Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (5): 53603   https://doi.org/10.1007/s11467-023-1286-2
  本期目录
Recent developments in CVD growth and applications of 2D transition metal dichalcogenides
Hui Zeng1, Yao Wen1, Lei Yin1, Ruiqing Cheng1, Hao Wang1, Chuansheng Liu1, Jun He1,2,3,4()
1. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
2. Wuhan Institute of Quantum Technology, Wuhan 430206, China
3. Hubei Luojia Laboratory, Wuhan 430079, China
4. Shanxi Normal University, Taiyuan 030031, China
 全文: PDF(34183 KB)   HTML
Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) with fascinating electronic energy band structures, rich valley physical properties and strong spin–orbit coupling have attracted tremendous interest, and show great potential in electronic, optoelectronic, spintronic and valleytronic fields. Stacking 2D TMDs have provided unprecedented opportunities for constructing artificial functional structures. Due to the low cost, high yield and industrial compatibility, chemical vapor deposition (CVD) is regarded as one of the most promising growth strategies to obtain high-quality and large-area 2D TMDs and heterostructures. Here, state-of-the-art strategies for preparing TMDs details of growth control and related heterostructures construction via CVD method are reviewed and discussed, including wafer-scale synthesis, phase transition, doping, alloy and stacking engineering. Meanwhile, recent progress on the application of multi-functional devices is highlighted based on 2D TMDs. Finally, challenges and prospects are proposed for the practical device applications of 2D TMDs.

Key wordstwo-dimensional (2D) semiconductor    transition metal dichalcogenides (TMDs)    chemical vapor deposition (CVD)    heterostructures    device applications
收稿日期: 2022-12-07      出版日期: 2023-05-12
Corresponding Author(s): Jun He   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(5): 53603.
Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys. , 2023, 18(5): 53603.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1286-2
https://academic.hep.com.cn/fop/CN/Y2023/V18/I5/53603
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
1 B. Desai S., R. Madhvapathy S., B. Sachid A., P. Llinas J., Wang Q., H. Ahn G., Pitner G., J. Kim M., Bokor J., Hu C., S. P. Wong H., Javey A.. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354(6308): 99
https://doi.org/10.1126/science.aah4698
2 S. Ross J., Klement P., M. Jones A., J. Ghimire N., Yan J., Mandrus D., Taniguchi T., Watanabe K., Kitamura K., Yao W., H. Cobden D., Xu X.. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol., 2014, 9(4): 268
https://doi.org/10.1038/nnano.2014.26
3 Zhang F., Zhang H., Krylyuk S., A. Milligan C., Zhu Y., Y. Zemlyanov D., A. Bendersky L., P. Burton B., V. Davydov A., Appenzeller J.. Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater., 2019, 18(1): 55
https://doi.org/10.1038/s41563-018-0234-y
4 Akamatsu T.Ideue T.Zhou L.Dong Y.Kitamura S. Yoshii M.Yang D.Onga M.Nakagawa Y.Watanabe K. Taniguchi T.Laurienzo J.Huang J.Ye Z.Morimoto T. Yuan H.Iwasa Y., A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
5 A. Benítez L., F. Sierra J., Savero Torres W., Arrighi A., Bonell F., V. Costache M., O. Valenzuela S.. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys., 2018, 14(3): 303
https://doi.org/10.1038/s41567-017-0019-2
6 F. Mak K., L. McGill K., Park J., L. McEuen P.. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489
https://doi.org/10.1126/science.1250140
7 Lu J., Zheliuk O., Leermakers I., F. Yuan N., Zeitler U., T. Law K., Ye J.. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science, 2015, 350(6266): 1353
https://doi.org/10.1126/science.aab2277
8 S. Novoselov K., K. Geim A., V. Morozov S., e. Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
9 Wang J., Xu X., Cheng T., Gu L., Qiao R., Liang Z., Ding D., Hong H., Zheng P., Zhang Z., Zhang Z., Zhang S., Cui G., Chang C., Huang C., Qi J., Liang J., Liu C., Zuo Y., Xue G., Fang X., Tian J., Wu M., Guo Y., Yao Z., Jiao Q., Liu L., Gao P., Li Q., Yang R., Zhang G., Tang Z., Yu D., Wang E., Lu J., Zhao Y., Wu S., Ding F., Liu K.. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol., 2022, 17(1): 33
https://doi.org/10.1038/s41565-021-01004-0
10 Xu X., Zhang Z., Qiu L., Zhuang J., Zhang L., Wang H., Liao C., Song H., Qiao R., Gao P., Hu Z., Liao L., Liao Z., Yu D., Wang E., Ding F., Peng H., Liu K.. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol., 2016, 11(11): 930
https://doi.org/10.1038/nnano.2016.132
11 Liu C., Xu X., Qiu L., Wu M., Qiao R., Wang L., Wang J., Niu J., Liang J., Zhou X., Zhang Z., Peng M., Gao P., Wang W., Bai X., Ma D., Jiang Y., Wu X., Yu D., Wang E., Xiong J., Ding F., Liu K.. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat. Chem., 2019, 11(8): 730
https://doi.org/10.1038/s41557-019-0290-1
12 U. Kim H., Kanade V., Kim M., S. Kim K., S. An B., Seok H., Yoo H., E. Chaney L., I. Kim S., W. Yang C., Y. Yeom G., Whang D., H. Lee J., Kim T.. Wafer-scale and low‐temperature growth of 1T‐WS2 film for efficient and stable hydrogen evolution reaction. Small, 2020, 16(6): 1905000
https://doi.org/10.1002/smll.201905000
13 C. Lin Y., H. Yeh C., C. Lin H., D. Siao M., Liu Z., Nakajima H., Okazaki T., Y. Chou M., Suenaga K., W. Chiu P.. Stable 1T tungsten disulfide monolayer and its junctions: Growth and atomic structures. ACS Nano, 2018, 12(12): 12080
https://doi.org/10.1021/acsnano.8b04979
14 Gao J., D. Kim Y., Liang L., C. Idrobo J., Chow P., Tan J., Li B., Li L., G. Sumpter B., M. Lu T., Meunier V., Hone J., Koratkar N.. Transition‐metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater., 2016, 28(44): 9735
https://doi.org/10.1002/adma.201601104
15 Umrao S.Jeon J.M. Jeon S.J. Choi Y.Lee S., A homogeneous atomic layer MoS2(1−x) Se2x alloy prepared by low-pressure chemical vapor deposition, and its properties, Nanoscale 9(2), 594 (2017)
16 Yoo Y., P. Degregorio Z., E. Johns J.. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc., 2015, 137(45): 14281
https://doi.org/10.1021/jacs.5b06643
17 Gao Y., L. Hong Y., C. Yin L., Wu Z., Yang Z., L. Chen M., Liu Z., Ma T., M. Sun D., Ni Z., L. Ma X., M. Cheng H., Ren W.. Ultrafast growth of high‐quality monolayer WSe2 on Au. Adv. Mater., 2017, 29(29): 1700990
https://doi.org/10.1002/adma.201700990
18 Chen J., Zhao X., Grinblat G., Chen Z., J. Tan S., Fu W., Ding Z., Abdelwahab I., Li Y., Geng D., Liu Y., Leng K., Liu B., Liu W., Tang W., A. Maier S., J. Pennycook S., P. Loh K.. Homoepitaxial growth of large‐scale highly organized transition metal dichalcogenide patterns. Adv. Mater., 2018, 30(4): 1704674
https://doi.org/10.1002/adma.201704674
19 Y. Kim S., Kwak J., V. Ciobanu C., Y. Kwon S.. Recent developments in controlled vapor‐phase growth of 2D group 6 transition metal dichalcogenides. Adv. Mater., 2019, 31(20): 1804939
https://doi.org/10.1002/adma.201804939
20 Li H., Wang X., Zhu X., Duan X., Pan A.. Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chem. Soc. Rev., 2018, 47(20): 7504
https://doi.org/10.1039/C8CS00418H
21 L. Shang S., Lindwall G., Wang Y., M. Redwing J., Anderson T., K. Liu Z.. Lateral versus vertical growth of two-dimensional layered transition-metal dichalcogenides: Thermodynamic insight into MoS2. Nano Lett., 2016, 16(9): 5742
https://doi.org/10.1021/acs.nanolett.6b02443
22 Gong Y., Lin J., Wang X., Shi G., Lei S., Lin Z., Zou X., Ye G., Vajtai R., I. Yakobson B., Terrones H., Terrones M., K. Tay B., Lou J., T. Pantelides S., Liu Z., Zhou W., M. Ajayan P.. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater., 2014, 13(12): 1135
https://doi.org/10.1038/nmat4091
23 Yang P., Zou X., Zhang Z., Hong M., Shi J., Chen S., Shu J., Zhao L., Jiang S., Zhou X., Huan Y., Xie C., Gao P., Chen Q., Zhang Q., Liu Z., Zhang Y.. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun., 2018, 9(1): 979
https://doi.org/10.1038/s41467-018-03388-5
24 Yu L., El-Damak D., Radhakrishna U., Ling X., Zubair A., Lin Y., Zhang Y., H. Chuang M., H. Lee Y., Antoniadis D., Kong J., Chandrakasan A., Palacios T.. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett., 2016, 16(10): 6349
https://doi.org/10.1021/acs.nanolett.6b02739
25 Cheng R., Wang F., Yin L., Wang Z., Wen Y., A. Shifa T., He J.. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron., 2018, 1(6): 356
https://doi.org/10.1038/s41928-018-0086-0
26 Xue H., Dai Y., Kim W., Wang Y., Bai X., Qi M., Halonen K., Lipsanen H., Sun Z.. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure. Nanoscale, 2019, 11(7): 3240
