B 43(9), 7231 (1991)
49 Li W., Carrete J., A. Katcho N., Mingo N.. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun., 2014, 185(6): 1747
https://doi.org/10.1016/j.cpc.2014.02.015
50 Niu B., Zhong L., Hao W., Yang Z., Duan X., Cai D., He P., Jia D., Li S., Zhou Y.. First-principles study of the anisotropic thermal expansion and thermal transport properties in h-BN. Sci. China Mater., 2021, 64(4): 953
https://doi.org/10.1007/s40843-020-1527-0
51 Wan W., Zhao S., Ge Y., Liu Y.. Phonon and electron transport in Janus monolayers based on InSe. J. Phys. :Condens. Matter, 2019, 31(43): 435501
https://doi.org/10.1088/1361-648X/ab2e7d
52 Sun Y., Luo S., G. Zhao X., Biswas K., L. Li S., Zhang L.. InSe: A two-dimensional material with strong interlayer coupling. Nanoscale, 2018, 10(17): 7991
https://doi.org/10.1039/C7NR09486H
53 Sun Y., Li Y., Li T., Biswas K., Patanè A., Zhang L.. New polymorphs of 2D indium selenide with enhanced electronic properties. Adv. Funct. Mater., 2020, 30(31): 2001920
https://doi.org/10.1002/adfm.202001920
54 Q. Hu J., H. Shi X., Q. Wu S., M. Ho K., Z. Zhu Z.. Dependence of electronic and optical properties of MoS2 multilayers on the interlayer coupling and van Hove singularity. Nanoscale Res. Lett., 2019, 14(1): 288
https://doi.org/10.1186/s11671-019-3105-9
55 Liu J., M. Choi G., G. Cahill D.. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys., 2014, 116(23): 233107
https://doi.org/10.1063/1.4904513
56 Li W., Mingo N.. Thermal conductivity of fully filled skutterudites: Role of the filler. Phys. Rev. B, 2014, 89(18): 184304
https://doi.org/10.1103/PhysRevB.89.184304
57 K. S. S. Karthikeyan S., Santhoshkumar P., C. Joe Y., H. Kang S., N. Jo Y., S. Kang H., W. Lee C.. Understanding of the elastic constants, energetics, and bonding in dicalcium silicate using first-principles calculations. J. Phys. Chem. C, 2018, 122(42): 24235
https://doi.org/10.1021/acs.jpcc.8b06630
58 Yuan K., Zhang X., Chang Z., Yang Z., Tang D.. Pressure-induced anisotropic to isotropic thermal transport and promising thermoelectric performance in layered InSe. ACS Appl. Energy Mater., 2022, 5(9): 10690
https://doi.org/10.1021/acsaem.2c01419
59 Ren W., Ouyang Y., Jiang P., Yu C., He J., Chen J.. The impact of interlayer rotation on thermal transport across graphene/hexagonal boron nitride van der Waals heterostructure. Nano Lett., 2021, 21(6): 2634
https://doi.org/10.1021/acs.nanolett.1c00294
60 Y. Nobakht A., Shin S.. Anisotropic control of thermal transport in graphene/Si heterostructures. J. Appl. Phys., 2016, 120(22): 225111
https://doi.org/10.1063/1.4971873
61 Ni Y., A. Kosevich Y., Xiong S., Chalopin Y., Volz S.. Substrate-induced cross-plane thermal propagative modes in few-layer graphene. Phys. Rev. B, 2014, 89(20): 205413
https://doi.org/10.1103/PhysRevB.89.205413
[1] fop-21276-OF-zhanglijun_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed