Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 64401   https://doi.org/10.1007/s11467-023-1288-0
  本期目录
On the question of quark confinement in the Abelian U(1) QED gauge interaction
Cheuk-Yin Wong()
Physics Division, Oak Ridge National Laboratory*, Oak Ridge, TN 37831, USA
 全文: PDF(9270 KB)   HTML
Abstract

If we approximate light quarks as massless and apply the Schwinger confinement mechanism to light quarks, we will reach the conclusion that a light quark q and its antiquark q¯ will be confined as a qq¯ boson in the Abelian U(1) QED gauge interaction in (1+1)D, as in an open string. From the work of Coleman, Jackiw, and Susskind, we can infer further that the Schwinger confinement mechanism persists even for massive quarks in (1+1)D. Could such a QED-confined qq¯ one-dimensional open string in (1+1)D be the idealization of a flux tube in the physical world in (3+1)D, similar to the case of QCD-confined qq¯ open string? If so, the QED-confined qq¯ bosons may show up as neutral QED mesons in the mass region of many tens of MeV [Phys. Rev. C 81, 064903 (2010) & J. High Energy Phys. 2020(8), 165 (2020)]. Is it ever possible that a quark and an antiquark be produced and interact in QED alone to form a confined QED meson? Is there any experimental evidence for the existence of a QED meson (or QED mesons)? The observations of the anomalous soft photons, the X17 particle, and the E38 particle suggest that they may bear the experimental evidence for the existence of such QED mesons. Further confirmation and investigations on the X17 and E38 particles will shed definitive light on the question of quark confinement in QED in (3+1)D. Implications of quark confinement in the QED interaction are discussed.

Key wordsquark confinement    QCD interaction    QED interaction    Schwinger model    open string model of mesons    QCD molecular states
收稿日期: 2023-01-14      出版日期: 2023-06-05
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 64401.
Cheuk-Yin Wong. On the question of quark confinement in the Abelian U(1) QED gauge interaction. Front. Phys. , 2023, 18(6): 64401.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1288-0
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/64401
Fig.1  
Fig.2  
Fig.3  
JπI Experimental mass (MeV) Semi-empirical mass formula (MeV) Meson mass in massless quark limit (MeV)
QCDmeson π0 0 1 134.9768±0.0005 134.9 0
η 0 0 547.862±0.017 498.4±39.8 329.7±57.5
η 00 957.78±0.06 948.2±99.6 723.4±126.3
QEDmeson isoscalar 00 17.9±1.5 11.2±1.3
isovector 01 36.4±3.8 33.6±3.8
X17 (1+) 16.70±0.35±0.5
PossibleQEDmesoncandidates X17 (0 ) 16.84±0.16±0.20#
X17 (1 ) 16.86±0.17±0.20
E38 37.38±0.71
E38 40.89±0.91
E38 39.71±0.71
Tab.1  
Particle i JπI Q~qQCD(i) Q~q QCD(i) θp=24.5o Q~qQED(i) Q~qQED(i) θp=24.5o
QCDmeson π0 0 1 0 0 1/2 0.7071
η 0 0 3sin?θ p 0.7182 3cos?θp/6 1.1144
η 00 3 cos?θp 1.576 sin? θp/6 −0.1693
QEDmeson isoscalar (X17) 00 1/(32)
isovector (E38) 01 1/2
Tab.2  
Fig.4  
Fig.5  
Fig.6  
Experiment Collision energy Photon kT Photon/Brem ratio
K+p, CERN, WA27, BEBC (1984) 70 GeV/c kT< 60 MeV/c 4.0 ± 0.8
K+p, CERN, NA22, EHS (1993) 250 GeV/c kT< 40 MeV/c 6.4 ± 1.6
π+p, CERN, NA22, EHS (1997) 250 GeV/c kT< 40 MeV/c 6.9 ± 1.3
πp, CERN, WA83, OMEGA (1997) 280 GeV/c kT< 10 MeV/c 7.9 ± 1.4
π+p, CERN, WA91, OMEGA (2002) 280 GeV/c kT< 20 MeV/c 5.3 ± 0.9
pp, CERN, WA102, OMEGA (2002) 450 GeV/c kT< 20 MeV/c 4.1 ± 0.8
e+ ehadrons, CERN, DELPHI with hadron production (2010) ~91 GeV (CM) kT< 60 MeV/c 4.0
e+ e μ+μ, CERN, DELPHI with no hadron production (2008) ~91 GeV (CM) kT< 60 MeV/c 1.0
Tab.3  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
1 Schwinger J.. Gauge invariance and mass II. Phys. Rev., 1962, 128(5): 2425
https://doi.org/10.1103/PhysRev.128.2425
2 Schwinger J., Gauge theory of vector particles, in: Theoretical Physics, Trieste Lectures, 1962 (IAEA, Vienna, 1963), page 89
3 Coleman S., Jackiw R., Susskind L.. Charge shielding and quark confinement in the massive Schwinger model. Ann. Phys., 1975, 93(1−2): 267
https://doi.org/10.1016/0003-4916(75)90212-2
4 Coleman S.. More about the massive Schwinger model. Ann. Phys., 1976, 101(1): 239
https://doi.org/10.1016/0003-4916(76)90280-3
5 M. Polyakov A.. Quark confinement and topology of gauge theories. Nucl. Phys. B, 1977, 120(3): 429
https://doi.org/10.1016/0550-3213(77)90086-4
6 M. Polyakov A., Gauge Fields and Strings, Hardwood Academic Publishers, Switzerland, 1987
7 G. Wilson K.. Confinement of quarks. Phys. Rev. D, 1974, 10(8): 2445
https://doi.org/10.1103/PhysRevD.10.2445
8 Kogut J., Susskind L.. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D, 1975, 11(2): 395
https://doi.org/10.1103/PhysRevD.11.395
9 Mandelstam S.. Vortices and quark confinement in non-Abelian gauge theories. Phys. Lett. B, 1975, 53(5): 476
https://doi.org/10.1016/0370-2693(75)90221-X
10 Banks T., Myerson B., Kogut J.. Phase transitions in Abelian lattice gauge theories. Nucl. Phys. B, 1977, 129(3): 493
https://doi.org/10.1016/0550-3213(77)90129-8
11 Glimm J., Jaffe A.. Instantons in a U(1) lattice gauge theory: A Coulomb dipole gas. Commun. Math. Phys., 1977, 56(3): 195
https://doi.org/10.1007/BF01614208
12 E. Peskin M.. Mandelstam−’t Hooft duality in Abelian lattice models. Ann. Phys., 1978, 113(1): 122
https://doi.org/10.1016/0003-4916(78)90252-X
13 Guth A.. Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory. Phys. Rev. D, 1980, 21(8): 2291
https://doi.org/10.1103/PhysRevD.21.2291
14 I. Kondo K.. Existence of confinement phase in quantum electrodynamics. Phys. Rev. D, 1998, 58(8): 085013
https://doi.org/10.1103/PhysRevD.58.085013
15 Magnifico G.Felser T.Silvi P.Montangero S., Lattice quantum electrodynamics in (3+1)-dimensions at finite density with tensor networks, Nat. Commun. 12(1), 3600 (2021), arXiv: 2011.10658
16 D. Drell S., R. Quinn H., Svetitsky B., Weinstein M.. Quantum electrodynamics on a lattice: A Hamiltonian variational approach to the physics of the weak-coupling region. Phys. Rev. D, 1979, 19(2): 619
https://doi.org/10.1103/PhysRevD.19.619