https://doi.org/10.1039/C8NR09248F
27 Yin L., He P., Cheng R., Wang F., Wang F., Wang Z., Wen Y., He J.. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices. Nat. Commun., 2019, 10(1): 4133
https://doi.org/10.1038/s41467-019-12200-x
28 Si M., Y. Liao P., Qiu G., Duan Y., D. Ye P.. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano, 2018, 12(7): 6700
https://doi.org/10.1021/acsnano.8b01810
29 Wang Y., Bai X., Chu J., Wang H., Rao G., Pan X., Du X., Hu K., Wang X., Gong C., Yin C., Yang C., Yan C., Wu C., Shuai Y., Wang X., Liao M., Xiong J.. Record-low subthreshold-swing negative-capacitance 2D field‐effect transistors. Adv. Mater., 2020, 32(46): 2005353
https://doi.org/10.1002/adma.202005353
30 Zhou B., Li Z., Wang J., Niu X., Luan C.. Tunable valley splitting and an anomalous valley Hall effect in hole-doped WS2 by proximity coupling with a ferromagnetic MnO2 monolayer. Nanoscale, 2019, 11(28): 13567
https://doi.org/10.1039/C9NR03315G
31 Dankert A., P. Dash S.. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun., 2017, 8(1): 16093
https://doi.org/10.1038/ncomms16093
32 L. Sanchez O., Ovchinnikov D., Misra S., Allain A., Kis A.. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett., 2016, 16(9): 5792
https://doi.org/10.1021/acs.nanolett.6b02527
33 Lee J., F. Mak K., Shan J.. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol., 2016, 11(5): 421
https://doi.org/10.1038/nnano.2015.337
34 Schmitt D., P. Bange J., Bennecke W., AlMutairi A., Meneghini G., Watanabe K., Taniguchi T., Steil D., R. Luke D., T. Weitz R., Steil S., S. M. Jansen G., Brem S., Malic E., Hofmann S., Reutzel M., Mathias S.. Formation of moiré interlayer excitons in space and time. Nature, 2022, 608(7923): 499
https://doi.org/10.1038/s41586-022-04977-7
35 Zhang Z., Chen P., Yang X., Liu Y., Ma H., Li J., Zhao B., Luo J., Duan X., Duan X.. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev., 2020, 7(4): 737
https://doi.org/10.1093/nsr/nwz223
36 C. Chang M., H. Ho P., F. Tseng M., Y. Lin F., H. Hou C., Lin I., Wang H., P. Huang P., H. Chiang C., C. Yang Y., T. Wang I., Y. Du H., Y. Wen C., J. Shyue J., W. Chen C., H. Chen K., W. Chiu P., C. Chen L.. Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nat. Commun., 2020, 11(1): 3682
https://doi.org/10.1038/s41467-020-17517-6
37 Zhang Z., Yang X., Liu K., Wang R.. Epitaxy of 2D materials toward single crystals. Adv. Sci. (Weinh.), 2022, 9(8): 2105201
https://doi.org/10.1002/advs.202105201
38 Wu T., Zhang X., Yuan Q., Xue J., Lu G., Liu Z., Wang H., Wang H., Ding F., Yu Q., Xie X., Jiang M.. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater., 2016, 15(1): 43
https://doi.org/10.1038/nmat4477
39 Wang H., Xu X., Li J., Lin L., Sun L., Sun X., Zhao S., Tan C., Chen C., Dang W., Ren H., Zhang J., Deng B., L. Koh A., Liao L., Kang N., Chen Y., Xu H., Ding F., Liu K., Peng H., Liu Z.. Surface monocrystallization of copper foil for fast growth of large single‐crystal graphene under free molecular flow. Adv. Mater., 2016, 28(40): 8968
https://doi.org/10.1002/adma.201603579
40 Wang L., Xu X., Zhang L., Qiao R., Wu M., Wang Z., Zhang S., Liang J., Zhang Z., Zhang Z., Chen W., Xie X., Zong J., Shan Y., Guo Y., Willinger M., Wu H., Li Q., Wang W., Gao P., Wu S., Zhang Y., Jiang Y., Yu D., Wang E., Bai X., J. Wang Z., Ding F., Liu K.. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570(7759): 91
https://doi.org/10.1038/s41586-019-1226-z
41 S. Lee J., H. Choi S., J. Yun S., I. Kim Y., Boandoh S., H. Park J., G. Shin B., Ko H., H. Lee S., M. Kim Y., H. Lee Y., K. Kim K., M. Kim S.. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science, 2018, 362(6416): 817
https://doi.org/10.1126/science.aau2132
42 A. N. Duerloo K., Li Y., J. Reed E.. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun., 2014, 5(1): 4214
https://doi.org/10.1038/ncomms5214
43 Xu X., Chen S., Liu S., Cheng X., Xu W., Li P., Wan Y., Yang S., Gong W., Yuan K., Gao P., Ye Y., Dai L.. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. J. Am. Chem. Soc., 2019, 141(5): 2128
https://doi.org/10.1021/jacs.8b12230
44 Xu X., Pan Y., Liu S., Han B., Gu P., Li S., Xu W., Peng Y., Han Z., Chen J., Gao P., Ye Y.. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science, 2021, 372(6538): 195
https://doi.org/10.1126/science.abf5825
45 Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., K. Banerjee S., Colombo L.. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768
https://doi.org/10.1038/nnano.2014.207
46 M. Arden W.. The international technology roadmap for semiconductors — Perspectives and challenges for the next 15 years. Curr. Opin. Solid State Mater. Sci., 2002, 6(5): 371
https://doi.org/10.1016/S1359-0286(02)00116-X
47 Lin Z., Liu Y., Halim U., Ding M., Liu Y., Wang Y., Jia C., Chen P., Duan X., Wang C., Song F., Li M., Wan C., Huang Y., Duan X.. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562(7726): 254
https://doi.org/10.1038/s41586-018-0574-4
48 Kaasbjerg K., S. Thygesen K., W. Jacobsen K.. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B, 2012, 85(11): 115317
https://doi.org/10.1103/PhysRevB.85.115317
49 Li N., Wang Q., Shen C., Wei Z., Yu H., Zhao J., Lu X., Wang G., He C., Xie L., Zhu J., Du L., Yang R., Shi D., Zhang G.. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron., 2020, 3(11): 711
https://doi.org/10.1038/s41928-020-00475-8
50 Seol M., H. Lee M., Kim H., W. Shin K., Cho Y., Jeon I., Jeong M., I. Lee H., Park J., J. Shin H.. High‐throughput growth of Wafer-scale monolayer transition metal dichalcogenide via vertical ostwald ripening. Adv. Mater., 2020, 32(42): 2003542
https://doi.org/10.1002/adma.202003542
51 Cai Z., Liu B., Zou X., M. Cheng H.. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev., 2018, 118(13): 6091
https://doi.org/10.1021/acs.chemrev.7b00536
52 H. Zeng L., Wu D., H. Lin S., Xie C., Y. Yuan H., Lu W., P. Lau S., Chai Y., B. Luo L., J. Li Z., H. Tsang Y.. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater., 2019, 29(1): 1806878
https://doi.org/10.1002/adfm.201806878
53 Lv P., Zhang X., Zhang X., Deng W., Jie J.. High-sensitivity and fast-response graphene/crystalline silicon Schottky junction-based near-IR photodetectors. IEEE Electron Device Lett., 2013, 34(10): 1337
https://doi.org/10.1109/LED.2013.2275169
54 Zhang Y.Yu Y.Mi L.Wang H.Zhu Z. Wu Q.Zhang Y. Jiang Y., In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors, Small 12(8), 1062 (2016)
55 Novoselov K.Mishchenko A.Carvalho A.H. Castro Neto A., 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
56 Shi J., Chen X., Zhao L., Gong Y., Hong M., Huan Y., Zhang Z., Yang P., Li Y., Zhang Q., Zhang Q., Gu L., Chen H., Wang J., Deng S., Xu N., Zhang Y.. Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater., 2018, 30(44): 1804616
https://doi.org/10.1002/adma.201804616
57 Xi X., Zhao L., Wang Z., Berger H., Forró L., Shan J., F. Mak K.. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol., 2015, 10(9): 765
https://doi.org/10.1038/nnano.2015.143
58 L. Duong D., Ryu G., Hoyer A., Lin C., Burghard M., Kern K.. Raman characterization of the charge density wave phase of 1T-TiSe2: From bulk to atomically thin layers. ACS Nano, 2017, 11(1): 1034
https://doi.org/10.1021/acsnano.6b07737
59 Xu X., Zhang Z., Dong J., Yi D., Niu J., Wu M., Lin L., Yin R., Li M., Zhou J., Wang S., Sun J., Duan X., Gao P., Jiang Y., Wu X., Peng H., S. Ruoff R., Liu Z., Yu D., Wang E., Ding F., Liu K.. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. (Beijing), 2017, 62(15): 1074
https://doi.org/10.1016/j.scib.2017.07.005
60 Wang P., Yang D., Pi X.. Toward wafer-scale production of 2D transition metal chalcogenides. Adv. Electron. Mater., 2021, 7(8): 2100278
https://doi.org/10.1002/aelm.202100278
61 Onsager L.. Crystal Statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev., 1944, 65: 3
https://doi.org/10.1103/PhysRev.65.117
62 C. Hohenberg P.. Existence of long-range order in one and two dimensions. Phys. Rev., 1967, 158(2): 383
https://doi.org/10.1103/PhysRev.158.383
63 D. Mermin N., Wagner H.. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17(22): 1133
https://doi.org/10.1103/PhysRevLett.17.1133
64 M. Kosterlitz J., Thouless D.. Long range order and metastability in two dimensional solids and superfluids (Application of dislocation theory). J. Phys. C, 1972, 5(11): L124
https://doi.org/10.1088/0022-3719/5/11/002
65 M. Kosterlitz J., J. Thouless D.. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, 1973, 6(7): 1181
https://doi.org/10.1088/0022-3719/6/7/010
66 A. Wilson J., Yoffe A.. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys., 1969, 18(73): 193
https://doi.org/10.1080/00018736900101307
67 Li W., Qian X., Li J.. Phase transitions in 2D materials. Nat. Rev. Mater., 2021, 6(9): 829
https://doi.org/10.1038/s41578-021-00304-0
68 H. Keum D., Cho S., H. Kim J., H. Choe D., J. Sung H., Kan M., Kang H., Y. Hwang J., W. Kim S., Yang H., J. Chang K., H. Lee Y.. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys., 2015, 11(6): 482
https://doi.org/10.1038/nphys3314
69 Hou W., Azizimanesh A., Sewaket A., Peña T., Watson C., Liu M., Askari H., M. Wu S.. Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat. Nanotechnol., 2019, 14(7): 668
https://doi.org/10.1038/s41565-019-0466-2
70 Cho S., Kim S., H. Kim J., Zhao J., Seok J., H. Keum D., Baik J., H. Choe D., J. Chang K., Suenaga K., W. Kim S., H. Lee Y., Yang H.. Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349(6248): 625
https://doi.org/10.1126/science.aab3175
71 Wang Y., Xiao J., Zhu H., Li Y., Alsaid Y., Y. Fong K., Zhou Y., Wang S., Shi W., Wang Y., Zettl A., J. Reed E., Zhang X.. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550(7677): 487
https://doi.org/10.1038/nature24043
72 U. Kim H., Seok H., S. Kang W., Kim T.. The first progress of plasma-based transition metal dichalcogenide synthesis: A stable 1T phase and promising applications. Nanoscale Adv., 2022, 4(14): 2962
https://doi.org/10.1039/D1NA00882J
73 Q. Zhu J., C. Wang Z., Yu H., Li N., Zhang J., L. Meng J., Z. Liao M., Zhao J., B. Lu X., J. Du L., Yang R., Shi D., Jiang Y., Y. Zhang G.. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc., 2017, 139(30): 10216
https://doi.org/10.1021/jacs.7b05765
74 S. Sokolikova M., Mattevi C.. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev., 2020, 49(12): 3952
https://doi.org/10.1039/D0CS00143K
75 S. Choi M., Cheong B., H. Ra C., Lee S., H. Bae J., Lee S., D. Lee G., W. Yang C., Hone J., J. Yoo W.. Electrically driven reversible phase changes in layered In2Se3 crystalline film. Adv. Mater., 2017, 29(42): 1703568
https://doi.org/10.1002/adma.201703568
76 Zhang W., Wuttig M.. Phase change materials and superlattices for non-volatile memories. Phys. Status Solidi Rapid Res. Lett., 2019, 13(4): 1900130
https://doi.org/10.1002/pssr.201900130
77 Mori S., Hatayama S., Shuang Y., Ando D., Sutou Y.. Reversible displacive transformation in MnTe polymorphic semiconductor. Nat. Commun., 2020, 11(1): 85
https://doi.org/10.1038/s41467-019-13747-5
78 J. Lee S., Lin Z., Duan X., Huang Y.. Doping on demand in 2D devices. Nat. Electron., 2020, 3(2): 77
https://doi.org/10.1038/s41928-020-0376-1
79 Luo P., Zhuge F., Zhang Q., Chen Y., Lv L., Huang Y., Li H., Zhai T.. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz., 2019, 4(1): 26
https://doi.org/10.1039/C8NH00150B
80 Zhang K., M. Bersch B., Joshi J., Addou R., R. Cormier C., Zhang C., Xu K., C. Briggs N., Wang K., Subramanian S., Cho K., Fullerton-Shirey S., M. Wallace R., M. Vora P., A. Robinson J.. Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater., 2018, 28(16): 1706950
https://doi.org/10.1002/adfm.201706950
81 Nipane A., Karmakar D., Kaushik N., Karande S., Lodha S.. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano, 2016, 10(2): 2128
https://doi.org/10.1021/acsnano.5b06529
82 Tang B., G. Yu Z., Huang L., Chai J., L. Wong S., Deng J., Yang W., Gong H., Wang S., W. Ang K., W. Zhang Y., Chi D.. Direct n-to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano, 2018, 12(3): 2506
https://doi.org/10.1021/acsnano.7b08261
83 Tang X.Z. Kou L., 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 8 (2022)
84 Y. Lu A., Zhu H., Xiao J., P. Chuu C., Han Y., H. Chiu M., C. Cheng C., W. Yang C., H. Wei K., Yang Y., Wang Y., Sokaras D., Nordlund D., Yang P., A. Muller D., Y. Chou M., Zhang X., J. Li L.. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12(8): 744
https://doi.org/10.1038/nnano.2017.100
85 Zhang J., Jia S., Kholmanov I., Dong L., Er D., Chen W., Guo H., Jin Z., B. Shenoy V., Shi L., Lou J.. Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11(8): 8192
https://doi.org/10.1021/acsnano.7b03186
86 Hu T., Jia F., Zhao G., Wu J., Stroppa A., Ren W.. Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers. Phys. Rev. B, 2018, 97(23): 235404
https://doi.org/10.1103/PhysRevB.97.235404
87 Dong L., Lou J., B. Shenoy V.. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 2017, 11(8): 8242
https://doi.org/10.1021/acsnano.7b03313
88 Liu C.Yan X.Song X.Ding S.W. Zhang D. Zhou P., A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications, Nat. Nanotechnol. 13(5), 404 (2018)
89 Shi W., Kahn S., Jiang L., Y. Wang S., Z. Tsai H., Wong D., Taniguchi T., Watanabe K., Wang F., F. Crommie M., Zettl A.. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures. Nat. Electron., 2020, 3(2): 99
https://doi.org/10.1038/s41928-019-0351-x
90 W. Chen J.T. Lo S.C. Ho S.S. Wong S.H. Y. Vu T. Q. Zhang X.D. Liu Y.Y. Chiou Y.X. Chen Y.C. Yang J., A gate-free monolayer WSe2 p-n diode, Nat. Commun. 9(1), 1 (2018)
91 Wu G., Tian B., Liu L., Lv W., Wu S., Wang X., Chen Y., Li J., Wang Z., Wu S., Shen H., Lin T., Zhou P., Liu Q., Duan C., Zhang S., Meng X., Wu S., Hu W., Wang X., Chu J., Wang J.. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron., 2020, 3(1): 43
https://doi.org/10.1038/s41928-019-0350-y
92 Ju L., Jr Velasco J., Huang E., Kahn S., Nosiglia C., Z. Tsai H., Yang W., Taniguchi T., Watanabe K., Zhang Y., Zhang G., Crommie M., Zettl A., Wang F.. Photoinduced doping in heterostructures of graphene and boron nitride. Nat. Nanotechnol., 2014, 9(5): 348
https://doi.org/10.1038/nnano.2014.60
93 Xiang D., Liu T., Xu J., Y. Tan J., Hu Z., Lei B., Zheng Y., Wu J., Neto A., Liu L., Chen W.. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun., 2018, 9(1): 2966
https://doi.org/10.1038/s41467-018-05397-w
94 K. Liu W., M. Whitaker K., R. Kittilstved K., R. Gamelin D.. Stable photogenerated carriers in magnetic semiconductor nanocrystals. J. Am. Chem. Soc., 2006, 128(12): 3910
https://doi.org/10.1021/ja060488p
95 Wang J., Wang L., Yu S., Ding T., Xiang D., Wu K.. Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots. Nat. Commun., 2021, 12(1): 550
https://doi.org/10.1038/s41467-020-20835-4
96 Li H., Liu H., Zhou L., Wu X., Pan Y., Ji W., Zheng B., Zhang Q., Zhuang X., Zhu X., Wang X., Duan X., Pan A.. Strain-tuning atomic substitution in two-dimensional atomic crystals. ACS Nano, 2018, 12(5): 4853
https://doi.org/10.1021/acsnano.8b01646
97 Liu X., Wu J., Yu W., Chen L., Huang Z., Jiang H., He J., Liu Q., Lu Y., Zhu D., Liu W., Cao P., Han S., Xiong X., Xu W., P. Ao J., W. Ang K., He Z.. Monolayer WxMo1−xS2 grown by atmospheric pressure chemical vapor deposition: Bandgap engineering and field effect transistors. Adv. Funct. Mater., 2017, 27(13): 1606469
https://doi.org/10.1002/adfm.201606469
98 Zhou J., Lin J., Sims H., Jiang C., Cong C., A. Brehm J., Zhang Z., Niu L., Chen Y., Zhou Y., Wang Y., Liu F., Zhu C., Yu T., Suenaga K., Mishra R., T. Pantelides S., G. Zhu Z., Gao W., Liu Z., Zhou W.. Synthesis of co‐doped MoS2 monolayers with enhanced valley splitting. Adv. Mater., 2020, 32(11): 1906536
https://doi.org/10.1002/adma.201906536
99 Wang S., Rong Y., Fan Y., Pacios M., Bhaskaran H., He K., H. Warner J.. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater., 2014, 26(22): 6371
https://doi.org/10.1021/cm5025662
100 Huang H., Zha J., Li S., Tan C.. Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications. Chin. Chem. Lett., 2022, 33(1): 163
https://doi.org/10.1016/j.cclet.2021.06.004
101 Duan X., Wang C., Fan Z., Hao G., Kou L., Halim U., Li H., Wu X., Wang Y., Jiang J., Pan A., Huang Y., Yu R., Duan X.. Synthesis of WS2xSe2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett., 2016, 16(1): 264
https://doi.org/10.1021/acs.nanolett.5b03662
102 Lai Z., He Q., H. Tran T., Repaka D., D. Zhou D., Sun Y., Xi S., Li Y., Chaturvedi A., Tan C., Chen B., H. Nam G., Li B., Ling C., Zhai W., Shi Z., Hu D., Sharma V., Hu Z., Chen Y., Zhang Z., Yu Y., Renshaw Wang X., V. Ramanujan R., Ma Y., Hippalgaonkar K., Zhang H.. Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nat. Mater., 2021, 20(8): 1113
https://doi.org/10.1038/s41563-021-00971-y