17 Arnold G.Bunk B.Lippert T.Schilling K., Compact QED under scrutiny: It’s first order, Nucl. Phys. B Proc. Suppl. 119, 864 (2003), arXiv: hep-lat/0210010
18 C. Loveridge L.Oliveira O.J. Silva P., Lattice pure gauge compact QED in the Landau gauge: The photon propagator, the phase structure, and the presence of Dirac strings, Phys. Rev. D 104(11), 114511 (2021), and references cited therein
19 Schwinger J.. On Gauge Invariance and Vacuum Polarization. Phys. Rev., 1951, 82(5): 664
https://doi.org/10.1103/PhysRev.82.664
20 Y. Wong C., Introduction to High-Energy Heavy-Ion Collisions, World Scientific Publisher, 1994
21 Georgi H., The Schwinger point, J. High Energy Phys. 11, 057 (2019), arXiv: 1905.09632
22 Georgi H.Noether B., Non-perturbative effects and unparticle physics in generalized Schwinger models, arXiv: 1908.03279v3 (2019)
23 Georgi H.Warner B., Generalizations of the Sommerfield and Schwinger models, J. High Energy Phys. 01, 047 (2020), arXiv: 1907.12705v2
24 Georgi H., Automatic fine-tuning in the two-flavor Schwinger model, Phys. Rev. Lett. 125(18), 181601 (2020), arXiv: 2007.15965
25 Georgi H., Mass perturbation theory in the 2-flavor Schwinger Model with opposite masses, J. High Energy Phys. 2022(10), 119 (2022), arXiv: 2206.14691
26 Dempsey R.R. Klebanov I.S. Pufu S.Zan B., Discrete chiral symmetry and mass shift in lattice Hamiltonian approach to Schwinger model, arXiv: 2206.05308 (2022)
27 Y. Wong C., Anomalous soft photons in hadron production, Phys. Rev. C 81(6), 064903 (2010), arXiv: 1001.1691
28 Y. Wong C., Anomalous soft photons associated with hadron production in string fragmentation, Talk presented at the IX International Conference on Quark Confinement and Hadron Spectrum, Madrid, Spain, Aug. 30−Sep. 3, 2010, AIP Conf. Proc. 1343, 447 (2011), arXiv: 1011.6265
29 Y. Wong C., An overview of the anomalous soft photons in hadron production, Talk presented at International Conference on the Structure and the Interactions of the Photon, 20−24 May 2013, Paris, France, PoS Photon 2013, 002 (2014), arXiv: 1404.0040
30 Y. Wong C., Open string QED meson description of the X17 particle and dark matter, J. High Energy Phys. 2020(8), 165 (2020), arXiv: 2001.04864
31 Y. Wong C., On the stability of the open-string QED neutron and dark matter, Europhys. J. A 58, 100 (2022), arXiv: 2010.13948
32 Y. Wong C., QED mesons, the QED neutron, and the dark matter, in: Proceedings of the 19th International Conference on Strangeness in Quark Matter, EPJ Web Confer. 259, 13016 (2022), arXiv: 2108.00959
33 Y. Wong C., QED meson description of the X17 and other anomalous particles, in: Proceedings of the Workshop of “Shedding Light on X17”, September 6−8, 2021, Centro Ricerche Enrico Fermi, Rome, Italy, arXiv: 2201.09764
34 Y. Wong C.Koshelkin A., Dynamics of quarks and gauge fields in the lowest-energy states in QCD and QED, arXiv: 2111.14933 (2021)
35 Koshelkin A.Y. Wong C., Dynamics of quarks and gauge fields in the lowest-energy states in QCD and QED, in Proceedings of the 41st International Conference in High Energy Physics, 6−13 July, 2022, Bologna, Italy, PoS 414, 302 (2022), arXiv: 2212.11749
36 V. Chliapnikov P., A. De Wolf E., B. Fenyuk A., N. Gerdyukov L., Goldschmidt-Clermont Y., M. Ronjin V., Weigend A.. Observation of direct soft photon production in π−p interactions at 280 GeV/c. Phys. Lett. B, 1984, 141(3−4): 276
https://doi.org/10.1016/0370-2693(84)90216-8
37 Botterweck F., (EHS-NA22 Collaboration) .. et al.. Direct soft photon production in K+p and π+p interactions at 250 GeV/c. Z. Phys. Chem., 1991, 51: 541
38 Banerjee S., (SOPHIE/WA83 Collaboration) .. et al.. Observation of direct soft photon production in π−p interactions at 280 GeV/c. Phys. Lett. B, 1993, 305(1−2): 182
https://doi.org/10.1016/0370-2693(93)91126-8
39 Belogianni A., Beusch W., J. Brodbeck T., Evans D., R. French B., Jacholkowski A., B. Kinson J., Kirk A., Lenti V., A. Loconsole R., Manzari V., Minashvili I., Perepelitsa V., Russakovich N., Sonderegger P., Spyropoulou-Stassinaki M., Tchlatchidze G., Vassiliadis G., Vichou I., Villalobos-Baillie (WA91 Collaboration) O.. Confirmation of a soft photon signal in excess of QED expectations in π−p interactions at 280 GeV/c. Phys. Lett. B, 1997, 408(1−4): 487
https://doi.org/10.1016/S0370-2693(97)00762-4
40 Belogianni A., (WA102 Collaboration) .. et al.. Further analysis of a direct soft photon excess in π−p interactions at 280-GeV/c. Phys. Lett. B, 2002, 548(3−4): 122
https://doi.org/10.1016/S0370-2693(02)02836-8
41 Belogianni A., Beusch W., J. Brodbeck T., S. Dzheparov F., R. French B., Ganoti P., B. Kinson J., Kirk A., Lenti V., Minashvili I., F. Perepelitsa V., Russakovich N., V. Singovsky A., Sonderegger P., Spyropoulou-Stassinaki M., Villalobos Baillie (WA102 Collaboration) O.. Observation of a soft photon signal in excess of QED expectations in pp interactions. Phys. Lett. B, 2002, 548(3−4): 129
https://doi.org/10.1016/S0370-2693(02)02837-X
42 Perepelitsa V., Anomalous soft photons in hadronic decays of Z0, Proceedings of the XXXIX International Symposium on Multiparticle Dynamics, Gomel, Belarus, September 4−9, 2009, published in: Nonlin. Phenom. Complex Syst. 12, 343 (2009)
43 Abdallah J., et al.. (DELPHI Collaboration), Evidence for an excess of soft photons in hadronic decays of Z0, Eur. Phys. J. C 47(2), 273 (2006), arXiv: hep-ex/0604038
44 Abdallah J., (DELPHI Collaboration) .. et al.. Observation of the muon inner bremsstrahlung at LEP1. Eur. Phys. J. C, 2008, 57(3): 499
https://doi.org/10.1140/epjc/s10052-008-0779-z
45 Abdallah J., (DELPHI Collaboration) .. et al.. Study of the dependence of direct soft photon production on the jet characteristics in hadronic Z0 decays. Eur. Phys. J. C, 2010, 67(3−4): 343
https://doi.org/10.1140/epjc/s10052-010-1315-5
46 J. Krasznahorkay A.Csatlós M.Csige L.Gácsi Z.Gulyás J.Hunyadi M. Kuti I.M. Nyakó B.Stuhl L. Timár J.G. Tornyi T.Vajta Z. J. Ketel T.Krasznahorkay A., Observation of anomalous internal pair creation in 8Be: A possible indication of a light, neutral boson, Phys. Rev. Lett. 116(4), 042501 (2016), arXiv: 1504.01527