103 Wen W., Zhu Y., Liu X., P. Hsu H., Fei Z., Chen Y., Wang X., Zhang M., H. Lin K., S. Huang F., P. Wang Y., S. Huang Y., H. Ho C., H. Tan P., Jin C., Xie L.. Anisotropic spectroscopy and electrical properties of 2D ReS2(1–x)Se2x alloys with distorted 1T structure. Small, 2017, 13(12): 1603788
https://doi.org/10.1002/smll.201603788
104 Wang D., Zhang X., Guo G., Gao S., Li X., Meng J., Yin Z., Liu H., Gao M., Cheng L., You J., Wang R.. Large‐area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater., 2018, 30(44): 1803285
https://doi.org/10.1002/adma.201803285
105 Susarla S., Kutana A., A. Hachtel J., Kochat V., Apte A., Vajtai R., C. Idrobo J., I. Yakobson B., S. Tiwary C., M. Ajayan P.. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater., 2017, 29(35): 1702457
https://doi.org/10.1002/adma.201702457
106 Susarla S., A. Hachtel J., Yang X., Kutana A., Apte A., Jin Z., Vajtai R., C. Idrobo J., Lou J., I. Yakobson B., S. Tiwary C., M. Ajayan P.. Thermally induced 2D alloy-heterostructure transformation in quaternary alloys. Adv. Mater., 2018, 30(45): 1804218
https://doi.org/10.1002/adma.201804218
107 Zhang X., Nan H., Xiao S., Wan X., Gu X., Du A., Ni Z., K. Ostrikov K.. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nat. Commun., 2019, 10(1): 598
https://doi.org/10.1038/s41467-019-08468-8
108 Shi Y.Zhou W.Y. Lu A.Fang W.H. Lee Y. L. Hsu A.M. Kim S.K. Kim K.Y. Yang H.J. Li L. C. Idrobo J.Kong J., van der Waals epitaxy of MoS2 layers using graphene as growth templates, Nano Lett. 12(6), 2784 (2012)
109 Li M., Zhu Y., Li T., Lin Y., Cai H., Li S., Ding H., Pan N., Wang X.. One-step CVD fabrication and optoelectronic properties of SnS2/SnS vertical heterostructures. Inorg. Chem. Front., 2018, 5(8): 1828
https://doi.org/10.1039/C8QI00251G
110 Fu Q., Wang X., Zhou J., Xia J., Zeng Q., Lv D., Zhu C., Wang X., Shen Y., Li X., Hua Y., Liu F., Shen Z., Jin C., Liu Z.. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater., 2018, 30(12): 4001
https://doi.org/10.1021/acs.chemmater.7b05117
111 Zhao L., Jia J., Yang Z., Yu J., Wang A., Sang Y., Zhou W., Liu H.. One-step synthesis of CdS nanoparticles/MoS2 nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H2 evolution. Appl. Catal. B, 2017, 210: 290
https://doi.org/10.1016/j.apcatb.2017.04.003
112 Ai R., Guan X., Li J., Yao K., Chen P., Zhang Z., Duan X., Duan X., Growth of single-crystalline cadmium iodide nanoplates, CdI2/MoS2 (WS2. WSe2) van der Waals heterostructures, and patterned arrays. ACS Nano, 2017, 11(3): 3413
https://doi.org/10.1021/acsnano.7b01507
113 Shimazaki Y., Schwartz I., Watanabe K., Taniguchi T., Kroner M., Imamoğlu A.. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 2020, 580(7804): 472
https://doi.org/10.1038/s41586-020-2191-2
114 Cao Y., Fatemi V., Demir A., Fang S., L. Tomarken S., Y. Luo J., D. Sanchez-Yamagishi J., Watanabe K., Taniguchi T., Kaxiras E., C. Ashoori R., Jarillo-Herrero P.. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
https://doi.org/10.1038/nature26154
115 Cao Y., Fatemi V., Fang S., Watanabe K., Taniguchi T., Kaxiras E., Jarillo-Herrero P.. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
116 Chen G., Jiang L., Wu S., Lyu B., Li H., L. Chittari B., Watanabe K., Taniguchi T., Shi Z., Jung J., Zhang Y., Wang F.. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237
https://doi.org/10.1038/s41567-018-0387-2
117 Chen G., L. Sharpe A., Gallagher P., T. Rosen I., J. Fox E., Jiang L., Lyu B., Li H., Watanabe K., Taniguchi T., Jung J., Shi Z., Goldhaber-Gordon D., Zhang Y., Wang F.. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572(7768): 215
https://doi.org/10.1038/s41586-019-1393-y
118 C. Regan E., Wang D., Jin C., I. Bakti Utama M., Gao B., Wei X., Zhao S., Zhao W., Zhang Z., Yumigeta K., Blei M., D. Carlström J., Watanabe K., Taniguchi T., Tongay S., Crommie M., Zettl A., Wang F.. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 359
https://doi.org/10.1038/s41586-020-2092-4
119 S. Arora H., Polski R., Zhang Y., Thomson A., Choi Y., Kim H., Lin Z., Z. Wilson I., Xu X., H. Chu J., Watanabe K., Taniguchi T., Alicea J., Nadj-Perge S.. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature, 2020, 583(7816): 379
https://doi.org/10.1038/s41586-020-2473-8
120 Jin C., C. Regan E., Yan A., Iqbal Bakti Utama M., Wang D., Zhao S., Qin Y., Yang S., Zheng Z., Shi S., Watanabe K., Taniguchi T., Tongay S., Zettl A., Wang F.. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76
https://doi.org/10.1038/s41586-019-0976-y
121 Tang Y., Li L., Li T., Xu Y., Liu S., Barmak K., Watanabe K., Taniguchi T., H. MacDonald A., Shan J., F. Mak K.. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 353
https://doi.org/10.1038/s41586-020-2085-3
122 Wu F., Lovorn T., Tutuc E., H. MacDonald A.. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett., 2018, 121(2): 026402
https://doi.org/10.1103/PhysRevLett.121.026402
123 Q. Zhang X., H. Lin C., W. Tseng Y., H. Huang K., H. Lee Y.. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett., 2015, 15(1): 410
https://doi.org/10.1021/nl503744f
124 Goossens S., Navickaite G., Monasterio C., Gupta S., J. Piqueras J., Pérez R., Burwell G., Nikitskiy I., Lasanta T., Galán T., Puma E., Centeno A., Pesquera A., Zurutuza A., Konstantatos G., Koppens F.. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics, 2017, 11(6): 366
https://doi.org/10.1038/nphoton.2017.75
125 Duan X., Wang C., C. Shaw J., Cheng R., Chen Y., Li H., Wu X., Tang Y., Zhang Q., Pan A., Jiang J., Yu R., Huang Y., Duan X.. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol., 2014, 9(12): 1024
https://doi.org/10.1038/nnano.2014.222
126 Shao G., Lu Y., Hong J., X. Xue X., Huang J., Xu Z., Lu X., Jin Y., Liu X., Li H., Hu S., Suenaga K., Han Z., Jiang Y., Li S., Feng Y., Pan A., C. Lin Y., Cao Y., Liu S.. Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. (Weinh.), 2020, 7(24): 2002172
https://doi.org/10.1002/advs.202002172
127 Zhang X., Jin Z., Wang L., A. Hachtel J., Villarreal E., Wang Z., Ha T., Nakanishi Y., S. Tiwary C., Lai J., Dong L., Yang J., Vajtai R., Ringe E., C. Idrobo J., I. Yakobson B., Lou J., Gambin V., Koltun R., M. Ajayan P.. Low contact barrier in 2H/1T′ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces, 2019, 11(13): 12777
https://doi.org/10.1021/acsami.9b00306
128 Ye K., X. Liu L., J. Liu Y., M. Nie A., Zhai K., Y. Xiang J., C. Wang B., S. Wen F., P. Mu C., S. Zhao Z., J. Gong Y., Y. Liu Z., J. Tian Y.. Lateral bilayer MoS2-WS2 heterostructure photodetectors with high responsivity and detectivity. Adv. Opt. Mater., 2019, 7(20): 1900815
https://doi.org/10.1002/adom.201900815
129 D. Yoo Y., P. Degregorio Z., E. Johns J.. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc., 2015, 137(45): 14281
https://doi.org/10.1021/jacs.5b06643
130 Zhang Z., Huang Z., Li J., Wang D., Lin Y., Yang X., Liu H., Liu S., Wang Y., Li B., Duan X., Duan X.. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol., 2022, 17(5): 493
https://doi.org/10.1038/s41565-022-01106-3
131 Bogaert K., Liu S., Chesin J., Titow D., Gradecak S., Garaj S.. Diffusion-mediated synthesis of MoS2/WS2 lateral heterostructures. Nano Lett., 2016, 16(8): 5129
https://doi.org/10.1021/acs.nanolett.6b02057
132 L. Li H., P. Wu X., J. Liu H., Y. Zheng B., L. Zhang Q., L. Zhu X., We Z., J. Zhuang X., Zhou H., X. Tang W., F. Duan X., L. Pan A.. Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano, 2017, 11(1): 961
https://doi.org/10.1021/acsnano.6b07580
133 F. Li X., W. Lin M., H. Lin J., Huang B., A. Puretzky A., Ma C., Wang K., Zhou W., T. Pantelides S., F. Chi M., Kravchenko I., Fowlkes J., M. Rouleau C., B. Geohegan D., Xiao K.. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv., 2016, 2(4): e1501882
https://doi.org/10.1126/sciadv.1501882
134 L. Shao G., Z. Lu Y., H. Hong J., X. Xue X., Q. Huang J., Y. Xu Z., C. Lu X., Y. Jin Y., Liu X., M. Li H., Hu S., Suenaga K., Han Z., Jiang Y., S. Li S., X. Feng Y., L. Pan A., C. Lin Y., Cao Y., Liu S.. Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. (Weinh.), 2020, 7(24): 2002172
https://doi.org/10.1002/advs.202002172
135 L. Tsai M., Y. Li M., R. D. Retamal J., T. Lam K., C. Lin Y., Suenaga K., J. Chen L., Liang G., J. Li L., H. He J.. Single atomically sharp lateral monolayer p−n heterojunction solar cells with extraordinarily high power conversion efficiency. Adv. Mater., 2017, 29(32): 1701168
https://doi.org/10.1002/adma.201701168
136 K. Sahoo P., Memaran S., Xin Y., Balicas L., R. Gutiérrez H.. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature, 2018, 553(7686): 63
https://doi.org/10.1038/nature25155
137 Zhou Z., Zhang Y., Zhang X., Niu X., Wu G., Wang J.. Suppressing photoexcited electron–hole recombination in MoSe2/WSe2 lateral heterostructures via interface-coupled state engineering: A time-domain ab initio study. J. Mater. Chem. A, 2020, 8(39): 20621
https://doi.org/10.1039/D0TA06626E
138 Liu Y., Duan X., J. Shin H., Park S., Huang Y., Duan X.. Promises and prospects of two-dimensional transistors. Nature, 2021, 591(7848): 43
https://doi.org/10.1038/s41586-021-03339-z
139 Cheng L., Liu Y.. What limits the intrinsic mobility of electrons and holes in two dimensional metal dichalcogenides. J. Am. Chem. Soc., 2018, 140(51): 17895
https://doi.org/10.1021/jacs.8b07871
140 K. Pandey S., Alsalman H., G. Azadani J., Izquierdo N., Low T., A. Campbell S.. Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown by chemical vapor deposition. Nanoscale, 2018, 10(45): 21374
https://doi.org/10.1039/C8NR07070A
141 S. Han S., H. Kim J., Noh C., H. Kim J., Ji E., Kwon J., M. Yu S., J. Ko T., Okogbue E., H. Oh K., S. Chung H., J. Jung Y., H. Lee G., Jung Y.. Horizontal-to-vertical transition of 2D layer orientation in low-temperature chemical vapor deposition-grown PtSe2 and its influences on electrical properties and device applications. ACS Appl. Mater. Interfaces, 2019, 11(14): 13598
https://doi.org/10.1021/acsami.9b01078
142 Gu Y., Cai H., Dong J., Yu Y., N. Hoffman A., Liu C., D. Oyedele A., C. Lin Y., Ge Z., A. Puretzky A., Duscher G., F. Chisholm M., D. Rack P., M. Rouleau C., Gai Z., Meng X., Ding F., B. Geohegan D., Xiao K.. Two‐dimensional palladium diselenide with strong in‐plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater., 2020, 32(19): 1906238
https://doi.org/10.1002/adma.201906238
143 Wu J., Qiu C., Fu H., Chen S., Zhang C., Dou Z., Tan C., Tu T., Li T., Zhang Y., Zhang Z., M. Peng L., Gao P., Yan B., Peng H.. Low residual carrier concentration and high mobility in 2D semiconducting Bi2O2Se. Nano Lett., 2019, 19(1): 197
https://doi.org/10.1021/acs.nanolett.8b03696
144 Kang P., Michaud-Rioux V., Kong X., Yu G., Guo H.. Calculated carrier mobility of h-BN/γ-InSe/h-BN van der Waals heterostructures. 2D Mater., 2017, 4(4): 045014
https://doi.org/10.1088/2053-1583/aa8763/meta
145 Xie L., Liao M., Wang S., Yu H., Du L., Tang J., Zhao J., Zhang J., Chen P., Lu X., Wang G., Xie G., Yang R., Shi D., Zhang G.. Graphene‐contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater., 2017, 29(37): 1702522
https://doi.org/10.1002/adma.201702522
146 Nourbakhsh A., Zubair A., N. Sajjad R., Tavakkoli K. G A., Chen W., Fang S., Ling X., Kong J., S. Dresselhaus M., Kaxiras E., K. Berggren K., Antoniadis D., Palacios T.. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett., 2016, 16(12): 7798
https://doi.org/10.1021/acs.nanolett.6b03999
147 Zou X., Liu L., Xu J., Wang H., M. Tang W.. Few-layered MoS2 field-effect transistors with a vertical channel of sub-10 nm. ACS Appl. Mater. Interfaces, 2020, 12(29): 32943
https://doi.org/10.1021/acsami.0c09060
148 Zhang H., Shi B., Xu L., Yan J., Zhao W., Zhang Z., Zhang Z., Lu J.. Sub-5 nm monolayer MoS2 transistors toward low-power devices. ACS Appl. Electron. Mater., 2021, 3(4): 1560
https://doi.org/10.1021/acsaelm.0c00840
149 Wu F., Tian H., Shen Y., Hou Z., Ren J., Gou G., Sun Y., Yang Y., L. Ren T.. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022, 603(7900): 259
https://doi.org/10.1038/s41586-021-04323-3
150 Daus A., Vaziri S., Chen V., Köroğlu Ç., W. Grady R., S. Bailey C., R. Lee H., Schauble K., Brenner K., Pop E.. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron., 2021, 4(7): 495
https://doi.org/10.1038/s41928-021-00598-6
151 Zhang Q., F. Wang X., H. Shen S., Lu Q., Liu X., Li H., Zheng J., P. Yu C., Zhong X., Gu L., L. Ren T., Jiao L.. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron., 2019, 2(4): 164
https://doi.org/10.1038/s41928-019-0233-2
152 Q. Fan Z., W. Jiang X., Chen J., W. Luo J.. Improving performances of in-plane transition-metal dichalcogenide Schottky barrier field-effect transistors. ACS Appl. Mater. Interfaces, 2018, 10(22): 19271
https://doi.org/10.1021/acsami.8b04860
153 H. Chiu M., L. Tang H., C. Tseng C., Han Y., Aljarb A., K. Huang J., Wan Y., H. Fu J., Zhang X., H. Chang W., A. Muller D., Takenobu T., Tung V., J. Li L.. Metal‐guided selective growth of 2D materials: Demonstration of a bottom‐up CMOS inverter. Adv. Mater., 2019, 31(18): 1900861
https://doi.org/10.1002/adma.201900861
154 P. H. Hu V., W. Su C., W. Lee Y., Y. Ho T., C. Cheng C., C. Chen T., Y. T. Hung T., F. Li J., G. Chen Y., J. Li L.. Energy-efficient monolithic 3-D SRAM cell with BEOL MoS2 FETs for SoC scaling. IEEE Trans. Electron Dev., 2020, 67(10): 4216
https://doi.org/10.1109/TED.2020.3018099
155 P. H. Hu V.W. Su C.C. Yu C.J. Liu C.Y. Weng C., in: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 (IEEE)
156 S. Pang C.Thakuria N.K. Gupta S.Chen Z., in: 2018 IEEE International Electron Devices Meeting (IEDM), 22.22. 21−22.22. 24 (IEEE)
157 Navarro C., Karg S., Marquez C., Navarro S., Convertino C., Zota C., Czornomaz L., Gamiz F.. Capacitor-less dynamic random access memory based on a III–V transistor with a gate length of 14 nm. Nat. Electron., 2019, 2(9): 412
https://doi.org/10.1038/s41928-019-0282-6
158 Sebastian A., Le Gallo M., Khaddam-Aljameh R., Eleftheriou E.. Memory devices and applications for in-memory computing. Nat. Nanotechnol., 2020, 15(7): 529
https://doi.org/10.1038/s41565-020-0655-z
159 Wang Y., Tang H., Xie Y., Chen X., Ma S., Sun Z., Sun Q., Chen L., Zhu H., Wan J., Xu Z., W. Zhang D., Zhou P., Bao W.. An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun., 2021, 12(1): 3347
https://doi.org/10.1038/s41467-021-23719-3
160 Wang S.Liu X.Zhou P., The road for 2D semiconductors in the silicon age, Adv. Mater. 34(48), 2106886 (2021)
161 Yoshida E.Tanaka T., A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory, IEEE Trans. Electron Dev. 53(4), 692 (2006)
162 Migliato Marega G., Zhao Y., Avsar A., Wang Z., Tripathi M., Radenovic A., Kis A.. Logic-in-memory based on an atomically thin semiconductor. Nature, 2020, 587(7832): 72
https://doi.org/10.1038/s41586-020-2861-0
163 Di Bartolomeo A., Genovese L., Giubileo F., Iemmo L., Luongo G., Foller T., Schleberger M.. Hysteresis in the transfer characteristics of MoS2 transistors. 2D Mater., 2017, 5(1): 015014
https://doi.org/10.1088/2053-1583/aa91a7
164 Liu T., Xiang D., Zheng Y., Wang Y., Wang X., Wang L., He J., Liu L., Chen W.. Nonvolatile and programmable photodoping in MoTe2 for photoresist‐free complementary electronic devices. Adv. Mater., 2018, 30(52): 1804470
https://doi.org/10.1002/adma.201804470
165 Tang K., Wang Y., Gong C., Yin C., Zhang M., Wang X., Xiong J.. Electronic and photoelectronic memristors based on 2D materials. Adv. Electron. Mater., 2022, 8(4): 2101099
https://doi.org/10.1002/aelm.202101099
166 G. Sarwat S., Kersting B., Moraitis T., P. Jonnalagadda V., Sebastian A.. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat. Nanotechnol., 2022, 17(5): 507
https://doi.org/10.1038/s41565-022-01095-3
167 K. Sangwan V., S. Lee H., Bergeron H., Balla I., E. Beck M., S. Chen K., C. Hersam M.. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 2018, 554(7693): 500
https://doi.org/10.1038/nature25747
168 Xu R., Jang H., H. Lee M., Amanov D., Cho Y., Kim H., Park S., Shin H., Ham D.. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett., 2019, 19(4): 2411
https://doi.org/10.1021/acs.nanolett.8b05140
169 Karmakar A., Al-Mahboob A., E. Petoukhoff C., Kravchyna O., S. Chan N., Taniguchi T., Watanabe K., M. Dani K.. Dominating interlayer resonant energy transfer in type-II 2D heterostructure. ACS Nano, 2022, 16(3): 3861
https://doi.org/10.1021/acsnano.1c08798
170 A. Zhang K., N. Zhang T., H. Cheng G., X. Li T., X. Wang S., Wei W., H. Zhou X., W. Yu W., Sun Y., Wang P., Zhang D., G. Zeng C., J. Wang X., D. Hu W., J. Fan H., Z. Shen G., Chen X., F. Duan X., Chang K., Dai N.. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano, 2016, 10(3): 3852
https://doi.org/10.1021/acsnano.6b00980
171 Xue H., Y. Dai Y., Kim W., D. Wang Y., Y. Bai X., Qi M., Halonen K., Lipsanen H., P. Sun Z.. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure. Nanoscale, 2019, 11(7): 3240
https://doi.org/10.1039/C8NR09248F
172 J. Zhou C., Raju S., Li B., Chan M., Chai Y., Y. Yang C.. Self-driven metal−semiconductor−metal WSe2 photodetector with asymmetric contact geometries. Adv. Funct. Mater., 2018, 28(45): 1802954