47 J. Krasznahorkay A., et al.., New evidence supporting the existence of the hypothetical X17 particle, arXiv: 1910.10459 (2019)
48 J. Krasznahorkay A.Csatlós M.Csige L.Gulyás J.Krasznahorkay A.M. Nyakó B.Rajta I.Timár J.Vajda I. J. Sas N., New anomaly observed in 4He supports the existence of the hypothetical X17 particle, Phys. Rev. C 104(4), 044003 (2021), arXiv: 2104.10075
49 J. Krasznahorkay A., et al.., X17: Staus and experiments on 8Be and 4He, presented at the Workshop of “Shedding Light on X17”, September 6−8, 2021, Centro Ricerche Enrico Fermi, Rome, Italy
50 J. Sas N.J. Krasznahorkay A.Csatlós M.Gulyás J.Kertész B.Krasznahorkay A.Molnár J.Rajta I.Timár J.Vajda I.N. Harakeh M., Observation of the X17 anomaly in the 7Li(p, e+e−)8Be direct proton-capture reaction, arXiv: 2205.07744 (2022)
51 J. Krasznahorkay A., et al.., New anomaly observed in 12C supports the existence and the vector character of the hypothetical X17 boson, arXiv: 2209.10795 (2022)
52 Abraamyan K.B. Anisimov A.I. Baznat M.K. Gudima K.A. Nazarenko M.G. Reznikov S.S. Sorin A., Observation of the E(38)-boson, arXiv: 1208.3829v1 (2012)
53 Abraamyan K., Austin C., Baznat M., Gudima K., Kozhin M., Reznikov S., Sorin A.. Check of the structure in photon pairs spectra at the invariant mass of about 38 MeV/c2. EPJ Web of Conferences, 2019, 204: 08004
https://doi.org/10.1051/epjconf/201920408004
54 of the Workshop on “Shedding Light on X17” Proceedings6−8 SeptemberRicerche Enrico Fermi 2021 Eds.: M CentroRomeItaly;. Raggi, P. Valente, M. Nardecchia, A. Frankenthal, G. Cavoto, published in: D. S. M. Alves, et al., Eur. Phys. J. C 83, 230 (2023)
55 J. Krasznahorkay A. (for the ATOMKI Collaboration), X17: Status of the experiments on 8Be and 4He, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
56 U. Abraamyan Kh.Austin Ch.I. Baznat M.K. Gudima K.A. Kozhin M.G. Reznikov S.S. Sorin A. (Dubna Collaboration), Private communications
57 S. Cheng Y.Z. Huang H.Wang G. (STAR Collaboration), Private communications
58 Papa A. (for the MEGII Collaboration), X17 search with the MEGII apparatus, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
59 H. N. da Luz (for the TU Prague Collaboration), Measurements of internal pair creation with a time projection chamber-based setup, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
60 Gustavino C. (for the nTOF Collaboration), The search for 4 He anomaly at n_TOF experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
61 Depero E. (for the NA64 Collaboration), X17 in the NA64 experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
62 Darmé L.Raggi M.Nardi E., (for the INFNRome Collabration), X17 production mechanism at accelerators, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
63 Goudzovski E. (for the NA48 Collaboration), Search for dark photon in π0 decays by NA48/2 at CERN, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
64 K. Perrevoort A. (for the Mu3e Collaboration), Prospects for Dark Photon Searches in the Mu3e Experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
65 Doria L. (for the MAGIX Collaboration), Dark Matter and X17 Searches at MESA 4.4. 2 Light Dark Matter, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
66 Gasparian A. (for the JLAB-PAC50 Collaboration), A Direct Detection Search for Hidden Sector New Particles in the 3−60 MeV Mass Range, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
67 Ahmidouch A., et al.. (for the JLAB-PAC50 Collaboration), A Direct Detection Search for Hidden Sector New Particles in the 3–60 MeV Mass Range, arXiv: 2108.13276 (2021)
68 Kozhuharov V. (for the PADME Collaboration), Searching X17 with positrons at PADME, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
69 Cline E., et al.. (for the DarkLight Collaboration), Searching for New Physics with DarkLight at the ARIEL Electron-Linac, arXiv: 2208.04120 (2022)
70 Navrátil P., ARIEL experiments and theory, arXiv: 2210.08438 (2022)
71 Huang S. (for the LUXE Collaboration), Probing new physics at the LUXE experiment, Proceedings of 41st International Conference on High Energy physics - ICHEP2022, 6−13 July, 2022, arXiv: 2211.11045
72 Azuelos G., Bryman D., C. Chen W., de Luz H., Doria L., Gupta A., A. Hamel L., Laurin M., Leach K., Lefebvre G., P. Martin J., Robinson A., Starinski N., Sykora R., Tiwari D., Wichoski U., Zacek V.. Status of the X17 search in Montreal. J. Phys. Conf. Ser., 2022, 2391(1): 012008
https://doi.org/10.1088/1742-6596/2391/1/012008
73 Gell-Mann M.. The interpretation of the new particles as displaced charge multiplets. Nuovo Cim., 1956, 4(S2): 848
https://doi.org/10.1007/BF02748000
74 Tanabashi M., (Particle Data Group) .. et al.. Review of particle physics. Phys. Rev. D, 2019, 98: 030001
https://doi.org/10.1103/PhysRevD.98.030001
75 Abashian A., E. Booth N., M. Crowe K.. Possible anomaly in meson production in p+d collisions. Phys. Rev. Lett., 1960, 5(6): 258
https://doi.org/10.1103/PhysRevLett.5.258
76 E. Booth N., Abashian A., M. Crowe K.. Anomaly in meson production in p+d collisions. Phys. Rev. Lett., 1961, 7(1): 35
https://doi.org/10.1103/PhysRevLett.7.35
77 Banaigs J., Berger J., Goldzahl L., Risser T., Vu-Hai L., Cottereau M., Le Brun C.. “ABC” and “DEF” effects in the reaction d + p → He3 + (mm)0: Position, width, isospin, angular and energy distributions. Nucl. Phys. B, 1973, 67(1): 1
https://doi.org/10.1016/0550-3213(73)90317-9
78 Adlarson P.. et al.. Abashian−Booth−Crowe effect in basic double-pionic fusion: A new resonance?. Phys. Rev. Lett., 2011, 106(24): 242302
https://doi.org/10.1103/PhysRevLett.106.242302
79 Bashkanov M., Clement H., Skorodko T.. Examination of the nature of the ABC effect. Nucl. Phys. A, 2017, 958: 129
https://doi.org/10.1016/j.nuclphysa.2016.12.001
80 I. Komarov V., et al.., Resonance-like coherent production of a pion pair in the reaction pdpdππ in the GeV region, Eur. Phys. J. A 54, 206 (2018), arXiv: 1805.01493
81 Y. Wong C.. The Wigner function of produced particles in string fragmentation. Phys. Rev. C, 2009, 80(5): 054917
https://doi.org/10.1103/PhysRevC.80.054917
82 V. Koshelkin A.Y. Wong C., The compactification of QCD4 to QCD2 in a flux tube, Phys. Rev. D 86(12), 125026 (2012), arXiv: 1212.3301
83 D. Bjorken J., Lectures presented in the 1973 Proceedings of the Summer Institute on Particle Physics, edited by Zipt, SLAC-167 (1973)
84 Casher A., Kogut J., Susskind L.. Vacuum polarization and the absence of free quarks. Phys. Rev. D, 1974, 10(2): 732
https://doi.org/10.1103/PhysRevD.10.732
85 Nambu Y., Quark model of the factorization of the Veneziano Amplitude, in Lectures at the Copenhagen Symposium: Symmetry and Quark Models, edited by R. Chand, Gordon and Breach, 1970, page 269
86 Nambu Y.. Strings, monopoles, and gauge fields. Phys. Rev. D, 1974, 10(12): 4262
https://doi.org/10.1103/PhysRevD.10.4262
87 Goto T., Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model, Prog. Theor. Phys, 46, 1560 (1971), arXiv: hep-th/9302104
88 ’t Hooft G.. Topology of the gauge condition and new confinement phases in non-Abelian gauge theories. Nucl. Phys. B, 1981, 190(3): 455
https://doi.org/10.1016/0550-3213(81)90442-9
89 V. Belvedere L., A. Swieca J., D. Rothe K., Schroer B.. Generlaized two-dimensional Abelian gauge theories and confinement. Nucl. Phys. B, 1979, 153: 112
https://doi.org/10.1016/0550-3213(79)90594-7
90 Sekido T.Ishiguro K.Koma Y.Mori Y.Suzuki T., Abelian dominance and the dual Meissner effect in local unitary gauges in SU(2) gluodynamics, Phys. Rev. C 75, 064906 (2007), arXiv: hep-ph/0703002
91 Suzuki T.Ishiguro K.Koma Y.Sekido T., Gauge-independent Abelian mechanism of color confinement in gluodynamics, Phys. Rev. D 77, 034502 (2008), arXiv: 0706.4366
92 Suganuma H.Ohata H. Local correlation among the chiral condensate, monopoles, and color magnetic fields in Abelian projected QCD, arXiv: 2108.08499 (2021)
93 ’t Hooft G.. A planar diagram theory for strong interactions. Nucl. Phys. B, 1974, 72(3): 461
https://doi.org/10.1016/0550-3213(74)90154-0
94 ’t Hooft G.. A two-dimensional model for mesons. Nucl. Phys. B, 1974, 75(3): 461
https://doi.org/10.1016/0550-3213(74)90088-1
95 Huang S., W. Negele J., Polonyi J.. Meson structure in QCD2. Nucl. Phys. B, 1988, 307(4): 669
https://doi.org/10.1016/0550-3213(88)90104-6
96 S. Bali G., Neff H., Duessel T., Lippert T., Schilling (SESAM) K.. Observing long colour flux tubes in SU(2) lattice gauge theory. Phys. Rev. D, 2005, 71: 114513
https://doi.org/10.1103/PhysRevD.71.114513
97 Cosmai L.Cea P.Cuteri F.Papa A., Flux tubes in QCD with (2+1) HISQ fermions, Pos, 4th annual International Symposium on Lattice Field Theory, 24−30 July 2016, University of Southampton, UK, arXiv: 1701.03371 (2017)
98 Cardoso N.Cardoso M.Bicudo P., Inside the SU(3) quark−antiquark QCD flux tube: Screening versus quantum widening, Phys. Rev. D 88, 054504 (2013), arXiv: 1302.3633
99 Bicudo P.Cardoso N., Colour field densities of the quark−antiquark excited flux tubes in SU(3) lattice QCD, Phys. Rev. D 98 (2018) 11, 114507, arXiv: 1808.08815
100 Bicudo P.Cardoso N.Cardoso M., Pure gauge QCD flux tubes and their widths at finite temperature, Nucl. Phys. B 940, 88 (2019), arXiv: 1702.03454
101 E. Peskin M.V. Schroeder D., An Introduction to Quantum Field Theory, Addison-Wesley Publishing Company, 1995
102 B. Halpern M.. Quantum “solitons” which are SU(N) fermions. Phys. Rev. D, 1975, 12(6): 1684
https://doi.org/10.1103/PhysRevD.12.1684
103 Kogut J., Susskind L.. Quark confinement and the puzzle of the ninth axial-vector current. Phys. Rev. D, 1974, 10(10): 3468
https://doi.org/10.1103/PhysRevD.10.3468
104 Kogut J., Susskind L.. How quark confinement solve the η → 3π problem. Phys. Rev. D, 1975, 11(12): 3594
https://doi.org/10.1103/PhysRevD.11.3594
105 Kogut J., K. Sinclair D.. Quark Confinement and the evasion of the Goldestone’s theorem in 1 + 1 dimensions. Phys. Rev. D, 1975, 12(6): 1742
https://doi.org/10.1103/PhysRevD.12.1742
106 Witten E.. Non-Abelian bosonization in two dimensions. Commun. Math. Phys., 1984, 92(4): 455
https://doi.org/10.1007/BF01215276
107 Gepner D.. Non-abelian bosonization and multiflavor QED and QCD in two dimensions. Nucl. Phys. B, 1985, 252: 481
https://doi.org/10.1016/0550-3213(85)90458-4
108 Ellis J., Frishman Y., Hanany A., Karliner M.. Quark solitons as constituents of hadrons. Nucl. Phys. B, 1992, 382(2): 189
https://doi.org/10.1016/0550-3213(92)90183-C
109 Frishman Y.Sonnenschein J., Bosonization and QCD in two dimensions, Phys. Rep. 223(6), 309 (1993)
110 Frishman Y.Hanany A.Sonnenschein J., Subtleties in QCD theory in two dimensions, Nucl. Phys. B 429(1), 75 (1994)
111 Armoni A.Sonnenschein J., Mesonic spectra of bosonized QCD2 models, Nucl. Phys. B 457(1−2), 81 (1995)
112 Armoni A.Frishman Y.Sonnenschein J.Trittmann U., The spectrum of multi-flavor QCD2 and the non-Abelian Schwinger equation, Nucl. Phys. B 537(1−3), 503 (1999)
113 Abrashkin A.Frishman Y.Sonnenschein J., The spectrum of states with one current acting on the adjoint vacuum of massless, Nucl. Phys. B 703(1–2), 320 (2004)
114 J. Gross D.R. Klebanov I.V. Matytsin A.V. Smilga A., Screening vs. confinement in 1+1 dimensions, Nucl. Phys. B 461(1–2), 109 (1996), arXiv: hep-th/9511104
115 P. Vary J., J. Fields T., J. Pirner H.. Chiral perturbation theory in the Schwinger model. Phys. Rev. D, 1996, 53(12): 7231
https://doi.org/10.1103/PhysRevD.53.7231
116 Hosotani Y., Rodriguez R.. Bosonized massive N-flavour Schwinger model. J. Phys. Math. Gen., 1998, 31(49): 9925
https://doi.org/10.1088/0305-4470/31/49/013
117 Abdalla E.C. B. Abdalla M.D. Rothe K., Two Dimensional Quantum Field Theory, World Scientific Publishing Company, Singapore, 2001
118 Nagy S.. Massless fermions in mutiflavor QED. Phys. Rev. D, 2009, 79(4): 045004
https://doi.org/10.1103/PhysRevD.79.045004
119 Kovács J., Nagy S., Nandori I., Sailer K.. Renormalization of QCD2. J. High Energy Phys., 2011, 2011(1): 126
https://doi.org/10.1007/JHEP01(2011)126