https://doi.org/10.1002/adfm.201802954
173 Yuan J., Sun T., X. Hu Z., Z. Yu W., L. Ma W., Zhang K., Q. Sun B., P. Lau S., L. Bao Q., H. Lin S., J. Li S.. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces, 2018, 10(47): 40614
https://doi.org/10.1021/acsami.8b13620
174 Wu D., E. Wang Y., H. Zeng L., Jia C., P. Wu E., T. Xu T., F. Shi Z., T. Tian Y., J. Li X., H. Tsang Y.. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics, 2018, 5(9): 3820
https://doi.org/10.1021/acsphotonics.8b00853
175 Li Y., Fu J., Y. Mao X., Chen C., Liu H., Gong M., L. Zeng H.. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
https://doi.org/10.1038/s41467-021-26200-3
176 M. Fridkin V.. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep., 2001, 46(4): 654
https://doi.org/10.1134/1.1387133
177 M. Cook A., M. Fregoso B., de Juan F., Coh S., E. Moore J.. Design principles for shift current photovoltaics. Nat. Commun., 2017, 8(1): 14176
https://doi.org/10.1038/ncomms14176
178 J. Zhang Y., Ideue T., Onga M., Qin F., Suzuki R., Zak A., Tenne R., H. Smet J., Iwasa Y.. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature, 2019, 570(7761): 349
https://doi.org/10.1038/s41586-019-1303-3
179 Akamatsu T.Ideue T.Zhou L.Dong Y.Kitamura S. Yoshii M.Y. Yang D.Onga M.Nakagawa Y.Watanabe K. Taniguchi T.Laurienzo J.W. Huang J.L. Ye Z.Morimoto T. T. Yuan H.Iwasa Y., A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
180 Jiang J., Z. Chen Z., Hu Y., Xiang Y., F. Zhang L., P. Wang Y., C. Wang G., Shi J.. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol., 2021, 16(8): 894
https://doi.org/10.1038/s41565-021-00919-y
181 S. Wang Q., Wen Y., M. Cai K., Q. Cheng R., Yin L., Zhang Y., Li J., X. Wang Z., Wang F., M. Wang F., A. Shifa T., Jiang C., Yang H., He J.. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv., 2018, 4(4): eaap7916
https://doi.org/10.1126/sciadv.aap7916
182 Yin L., He P., Q. Cheng R., Wang F., M. Wang F., X. Wang Z., Wen Y., He J.. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices. Nat. Commun., 2019, 10(1): 4133
https://doi.org/10.1038/s41467-019-12200-x
183 O’Neil M., Marohn J., McLendon G.. Dynamics of electron-hole pair recombination in semiconductor clusters. J. Phys. Chem., 1990, 94(10): 4356
https://doi.org/10.1021/j100373a089
184 C. Jiang Y., P. He A., Zhao R., Chen Y., Z. Liu G., Lu H., L. Zhang J., Zhang Q., Wang Z., Zhao C., S. Long M., D. Hu W., Wang L., P. Qi Y., Gao J., Y. Wu Q., T. Ge X., Q. Ning J., T. S. Wee A., W. Qiu C.. Coexistence of photoelectric conversion and storage in van der Waals heterojunctions. Phys. Rev. Lett., 2021, 127(21): 217401
https://doi.org/10.1103/PhysRevLett.127.217401
185 Junquera J., Ghosez P.. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931): 506
https://doi.org/10.1038/nature01501
186 D. Fong D., B. Stephenson G., K. Streiffer S., A. Eastman J., Auciello O., H. Fuoss P., Thompson C.. Ferroelectricity in ultrathin perovskite films. Science, 2004, 304(5677): 1650
https://doi.org/10.1126/science.1098252
187 N. Shirodkar S., V. Waghmare U.. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett., 2014, 112(15): 157601
https://doi.org/10.1103/PhysRevLett.112.157601
188 G. Yuan S., Luo X., L. Chan H., C. Xiao C., W. Dai Y., H. Xie M., H. Hao J.. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
https://doi.org/10.1038/s41467-019-09669-x
189 Y. Fei Z., J. Zhao W., A. Palomaki T., S. Sun B., K. Miller M., Y. Zhao Z., Q. Yan J., D. Xu X., H. Cobden D.. Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560(7718): 336
https://doi.org/10.1038/s41586-018-0336-3
190 H. Huang W., Wang F., Yin L., Q. Cheng R., X. Wang Z., G. Sendeku M., J. Wang J., N. Li N., Y. Yao Y., He J.. Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater., 2020, 32(14): 1908040
https://doi.org/10.1002/adma.201908040
191 Zhang Q., Xiong H., F. Wang Q., P. Xu L., H. Deng M., Z. Zhang J., Fuchs D., W. Li W., Y. Shang L., W. Li Y., G. Hu Z., H. Chu J.. Tunable multi-bit nonvolatile memory based on ferroelectric field-effect transistors. Adv. Electron. Mater., 2022, 8(5): 2101189
https://doi.org/10.1002/aelm.202101189
192 Jo J., Shin C.. Negative capacitance field effect transistor with hysteresis-free sub-60-mV/decade switching. IEEE Electron Device Lett., 2016, 37(3): 245
https://doi.org/10.1109/LED.2016.2523681
193 Q. Liu X., R. Liang R., Y. Gao G., F. Pan C., S. Jiang C., Xu Q., Luo J., M. Zou X., Y. Yang Z., Liao L., L. Wang Z.. MoS2 negative-capacitance field-effect transistors with subthreshold swing below the physics limit. Adv. Mater., 2018, 30(28): 1800932
https://doi.org/10.1002/adma.201800932
194 Wang F., Liu J., H. Huang W., Q. Cheng R., Yin L., J. Wang J., G. Sendeku M., Zhang Y., Y. Zhan X., X. Shan C., X. Wang Z., He J.. Subthermionic field-effect transistors with sub-5 nm gate lengths based on van der Waals ferroelectric heterostructures. Sci. Bull. (Beijing), 2020, 65(17): 1444
https://doi.org/10.1016/j.scib.2020.04.019
195 Wang Y., Y. Bai X., W. Chu J., B. Wang H., F. Rao G., Q. Pan X., C. Du X., Hu K., P. Wang X., H. Gong C., J. Yin C., Yang C., Y. Yan C., Y. Wu C., Shuai Y., F. Wang X., Liao M., Xiong J.. Record-low Subthreshold-Swing negative-capacitance 2D field-effect transistors. Adv. Mater., 2020, 32(46): 2005353
https://doi.org/10.1002/adma.202005353
196 G. Qiu C., Liu F., Xu L., Deng B., M. Xiao M., Si J., Lin L., Y. Zhang Z., Wang J., Guo H., L. Peng H., M. Peng L.. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 2018, 361(6400): 387
https://doi.org/10.1126/science.aap9195
197 Weston A., G. Castanon E., Enaldiev V., Ferreira F., Bhattacharjee S., G. Xu S., Corte-Leon H., F. Wu Z., Clark N., Summerfield A., Hashimoto T., Z. Gao Y., D. Wang W., Hamer M., Read H., Fumagalli L., V. Kretinin A., J. Haigh S., Kazakova O., K. Geim A., I. Fal’ko V., Gorbachev R.. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol., 2022, 17(4): 390
https://doi.org/10.1038/s41565-022-01072-w
198 Wen Z., Li C., Wu D., D. Li A., B. Ming N.. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater., 2013, 12(7): 617
https://doi.org/10.1038/nmat3649
199 Li T., Sharma P., Lipatov A., Lee H., W. Lee J., Y. Zhuravlev M., R. Paudel T., A. Genenko Y., B. Eom C., Y. Tsymbal E., Sinitskii A., Gruverman A.. Polarization-mediated modulation of electronic and transport properties of hybrid MoS2−BaTiO3−SrRuO3 tunnel junctions. Nano Lett., 2017, 17(2): 922
https://doi.org/10.1021/acs.nanolett.6b04247
200 Chaudhary P., Buragohain P., Kozodaev M., Zarubin S., Mikheev V., Chouprik A., Lipatov A., Sinitskii A., Zenkevich A., Gruverman A.. Electroresistance effect in MoS2−Hf0.5Zr0.5O2 heterojunctions. Appl. Phys. Lett., 2021, 118(8): 083106
https://doi.org/10.1063/5.0035306
201 H. Park M., H. Lee Y., J. Kim H., J. Kim Y., Moon T., D. Kim K., Muller J., Kersch A., Schroeder U., Mikolajick T., S. Hwang C.. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater., 2015, 27(11): 1811
https://doi.org/10.1002/adma.201404531
202 Chernikova A., Kozodaev M., Markeev A., Negrov D., Spiridonov M., Zarubin S., Bak O., Buragohain P., Lu H., Suvorova E., Gruverman A., Zenkevich A.. Ultrathin Hf0.5Zr0.5O2 ferroelectric films on Si. ACS Appl. Mater. Interfaces, 2016, 8(11): 7232
https://doi.org/10.1021/acsami.5b11653
203 Ambriz-Vargas F.Kolhatkar G.Broyer M. Hadj-Youssef A.Nouar R.Sarkissian A.Thomas R.Gomez-Yanez C.A. Gauthier M.Ruediger A., A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction, ACS Appl. Mater. Interfaces 9(15), 13262 (2017)
204 Chouprik A., Chernikova A., Markeev A., Mikheev V., Negrov D., Spiridonov M., Zarubin S., Zenkevich A.. Electron transport across ultrathin ferroelectric Hf0.5Zr0.5O2 films on Si. Microelectron. Eng., 2017, 178: 250
https://doi.org/10.1016/j.mee.2017.05.028
205 Ryu H., N. Wu H., B. Rao F., J. Zhu W.. Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing. Sci. Rep., 2019, 9(1): 20383
https://doi.org/10.1038/s41598-019-56816-x
206 Xiao J., Wang Y., Wang H., D. Pemmaraju C., Q. Wang S., Muscher P., J. Sie E., M. Nyby C., P. Devereaux T., F. Qian X., Zhang X., M. Lindenberg A.. Berry curvature memory through electrically driven stacking transitions. Nat. Phys., 2020, 16(10): 1028
https://doi.org/10.1038/s41567-020-0947-0
207 R. Wang X., Yasuda K., Zhang Y., Liu S., Watanabe K., Taniguchi T., Hone J., Fu L., Jarillo-Herrero P.. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol., 2022, 17(4): 367
https://doi.org/10.1038/s41565-021-01059-z