120 Weinberg S.. Phenomenological Lagrangians. Physica A, 1979, 96(1−2): 327
https://doi.org/10.1016/0378-4371(79)90223-1
121 Witten E.. Current algebra theorems for the U(1) Goldstone boson. Nucl. Phys. B, 1979, 156(2): 269
https://doi.org/10.1016/0550-3213(79)90031-2
122 Veneziano G., of a crossing-simmetric Construction. Regge-behaved amplitude for linearly rising trajectories. Nuovo Cim. A, 1968, 57(1): 190
https://doi.org/10.1007/BF02824451
123 Artru X., Mennessier G.. String model and multiproduction. Nucl. Phys. B, 1974, 70(1): 93
https://doi.org/10.1016/0550-3213(74)90360-5
124 M. Polyakov A.. Quantum geometry of bosonic strings. Phys. Lett. B, 1981, 103(3): 207
https://doi.org/10.1016/0370-2693(81)90743-7
125 Andersson B.Gustafson G.Sjöstrand T., A general model for jet fragmentation, Zeit. für Phys. C 20, 317 (1983)
126 Andersson B.Gustafson G.Ingelman G.Sjöstrand T., Parton fragmentation and string dynamics, Phys. Rep. 97(2−3), 31 (1983)
127 M. Bengtsson. T. Sjöstrand, The Lund Monte Carlo for jet fragmentation and e+e− physics − jetset version 6.3 − an update, Comput. Phys. Commun. 43(3), 367 (1987)
128 Andersson B.Gustafson G.Nilsson-Almqvist B., A model for low-pT hadronic reactions with generalizations to hadron−nucleus and nucleus−nucleus collisions, Nucl. Phys. B 281(1–2), 289 (1987)
129 Gatoff G.Y. Wong C., Origin of the soft pT spectra, Phys. Rev. D 46(3), 997 (1992)
130 Y. Wong C.Gatoff G., The transverse profile of a color flux tube, Phys. Rep. 242(4–6), 4 (1994)
131 Y. Wong C., C. Wang R., C. Shih C.. Study of particle production using two-dimensional bosonized QED. Phys. Rev. D, 1991, 44(1): 257
https://doi.org/10.1103/PhysRevD.44.257
132 Aihara H., et al.. (TPC/Two_Gamma Collaboration), Charged hadron production in e+−e− annihilation at s = 29 GeV, Lawrence Berkeley Laboratory Report LBL-23737 (1988)
133 Hofmann W.. Particle composition in hadronic jets in e+−e− annihilation. Annu. Rev. Nucl. Part. Sci., 1988, 38(1): 279
https://doi.org/10.1146/annurev.ns.38.120188.001431
134 Petersen A., (Mark II Collaboration) .. et al.. Multihadronic events at ECM = 29 GeV and predictions of QCD models from ECM = 29 GeV to ECM = 93 GeV. Phys. Rev. D, 1988, 37: 1
https://doi.org/10.1103/PhysRevD.37.1
135 Abe K., (SLD Collaboration) .. et al.. Production of π+, K+, K0, K*0, ϕ, p, and Λ0 in hadronic Z0 decays. Phys. Rev. D, 1999, 59: 052001
https://doi.org/10.1103/PhysRevD.59.052001
136 Abreu K., (DELPHI Collaboration) .. et al.. Energy dependence of inclusive spectra in e+−e− annihilation. Phys. Lett. B, 1999, 459: 397
https://doi.org/10.1016/S0370-2693(99)00601-2
137 Yang H. (BRAHMS Collaboration), Rapidity densities of π±, K±, p and p¯ in p+p and d+Au collisions at sNN = 200 GeV, J. Phys. G. 35, 104129 (2008)
138 Hagel K. (BRAHMS Collaboration), APS DNP 2008, Oakland, California, USA, Oct. 23–27, 2008
139 Gell-Mann M., J. Oakes R., Renner B.. Behavior of current divergences under SU(3)*SU(3). Phys. Rev., 1968, 175(5): 2195
https://doi.org/10.1103/PhysRev.175.2195
140 Barnes T., S. Swanson E.. Diagrammatic approach to meson−meson scattering in the nonrelativistic quark potential model. Phys. Rev. D, 1992, 46(1): 131
https://doi.org/10.1103/PhysRevD.46.131
141 Y. Wong C., S. Swanson E., Barnes T.. Cross sections for π- and ρ-induced dissociation of J/ψ and ψ′. Phys. Rev. C Nucl. Phys., 2000, 62: 045201
https://doi.org/10.1103/PhysRevC.62.045201
142 Y. Wong C.S. Swanson E.Barnes T., Heavy quarkonium dissociation cross sections in relativistic heavy-ion collisions, Phy. Rev. C 65, 014903 (2002), arXiv: nucl-th/0106067
143 Baldicchi M., V. Nesterenko A., M. Prosperi G., Simolo C.. QCD coupling below 1 GeV from quarkonium spectrum. Phys. Rev. D, 2008, 77(3): 034013
https://doi.org/10.1103/PhysRevD.77.034013
144 Deur A.J. Brodsky S.F. de Téramond G., The QCD running coupling, Prog. Part. Nuc. Phys. 90, 1 (2016), arXiv: 1604.08082
145 Low F.. Bremsstrahlung of very low-energy quanta in elementary particle collisions. Phys. Rev., 1958, 110(4): 974
https://doi.org/10.1103/PhysRev.110.974
146 N. Gribov V., Bremsstrahlung of hadrons at high energies, Yad. Fiz. 5, 399 (1967) [Sov. J. Nucl. Phys. 5, 280 (1967)]
147 Van Hove L., Cold quark−gluon plasma and multiparticle production, Ann. Phys. 192(1), 66 (1989)
148 Lichard P.Van Hove L., The cold quark−gluon plasma as a source of very soft photons in high energy collisions, Phys. Lett. B 245(3–4), 605 (1990)
149 Lichard P.. Consistency of data on soft photon production in hadronic interactions. Phys. Rev. D, 1994, 50(11): 6824
https://doi.org/10.1103/PhysRevD.50.6824
150 Kokoulina E.Kutov A.Nikitin V., Gluon dominance model and cluster production, Braz. J. Phys. 37(2c), 785 (2007)
151 Volkov M.Kokoulina E.Kuraev E., Gluon dominance model and cluster production, Ukr. J. Phys. 49, 1252 (2003)
152 Barshay S.. Anomalous soft photons from a coherent hadronic phase in high-energy collisions. Phys. Lett. B, 1989, 227(2): 279
https://doi.org/10.1016/S0370-2693(89)80037-1
153 Shuryak E.. The soft photon puzzle and pion modification in hadronic matter. Phys. Lett. B, 1989, 231(1−2): 175
https://doi.org/10.1016/0370-2693(89)90134-2
154 Balek V., Pisutova N., Pisut J.. The puzzle of very soft photon production in hadronic Interactions. Acta Phys. Pol. B, 1990, 21: 149
155 Czyz W., Florkowski W.. Soft photon production in the boost invariant color flux tube model. Z. Phys. Chem., 1994, 61: 171
156 Nachtmann O., Nonperturbative QCD effects in high-energy collisions, arXiv: hep-ph/9411345 (1994)
157 W. Botz G.Haberl P.Nachtmann O., Soft photons in hadron hadron collisions: Synchrotron radiation from the QCD vacuum? Z. Phys. Chem. 67, 143 (1995)
158 Lebiedowicz P.Nachtmann O.Szczurek A., Soft-photon radiation in high-energy proton−proton collisions within the tensor-Pomeron approach: Bremsstrahlung, Phys. Rev. D 106, 034023 (2022), arXiv: 2206.03411
159 Hatta Y., Ueda T.. Soft photon anomaly and gauge/string duality. Nucl. Phys. B, 2010, 837(1−2): 22
https://doi.org/10.1016/j.nuclphysb.2010.04.017
160 M. Darbinian S., A. Ispirian K., T. Margarian A.. Unruh radiation of quarks and the soft photon puzzle in hadronic interactions. Sov. J. Nucl. Phys., 1991, 54: 364
161 A. Simonov Yu., Di-pion decays of heavy quarkonium in the field correlator method, Phys. Atom. Nucl. 71, 1049 (2008), arXiv: hep-ph/07113626
162 A. Simonov Yu., Di-pion emission in heavy quarkonia decays, JETP Lett. 87(3), 121 (2008)
163 A. Simonov Yu.I. Veselov A., Bottomonium ϒ(5S) decays into BB and BBπ, JETP Lett. 88(1), 5 (2008)
164 A. Simonov Yu.I. Veselov A., Strong decays and di-pion transitions of ϒ(5S), Phys. Lett. B 671(1), 55 (2009)
165 E. Kharzeev D., Loshaj F.. Anomalous soft photon production from the induced currents in Dirac sea. Phys. Rev. D, 2014, 89(7): 074053
https://doi.org/10.1103/PhysRevD.89.074053
166 Hagedorn R.. Statistical thermodynamics of strong interactions at high energies. Nuo. Cim. Suppl., 1965, 3: 147
167 Abelev I., (STAR Collaboration) .. et al.. Strange particle production in p+p collisions at s = 200 GeV. Phys. Rev. C, 2007, 75(6): 064901
https://doi.org/10.1103/PhysRevC.75.064901
168 Abelev I., (STAR Collaboration) .. et al.. Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector. Phys. Rev. C, 2009, 79: 034909
https://doi.org/10.1103/PhysRevC.79.034909
169 Adare A., (PHENIX Collaboration) .. et al.. Measurement of neutral mesons in pp collisions at s=200 GeV. Phys. Rev. D, 2011, 83: 052004
https://doi.org/10.1103/PhysRevD.83.052004
170 T. D’yachenko A., S. Gromova E.. Detection of particles of dark matter from the spectrum of secondary particles in high-energy proton−proton collisions in a thermodynamic model. J. Phys. Conf. Series, 2021, 2131: 022
171 T. D’yachenko A., A. Verisokina A., A. Verisokina M.. High-energy collisions of protons and nuclei and the possibility of detecting dark matter particles in the spectra of soft photons. Acta Phys. Pol. B Proc. Suppl., 2021, 14(4): 761
https://doi.org/10.5506/APhysPolBSupp.14.761
172 W. N. de Boer F., Fröhlich O., E. Stiebing K., Bethge K., Bokemeyer H., Balanda A., Buda A., van Dantzig R., W. Elze T., Folger H., van Klinken J., A. Müller K., Stelzer K., Thee P., Waldschmidt M.. A deviation in internal pair conversion. Phys. Lett. B, 1996, 388(2): 235
https://doi.org/10.1016/S0370-2693(96)01311-1
173 W. N. de Boer F., van Dantzig R., van Klinken J., Bethge K., Bokemeyer H., Buda A., A. Müller K., E. Stiebing K.. Excess in nuclear pairs near 9 MeV/c2 invariant mass. J. Phys. G, 1997, 23(11): L85
https://doi.org/10.1088/0954-3899/23/11/001
174 W. N. de Boer F.Bethge K.Bokemeyer H.van Dantzig R.van Klinken J.Mironov V. A. Müller K.E. Stiebing K., Further search for a neutral boson with a mass around 9 MeV/c2, J. Phys. G 27(4), L29 (2001), arXiv: hep-ph/0101298v2
175 Vitéz A., Krasznahorkay A., Gulyás J., Csatlós M., Csige Z. Gácsi L., Krasznahorkay Jr. A., M. Nyakó B., W. N. de Boer F., J. Ketel T.. 33 anomalous internal pair creation in 8Be as a signature of the decay of a new particle. Acta Phys. Pol., 2008, B39: 483
176 Zhang X., A. Miller G.. Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?. Phys. Lett. B, 2017, 773: 159
https://doi.org/10.1016/j.physletb.2017.08.013
177 Feng J., et al.., Protophobic fifth force interpretation of the observed anomaly in 8Be nuclear transitions, Phys. Rev. Lett. 117, 071803 (2016) (2016)
178 Feng J.Fornal B.Galon I.Gardner S.Smolinsky J.M. P. Tait T.Tanedo P., Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev. D 95(3), 035017 (2017)
179 Fornal B.. Is there a sign of new physics in beryllium transitions?. Int. J. Mod. Phys. A, 2017, 32(25): 1730020
https://doi.org/10.1142/S0217751X17300204
180 Batley J., (NA48/2 Collaboration) .. et al.. Search for the dark photon in π0 decays. Phys. Lett. B, 2015, 746: 178
https://doi.org/10.1016/j.physletb.2015.04.068
181 D. Rose L.Khalil S.Moretti S., Explanation of the 17 MeV Atomki anomaly in a U(1)-extended two Higgs doublet model, Phys. Rev. D 96(11), 115024 (2017)
182 Delle Rose L.Khalil S.J. D. King S.Moretti S.M. Thabt A., Atomki anomaly in family-dependent U(1) extension of the standard model, Phys. Rev. D 99(5), 055022 (2019)
183 Delle Rose L.Khalil S.J. D. King S.Moretti S., New physics suggested by Atomki anomaly, Front. Phys. (Lausanne) 7, 73 (2019)
184 Bordes J.M. Chan H.S. Tsun T., Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed standard model, Int. J. Mod. Phys. A 34 (25), 1830034 (2019), and references cited therein
185 M. Chan H.T. Tsou S., Two variations on the theme of Yang and Mills - the SM and the FSM Invited contribution to the “Festschrift for the Yang Centenary” (edited by F. C. Chen, et al.), arXiv: 2201.12256 (2022)
186 Ellwanger U., Moretti S.. Possible explanation of the electron positron anomaly at 17 MeV in 8Be transitions through a light pseudoscalar. J. High Energy Phys., 2016, 11(11): 39
https://doi.org/10.1007/JHEP11(2016)039
187 S. M. Alves D., J. Weiner N.. A viable QCD axion in the MeV mass range. J. High Energy Phys., 2018, 07(7): 92
https://doi.org/10.1007/JHEP07(2018)092
188 Kubarovsky V.Rittenhouse West J.J. Brodsky S., Quantum chromodynamics resolution of the ATOMKI anomaly in 4He nuclear transitions, arXiv: 2206.14441 (2022)
189 Viviani M., Girlanda L., Kievsky A., E. Marcucci L.. n+3H, p+3He, p+3H, and n+3He scattering with the hyper-spherical harmonic method. Phys. Rev. C, 2020, 102(3): 034007
https://doi.org/10.1103/PhysRevC.102.034007
190 Viviani M., Filandri E., Girlanda L., Gustavino C., Kievsky A., E. Marcucci L., Schiavilla R.. X17 boson and the H3(p, e+ e−)He4 and He3(n, e+ e−)He4 processes: A theoretical analysis. Phys. Rev. C, 2022, 105(1): 014001
https://doi.org/10.1103/PhysRevC.105.014001
191 Munch M., Sølund Kirsebom O., A. Swartz J., Riisager K., O. U. Fynbo H.. Measurement of the full excitation spectrum of the 7Li(p, γ)αα reaction at 441 keV. Phys. Lett. B, 2018, 782: 779
https://doi.org/10.1016/j.physletb.2018.06.013