208 Datta S., Das B.. Electronic analog of the electrooptic modulator. Appl. Phys. Lett., 1990, 56(7): 665
https://doi.org/10.1063/1.102730
209 Hossain M., Qin B., Li B., D. Duan X.. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today, 2022, 42: 101338
https://doi.org/10.1016/j.nantod.2021.101338
210 Dankert A., P. Dash S.. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun., 2017, 8(1): 16093
https://doi.org/10.1038/ncomms16093
211 A. Benítez L., F. Sierra J., Savero Torres W., Arrighi A., Bonell F., V. Costache M., O. Valenzuela S.. Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature. Nat. Phys., 2018, 14(3): 303
https://doi.org/10.1038/s41567-017-0019-2
212 J. Jedema F., T. Filip A., J. van Wees B.. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature, 2001, 410(6826): 345
https://doi.org/10.1038/35066533
213 O. Valenzuela S.. Nonlocal electronic spin detection, spin accumulation and the spin Hall effect. Int. J. Mod. Phys. B, 2009, 23(11): 2413
https://doi.org/10.1142/S021797920905290X
214 Raes B., W. Cummings A., Bonell F., V. Costache M., F. Sierra J., Roche S., O. Valenzuela S.. Spin precession in anisotropic media. Phys. Rev. B, 2017, 95(8): 085403
https://doi.org/10.1103/PhysRevB.95.085403
215 W. Jiang S., Z. Li L., F. Wang Z., Shan J., F. Mak K.. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron., 2019, 2(4): 159
https://doi.org/10.1038/s41928-019-0232-3
216 L. Lin H., G. Yan F., Hu C., S. Lv Q., K. Zhu W., A. Wang Z., M. Wei Z., Chang K., Y. Wang K.. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces, 2020, 12(39): 43921
https://doi.org/10.1021/acsami.0c12483
217 Yang W., Cao Y., C. Han J., Y. Lin X., H. Wang X., D. Wei G., Lv C., Bournel A., S. Zhao W.. Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions. Nanoscale, 2021, 13(2): 862
https://doi.org/10.1039/D0NR07290G
218 Zollner K., D. Petrovic M., Dolui K., Plechac P., K. Nikolic B., Fabian J.. Scattering-induced and highly tunable by gate damping-like spin−orbit torque in graphene doubly proximitized by two-dimensional magnet Cr2Ge2Te6 and monolayer WS2. Phys. Rev. Res., 2020, 2(4): 043057
https://doi.org/10.1103/PhysRevResearch.2.043057
219 Fiederling R., Keim M., Reuscher G., Ossau W., Schmidt G., Waag A., W. Molenkamp L.. Injection and detection of a spin-polarized current in a light-emitting diode. Nature, 1999, 402(6763): 787
https://doi.org/10.1038/45502
220 Ye Y., Xiao J., L. Wang H., L. Ye Z., Y. Zhu H., Zhao M., Wang Y., H. Zhao J., B. Yin X., Zhang X.. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol., 2016, 11(7): 598
https://doi.org/10.1038/nnano.2016.49
221 Zhong D., L. Seyler K., Y. Linpeng X., P. Wilson N., Taniguchi T., Watanabe K., A. McGuire M., M. C. Fu K., Xiao D., Yao W., D. Xu X.. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol., 2020, 15(3): 187
https://doi.org/10.1038/s41565-019-0629-1
222 Pu J., Takenobu T.. Monolayer transition metal dichalcogenides as light sources. Adv. Mater., 2018, 30(33): 1707627
https://doi.org/10.1002/adma.201707627
223 J. Zhang Y., Oka T., Suzuki R., T. Ye J., Iwasa Y.. Electrically switchable chiral light-emitting transistor. Science, 2014, 344(6185): 725
https://doi.org/10.1126/science.1251329
224 Lee J., F. Wang Z., C. Xie H., F. Mak K., Shan J.. Valley magnetoelectricity in single-layer MoS2. Nat. Mater., 2017, 16(9): 887
https://doi.org/10.1038/nmat4931
225 Son J., H. Kim K., H. Ahn Y., W. Lee H., Lee J.. Strain engineering of the Berry curvature dipole and valley magnetization in monolayer MoS2. Phys. Rev. Lett., 2019, 123(3): 036806
https://doi.org/10.1103/PhysRevLett.123.036806
226 Y. Chen Y., Q. Ma J., Y. Liu Z., Z. Li J., F. Duan X., H. Li D.. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11): 15154
https://doi.org/10.1021/acsnano.0c05343
227 Pu J., J. Zhang W., Matsuoka H., Kobayashi Y., Takaguchi Y., Miyata Y., Matsuda K., Miyauchi Y., Takenobu T.. Room-temperature chiral light-emitting diode based on strained monolayer semiconductors. Adv. Mater., 2021, 33(36): 2100601
https://doi.org/10.1002/adma.202100601
228 R. Schaibley J., Y. Yu H., Clark G., Rivera P., S. Ross J., L. Seyler K., Yao W., D. Xu X.. Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
https://doi.org/10.1038/natrevmats.2016.55
229 Rycerz A., Tworzydlo J., W. J. Beenakker C.. Valley filter and valley valve in graphene. Nat. Phys., 2007, 3(3): 172
https://doi.org/10.1038/nphys547
230 Lee J., F. Mak K., Shan J.. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol., 2016, 11(5): 421
https://doi.org/10.1038/nnano.2015.337
231 H. Jin C., Kim J., I. B. Utama M., C. Regan E., Kleemann H., Cai H., X. Shen Y., J. Shinner M., Sengupta A., Watanabe K., Taniguchi T., Tongay S., Zettl A., Wang F.. Imaging of pure spin-valley diffusion current in WS2−WSe2 heterostructures. Science, 2018, 360(6391): 893
https://doi.org/10.1126/science.aao3503
232 Unuchek D., Ciarrocchi A., Avsar A., Sun Z., Watanabe K., Taniguchi T., Kis A.. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol., 2019, 14(12): 1104
https://doi.org/10.1038/s41565-019-0559-y
233 F. Li L., Shao L., W. Liu X., Y. Gao A., Wang H., J. Zheng B., Z. Hou G., Shehzad K., W. Yu L., Miao F., Shi Y., Xu Y., M. Wang X.. Room-temperature valleytronic transistor. Nat. Nanotechnol., 2020, 15(9): 743
https://doi.org/10.1038/s41565-020-0727-0
234 Y. Jiang C.Rasmita A.Ma H.H. Tan Q.W. Zhang Z. M. Huang Z.Lai S.Z. Wang N.Liu S.Liu X. Yu T.H. Xiong Q. B. Gao W., A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures, Nat. Electron. 5(1), 23 (2021)
235 Ingla-Aynés J., Herling F., Fabian J., E. Hueso L., Casanova F.. Electrical control of valley-Zeeman spin-orbit-coupling-induced spin precession at room temperature. Phys. Rev. Lett., 2021, 127(4): 047202
https://doi.org/10.1103/PhysRevLett.127.047202
236 S. Hossain M., K. Ma M., A. Villegas-Rosales K., J. Chung Y., N. Pfeiffer L., W. West K., W. Baldwin K., Shayegan M.. Spontaneous valley polarization of itinerant electrons. Phys. Rev. Lett., 2021, 127(11): 116601
https://doi.org/10.1103/PhysRevLett.127.116601
237 Huang B., A. McGuire M., F. May A., Xiao D., Jarillo-Herrero P., D. Xu X.. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater., 2020, 19(12): 1276
https://doi.org/10.1038/s41563-020-0791-8
238 Lee J., Heo W., Cha M., Watanabe K., Taniguchi T., Kim J., Cha S., Kim D., H. Jo M., Choi H.. Ultrafast non-excitonic valley Hall effect in MoS2/WTe2 heterobilayers. Nat. Commun., 2021, 12(1): 1635
https://doi.org/10.1038/s41467-021-21013-w
239 K. Luo Y., S. Xu J., C. Zhu T., Z. Wu G., J. McCormick E., B. Zhan W., R. Neupane M., K. Kawakami R.. Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett., 2017, 17(6): 3877
https://doi.org/10.1021/acs.nanolett.7b01393
240 Cha S., Noh M., Kim J., Son J., Bae H., Lee D., Kim H., Lee J., S. Shin H., Sim S., Yang S., Lee S., Shim W., H. Lee C., H. Jo M., S. Kim J., Kim D., Choi H.. Generation, transport and detection of valley-locked spin photocurrent in WSe2-graphene-Bi2Se3 heterostructures. Nat. Nanotechnol., 2018, 13(10): 910
https://doi.org/10.1038/s41565-018-0195-y
241 T. Yuan H., Q. Wang X., Lian B., J. Zhang H., F. Fang X., Shen B., Xu G., Xu Y., C. Zhang S., Y. Hwang H., Cui Y.. Generation and electric control of spin−valley-coupled circular photogalvanic current in WSe2. Nat. Nanotechnol., 2014, 9(10): 851
https://doi.org/10.1038/nnano.2014.183
242 Rasmita A., Y. Jiang C., Ma H., R. Ji Z., Agarwal R., B. Gao W.. Tunable geometric photocurrent in van der Waals heterostructure. Optica, 2020, 7(9): 1204
https://doi.org/10.1364/OPTICA.393381
243 Sattari F., Mirershadi S.. Effect of the strain on spin-valley transport properties in MoS2 superlattice. Sci. Rep., 2021, 11(1): 17617
https://doi.org/10.1038/s41598-021-97189-4
244 N. Miao S., M. Wang T., Huang X., X. Chen D., Lian Z., Wang C., Blei M., Taniguchi T., Watanabe K., Tongay S., H. Wang Z., Xiao D., T. Cui Y., F. Shi S.. Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moire superlattice. Nat. Commun., 2021, 12(1): 3608
https://doi.org/10.1038/s41467-021-23732-6
245 Huang D., Choi J., K. Shih C., Q. Li X.. Excitons in semiconductor moire superlattices. Nat. Nanotechnol., 2022, 17(3): 227
https://doi.org/10.1038/s41565-021-01068-y
246 H. Bao C., Z. Tang P., Sun D., Y. Zhou S.. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys., 2021, 4(1): 33
https://doi.org/10.1038/s42254-021-00388-1
247 P. Wilson N., Yao W., Shan J., D. Xu X.. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383