192 Banerjee D., et al.. (NA64 Collaboration), Search for a hypothetical 16.7 MeV gauge boson and dark photons in the NA64 Experiment at CERN, Phys. Rev. Lett. 120(23), 231802 (2018)
193 Banerjee D., et al.. (NA64 Collaboration), Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+e− pairs, arXiv: 1912.11389 (2019)
194 Taruggi C.Ghoshal A.Raggi M. (for the PADME Collaboration), Searching for dark photons with the PADME experiment (Conference: C18-05-07.4, pp 17−21, pp 28−34, and pp 337−344), Frascati Phys. Ser. 67, 17, 28, and 334 (2018)
195 Barducci D.Toni C., An updated view on the ATOMKI nuclear anomalies, arXiv: 2212.06453 (2022)
196 U. Abraamyan Kh.. et al.. Resonance structure in the γγ invariant mass spectrum in pC and dC interactions. Phys. Rev. C, 2009, 80: 034001
https://doi.org/10.1103/PhysRevC.80.034001
197 U. Abraamyan Kh., B. Anisimov A., I. Baznat M., K. Gudima K., A. Kozhin M., I. Kukulin V., A. Nazarenko M., G. Reznikov S., S. Sorin A.. Diphoton and dipion productions at the Nuclotron/NICA. Eur. Phys. J. A, 2016, 52(8): 259
https://doi.org/10.1140/epja/i2016-16259-x
198 T. Donnelly W., J. Freedman S., S. Lytel R., D. Peccei R., Schwartz M.. Do axions exist?. Phys. Rev. D, 1978, 18(5): 1607
https://doi.org/10.1103/PhysRevD.18.1607
199 E. El-Nadi M., E. Badawy O.. Production of a new light neutral boson in high-energy collisions. Phys. Rev. Lett., 1988, 61(11): 1271
https://doi.org/10.1103/PhysRevLett.61.1271
200 E. El-Nadi M.. et al.. External electron pair production in high-energy collisions. Nuo. Cim. A, 1996, 109: 1517
https://doi.org/10.1007/BF02778236
201 L. Jain P., Singh G.. Search for new particles decaying into electron pairs of mass below 100 MeV/c2. J. Phys. G, 2007, 34(1): 129
https://doi.org/10.1088/0954-3899/34/1/009
202 W. N. de Boer F.A. Fields C., A re-evaluation of evidence for light neutral bosons in nuclear emulsions, Int. J. Mod. Phys. E 20(8), 1787 (2011), arXiv: 1001.3897
203 Bernhard J.Schönning K., Test of OZI violation in vector meson production with COMPASS, arXiv: 1109.0272v2 (2011)
204 Bernhard J., Exclusive vector meson production in pp collisions at the COMPASS experiment, Ph. D. Thesis, University of Mainz, 2014
205 Schlüter T., The exotic ηπ− wave in 190 GeV π−p → π−ηp at COMPASS, arXiv: 1108.6191v2 (2011)
206 Schlüter T., The π−η and π−η′ systems in exclusive 190 GeV/c π−p Reactions at COMPASS, Ph. D. Thesis, Univ. München, 2012
207 Bernhard J.M. Friedrich J.Schlüter T.Schönning K., Comment on “Material evidence of a 38 MeV boson”, arXiv: 1204.2349 (2012)
208 van Beveren E.Rupp G., First indications of the existence of a 38 MeV light scalar boson arXiv: 1102.1863 (2011)
209 van Beveren E.Rupp G., Material evidence of a 38 MeV boson, arXiv: 1202.1739 (2012)
210 van Beveren E.Rupp G., Reply to Comment on “Material evidence of a 38 MeV boson”, arXiv: 1204.3287 (2012)
211 van Beveren E.Rupp G., Z0(57) and E(38): possible surprises in the Standard Model, arXiv: 2005.08559 (2020) (accepted for publication in Acta Physica Polonica B Proc. Suppl.)
212 Y. Wong C.. Shells in a simple anisotropic harmonic oscillator. Phys. Lett. B, 1970, 14(8): 668
https://doi.org/10.1016/0370-2693(70)90439-9
213 Y. Wong C.. Interaction barrier in charged-particle nuclear reactions. Phys. Rev. Lett., 1973, 31(12): 766
https://doi.org/10.1103/PhysRevLett.31.766
214 G. Lee T.Bayrak O.Y. Wong C., Pocket resonances in low-energy antineutrons reactions with nuclei, Phys. Lett. B 817, 136301 (2021), arXiv: 2102.06691
215 A. Wheeler J.. Molecular viewpoints in nuclear structure. Phys. Rev., 1937, 52(11): 1083
https://doi.org/10.1103/PhysRev.52.1083
216 R. Tilley D., R. Weller H.. Energy levels of light nuclei A=4. Nucl. Phys. A, 1992, 541: 1
https://doi.org/10.1016/0375-9474(92)90635-W
217 R. Tilley D., H. Kelley J., L. Godwin J., J. Millener D., Purcell J., G. Sheu C., R. Weller H.. Energy levels of light nuclei. Nucl. Phys. A, 2004, 745(3−4): 155
https://doi.org/10.1016/j.nuclphysa.2004.09.059
218 L. Feng J., M. P. Tait T., B. Verharen C.. Dynamical evidence for a fifth force explanation of the ATOMKI nuclear anomalies. Phys. Rev. D, 2020, 102(3): 036016
https://doi.org/10.1103/PhysRevD.102.036016
219 B. He W.G. Ma Y.G. Cao X.Z. Cai X.Q. Zhang G., Dipole oscillation modes in light alpha-clustering nuclei, Phys. Rev. C 94(1), 014301 (2016), arXiv: 1602.08955
220 L. Berman B., C. Fultz S.. Measurements of the giant dipole resonance with monoenergetic photons. Rev. Mod. Phys., 1975, 47(3): 713
https://doi.org/10.1103/RevModPhys.47.713
221 H. Kelley J., E. Purcell J., G. Sheu C.. Energy levels of light nuclei A = 12. Nucl. Phys. A, 2017, 968: 71
https://doi.org/10.1016/j.nuclphysa.2017.07.015
222 D. Landau L.. The moment of a 2-photon system. Dokl. Akad. Nauk SSSR, 1948, 60: 207
223 N. Yang C.. Selection rules for the dematerialization of a particle into two photons. Phys. Rev., 1950, 77(2): 242
https://doi.org/10.1103/PhysRev.77.242
224 van Beveren E.Rupp G., First indications of the existence of a 38 MeV light scalar boson, arXiv: 1102.1863 (2011)
225 van Beveren E.Rupp G., Material evidence of a 38 MeV boson, arXiv: 1202.1739 (2012)
226 Guido E. (BaBar Collaboration), Lepton universality test in Upsilon(1S) decays at BABAR, Proceedings of the DPF-2009 Conference, Detroit, MI, July 27−31, 2009, arXiv: 0910.0423
227 Bauswein A., U. F. Bastian N., Blaschke D., Chatziioannou K., A. Clark J., Fischer T., Oertel M.. Identifying a first-order phase transition in neutron-star mergers through gravitational waves. Phys. Rev. Lett., 2019, 122(6): 061102
https://doi.org/10.1103/PhysRevLett.122.061102
228 Bauswein A., Blacker S., Vijayan V., Stergioulas N., Chatziioannou K., A. Clark J., U. F. Bastian N., B. Blaschke D., Cierniak M., Fischer T.. Equation of state constraints from the threshold binary mass for prompt collapse of neutron star mergers. Phys. Rev. Lett., 2020, 125(14): 141103
https://doi.org/10.1103/PhysRevLett.125.141103
229 R. Weih L., Hanauske M., Rezzolla L.. Postmerger gravitational-wave signatures of phase transitions in binary mergers. Phys. Rev. Lett., 2020, 124(17): 171103
https://doi.org/10.1103/PhysRevLett.124.171103
230 Annala E., Gorda T., Kurkela A., Naettilae J., Vuorinen A.. Evidence for quark-matter cores in massive neutron stars. Nat. Phys., 2020, 16(9): 907
https://doi.org/10.1038/s41567-020-0914-9
231 Barate R., (ALPEPH Collaboration) .. et al.. Inclusive production of neutral pions in hadronic Z decays. Z. Phys. C, 1997, 74: 451
https://doi.org/10.1007/s002880050407
232 Amsler C., (Particle Data Group) .. et al.. Review of particle physics. Phys. Lett. B, 2008, 667(1−5): 1
https://doi.org/10.1016/j.physletb.2008.07.018
233 M. Aulchenko V., et al.. (CMD-2 Collaboration), Measurement of the pion form factor in the range 1.04–1.38 GeV with the CMD-2 detector, JETP Lett. 82(12), 743 (2005) (Pisma Zh. Eksp. Teor. Fiz. 82, 841 (2005), arXiv: hep-ex/0603021
234 Aaltonen T., et al.. (CDF Collaboration), Precision measurement of the X(3872) mass in J/ψ π+π− decays, Phys. Rev. Lett. 103, 152001 (2009), arXiv: 0906.5218
235 Aubert B., et al.. (BarBar Collaboration), Study of hadronic transitions between Υ states and observation of Υ(4S)→ηΥ(1S) decay, Phys. Rev. D 78, 112002 (2008), arXiv: 0807.2014
236 F. Taylor E.A. Wheeler J., Space-time Physics, W. H. Freeman and Co., 2nd Ed., 1992, page 20
237 N. Yang C.. Charge quantization, compactness of the gauge group, and flux quantization. Phys. Rev. D, 1970, 8(8): 2360
https://doi.org/10.1103/PhysRevD.1.2360
238 C. Hayes A.Friar J.M. Hale G.T. Garvey G., Angular correlations in the e+e− decay of excited states in 8Be, Phys. Rev. C 105(5), 055502 (2022), arXiv: 2106.06834
239 Lüscher M.. Symmetry breaking aspects of the roughening transition in gauge theories. Nucl. Phys. B, 1981, 180(2): 317
https://doi.org/10.1016/0550-3213(81)90423-5
240 Lüscher M., Symanzik K., Weisz P.. Anomalies of the free loop wave equation in the WKB approximation. Nucl. Phys. B, 1980, 173(3): 365
https://doi.org/10.1016/0550-3213(80)90009-7
241 Polchinski J., Strominger A.. Effective string theory. Phys. Rev. Lett., 1991, 67(13): 1681
https://doi.org/10.1103/PhysRevLett.67.1681
242 Bonati C.Caselle M.Morlacchi S., The unreasonable effectiveness of effective string theory: The case of the 3D SU(2) Higgs model, Phys. Rev. D 104(5), 054501 (2021), arXiv: 2106.08784
243 Billo M.Caselle M.Pellegrini R., New numerical results and novel effective string predictions for Wilson loops, J. High Energy Phys. 01(1), 104 (2012) [Erratum: J. High Energy Phys. 04, 097 (2013)], arXiv: 1107.4356
244 Lüscher M.Weisz P., String excitation energies in SU(N) gauge theories beyond the free-string approximation, J. High Energy Phys. 0407, 014 (2004), arXiv: hep-th/0406205
245 Billo M.Caselle M., Polyakov loop correlators from D0-brane interactions in bosonic string theory, J. High Energy Phys. 0507, 038 (2005), arXiv: hep-th/0505201
246 Billo M.Caselle M.Ferro L., The partition function of interfaces from the Nambu−Goto effective string theory, J. High Energy Phys. 0602, 070 (2006), arXiv: hep-th/0601191
247 Georgi H.. Unparticle physics. Phys. Rev. Lett., 2007, 98(22): 221601
https://doi.org/10.1103/PhysRevLett.98.221601
248 Georgi H., Kats Y.. Unparticle examples in 2D. Phys. Rev. Lett., 2008, 101(13): 131603
https://doi.org/10.1103/PhysRevLett.101.131603
249 Hellerman S.Maeda S.Maltz J.Swanson I., Effective string theory simplified, J. High Energy Phys. 09(9), 183 (2014), arXiv: 1405.6197
250 Aharony O.Komargodski Z., The effective theory of long strings, J. High Energy Phys. 05(5), 118 (2013), arXiv: 1302.6257
251 Eichten E., Gottfried K., Kinoshita T., B. Kogut J., B. Lane K., M. Yan T.. Spectrum of charmed quark−antiquark bound states. Phys. Rev. Lett., 1975, 34(6): 369
https://doi.org/10.1103/PhysRevLett.34.369
252 W. Crater H.H. Yoon J.Y. Wong C., Singularity structures in Coulomb-type potentials in two body Dirac equations of constraint dynamics, Phys. Rev. D 79(3), 034011 (2009), arXiv: 0811.0732
253 Peshkin M.. Short distance analysis for heavy quark systems. 1. Diagrammatics. Nucl. Phys. B, 1979, 156(3): 365
https://doi.org/10.1016/0550-3213(79)90199-8
254 Bhanot G., Peshkin M.. Short distance analysis for heavy quark systems. 2. Applications. Nucl. Phys. B, 1979, 156(3): 391
https://doi.org/10.1016/0550-3213(79)90200-1
255 K. Choi S.. et al.. Observation of a narrow charmonium-like state in exclusive B± → K±π+π− J/ψ decays. Phys. Rev. Lett., 2003, 91: 262001
https://doi.org/10.1103/PhysRevLett.91.262001
256 Y. Wong C., Molecular states of heavy quark mesons, Phys. Rev. C 69(5), 055202 (2004), arXiv: hep-ph/0311088
257 A. Tornqvist N.. Isospin breaking of the narrow charmonium state of Belle at 3872 MeV as a deuson. Phys. Lett. B, 2004, 590(3−4): 209
https://doi.org/10.1016/j.physletb.2004.03.077
258 E. Close F., R. Page P.. The D*0D0 threshold resonance. Phys. Lett. B, 2004, 578(1−2): 119
https://doi.org/10.1016/j.physletb.2003.10.032
259 Pakvasa S., Suzuki M.. On the hidden charm state at 3872 MeV. Phys. Lett. B, 2004, 579(1−2): 67
https://doi.org/10.1016/j.physletb.2003.11.005
260 S. Swanson E.. Diagnostic decays of the X(3872). Phys. Lett. B, 2004, 598(3−4): 197
https://doi.org/10.1016/j.physletb.2004.07.059
261 B. Voloshin M.. Interference and binding effects in decays of possible molecular component of X(3872). Phys. Lett. B, 2004, 579(3−4): 316
https://doi.org/10.1016/j.physletb.2003.11.014
262 C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao , B. S. Zou. F. K. Guo, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018) [Erratum: Rev. Mod. Phys. 94(2), 029901 (2022)], arXiv: 1705.00141
263 Yang B.Meng L.L. Zhu S., Possible molecular states composed of doubly charmed baryons with coupled-channel effect, Eur. Phys. J. A 56(2), 67 (2020), arXiv: 1906.04956
264 K. Dong X.K. Guo F.S. Zou B., A survey of heavy−antiheavy hadronic molecules, Progr. Phys. 41(2), 65 (2021), arXiv: 2101.01021
265 Q. Luo S.W. Wu T.Z. Liu M.S. Geng L.Liu X., Triple-charm molecular states composed of D*D*D and D*D*D*, Phys. Rev. D 105(7), 074033 (2022), arXiv: 2111.