https://doi.org/10.1038/s41586-021-03979-1
248 Y. Wang Y., P. Li F., Wei W., B. Huang B., Dai Y.. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
https://doi.org/10.1007/s11467-020-0991-3
249 Klimmer S., Ghaebi O., Y. Gan Z., George A., Turchanin A., Cerullo G., Soavi G.. All-optical polarization and amplitude modulation of second-harmonic generation in atomically thin semiconductors. Nat. Photonics, 2021, 15(11): 837
https://doi.org/10.1038/s41566-021-00859-y
250 Wijethunge D., Zhang L., Tang C., Du A.. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
https://doi.org/10.1007/s11467-020-0987-z
251 Yun Q., Li L., Hu Z., Lu Q., Chen B., Zhang H.. Layered transition metal dichalcogenide‐based nanomaterials for electrochemical energy storage. Adv. Mater., 2020, 32(1): 1903826
https://doi.org/10.1002/adma.201903826
252 Cha E., D. Patel M., Park J., Hwang J., Prasad V., Cho K.. MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat. Nanotechnol., 2018, 13(4): 337
https://doi.org/10.1038/s41565-018-0061-y
253 Yang J., R. Mohmad A., Wang Y., Fullon R., Song X., Zhao F., Bozkurt I., Augustin M., J. Santos E., S. Shin H., Zhang W., Voiry D., Y. Jeong H., Chhowalla M.. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater., 2019, 18(12): 1309
https://doi.org/10.1038/s41563-019-0463-8
254 Ouyang Y., Ling C., Chen Q., Wang Z., Shi L., Wang J.. Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater., 2016, 28(12): 4390
https://doi.org/10.1021/acs.chemmater.6b01395
255 He Y., Tang P., Hu Z., He Q., Zhu C., Wang L., Zeng Q., Golani P., Gao G., Fu W., Huang Z., Gao C., Xia J., Wang X., Wang X., Zhu C., M. Ramasse Q., Zhang A., An B., Zhang Y., Martí-Sánchez S., R. Morante J., Wang L., K. Tay B., I. Yakobson B., Trampert A., Zhang H., Wu M., J. Wang Q., Arbiol J., Liu Z.. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun., 2020, 11(1): 57
https://doi.org/10.1038/s41467-019-13631-2
256 Y. Chen W., Jiang X., N. Lai S., Peroulis D., Stanciu L.. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun., 2020, 11(1): 1302
https://doi.org/10.1038/s41467-020-15092-4
257 Su W., Zhang S., Liu C., Tian Q., Liu X., Li K., Lv Y., Liao L., Zou X.. Interlayer transition induced infrared response in ReS2/2D Perovskite van der Waals heterostructure photodetector. Nano Lett., 2022, 22(24): 10192
https://doi.org/10.1021/acs.nanolett.2c04328
258 Wen Y., He P., Yao Y., Zhang Y., Cheng R., Yin L., Li N., Li J., Wang J., Wang Z., Liu C., Fang X., Jiang C., Wei Z., He J.. Bridging the van der Waals interface for advanced optoelectronic devices. Adv. Mater., 2020, 32(7): 1906874
https://doi.org/10.1002/adma.201906874
259 Wen Y., He P., Wang Q., Yao Y., Zhang Y., Hussain S., Wang Z., Cheng R., Yin L., Getaye Sendeku M., Wang F., Jiang C., He J.. Gapless van der Waals heterostructures for infrared optoelectronic devices. ACS Nano, 2019, 13(12): 14519
https://doi.org/10.1021/acsnano.9b08375
260 Wen Y., Yin L., He P., Wang Z., Zhang X., Wang Q., A. Shifa T., Xu K., Wang F., Zhan X., Wang F., Jiang C., He J.. Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS–MoS2 heterostructures with edge contacts. Nano Lett., 2016, 16(10): 6437
https://doi.org/10.1021/acs.nanolett.6b02881
261 Wang Z., Xia H., Wang P., Zhou X., Liu C., Zhang Q., Wang F., Huang M., Chen S., Wu P., Chen Y., Ye J., Huang S., Yan H., Gu L., Miao J., Li T., Chen X., Lu W., Zhou P., Hu W.. Controllable doping in 2D layered materials. Adv. Mater., 2021, 33(48): 2104942
https://doi.org/10.1002/adma.202104942
262 Zhang X., Liu B., Gao L., Yu H., Liu X., Du J., Xiao J., Liu Y., Gu L., Liao Q., Kang Z., Zhang Z., Zhang Y.. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun., 2021, 12(1): 1522
https://doi.org/10.1038/s41467-021-21861-6
263 Wen Y., Liu Z., Zhang Y., Xia C., Zhai B., Zhang X., Zhai G., Shen C., He P., Cheng R., Yin L., Yao Y., Getaye Sendeku M., Wang Z., Ye X., Liu C., Jiang C., Shan C., Long Y., He J.. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett., 2020, 20(5): 3130
https://doi.org/10.1021/acs.nanolett.9b05128
264 Guo Z., Wang L., Han M., Zhao E., Zhu L., Guo W., Tan J., Liu B., Q. Chen X., Lin J.. One-step growth of bilayer 2H–1T′ MoTe2 van der Waals heterostructures with interlayer-coupled resonant phonon vibration. ACS Nano, 2022, 16(7): 11268
https://doi.org/10.1021/acsnano.2c04664
265 Bian M., Zhu L., Wang X., Choi J., V. Chopdekar R., Wei S., Wu L., Huai C., Marga A., Yang Q., C. Li Y., Yao F., Yu T., A. Crooker S., M. Cheng X., F. Sabirianov R., Zhang S., Lin J., Hou Y., Zeng H.. Dative epitaxy of commensurate monocrystalline covalent van der Waals moiré supercrystal. Adv. Mater., 2022, 34(17): 2200117
https://doi.org/10.1002/adma.202200117
266 Zhang L., Wang G., Zhang Y., Cao Z., Wang Y., Cao T., Wang C., Cheng B., Zhang W., Wan X., Lin J., J. Liang S., Miao F.. Tuning electrical conductance in bilayer MoS2 through defect-mediated interlayer chemical bonding. ACS Nano, 2020, 14(8): 10265
https://doi.org/10.1021/acsnano.0c03665
267 Tang L., Xu R., Tan J., Luo Y., Zou J., Zhang Z., Zhang R., Zhao Y., Lin J., Zou X., Liu B., M. Cheng H.. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb‐doping. Adv. Funct. Mater., 2021, 31(5): 2006941
https://doi.org/10.1002/adfm.202006941
268 Zou J., Cai Z., Lai Y., Tan J., Zhang R., Feng S., Wang G., Lin J., Liu B., M. Cheng H.. Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano, 2021, 15(4): 7340
https://doi.org/10.1021/acsnano.1c00596
269 Lv Q., Tan J., Wang Z., Yu L., Liu B., Lin J., Li J., H. Huang Z., Kang F., Lv R.. Femtomolar-level molecular sensing of monolayer tungsten diselenide induced by heteroatom doping with long-term stability. Adv. Funct. Mater., 2022, 32(34): 2200273
https://doi.org/10.1002/adfm.202200273
270 Lin J., Zhou J., Zuluaga S., Yu P., Gu M., Liu Z., T. Pantelides S., Suenaga K.. Anisotropic ordering in 1T′ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium. ACS Nano, 2018, 12(1): 894
https://doi.org/10.1021/acsnano.7b08782
271 Yu P., Lin J., Sun L., L. Le Q., Yu X., Gao G., H. Hsu C., Wu D., R. Chang T., Zeng Q., Liu F., J. Wang Q., T. Jeng H., Lin H., Trampert A., Shen Z., Suenaga K., Liu Z.. Metal-semiconductor phase-transition in WSe2(1−x)Te2x monolayer. Adv. Mater., 2017, 29(4): 1603991
https://doi.org/10.1002/adma.201603991
272 Gong Y., Liu Z., R. Lupini A., Shi G., Lin J., Najmaei S., Lin Z., L. Elías A., Berkdemir A., You G., Terrones H., Terrones M., Vajtai R., T. Pantelides S., J. Pennycook S., Lou J., Zhou W., M. Ajayan P.. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett., 2014, 14(2): 442
https://doi.org/10.1021/nl4032296
273 Cheng M., Yang J., Li X., Li H., Du R., Shi J., He J.. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
https://doi.org/10.1007/s11467-022-1190-1
274 Luo P., Liu C., Lin J., Duan X., Zhang W., Ma C., Lv Y., Zou X., Liu Y., Schwierz F., Qin W., Liao L., He J., Liu X.. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron., 2022, 5(12): 849
https://doi.org/10.1038/s41928-022-00877-w
275 Zhang X., Yu H., Tang W., Wei X., Gao L., Hong M., Liao Q., Kang Z., Zhang Z., Zhang Y.. All‐van‐der-Waals barrier-free contacts for high-mobility transistors. Adv. Mater., 2022, 34(34): 2109521
https://doi.org/10.1002/adma.202109521
276 Zhang X., Kang Z., Gao L., Liu B., Yu H., Liao Q., Zhang Z., Zhang Y.. Molecule-upgraded van der waals contacts for Schottky‐barrier-free electronics. Adv. Mater., 2021, 33(45): 2104935
https://doi.org/10.1002/adma.202104935
277 Huang W., Wang F., Yin L., Cheng R., Wang Z., G. Sendeku M., Wang J., Li N., Yao Y., He J.. Gate‐coupling‐enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater., 2020, 32(14): 1908040
https://doi.org/10.1002/adma.201908040
278 Yang Z., Liao L., Gong F., Wang F., Wang Z., Liu X., Xiao X., Hu W., He J., Duan X.. WSe2/GeSe heterojunction photodiode with giant gate tunability. Nano Energy, 2018, 49: 103
https://doi.org/10.1016/j.nanoen.2018.04.034
279 Cao J., Wang Z., Zhan X., Wang Q., Safdar M., Wang Y., He J.. Vertical SnSe nanorod arrays: From controlled synthesis and growth mechanism to thermistor and photoresistor. Nanotechnology, 2014, 25(10): 105705
https://doi.org/10.1088/0957-4484/25/10/105705
280 Mirza M., Wang J., Wang L., He J., Jiang C.. Response enhancement mechanism of NO2 gas sensing in ultrathin pentacene field-effect transistors. Org. Electron., 2015, 24: 96
https://doi.org/10.1016/j.orgel.2015.05.022
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed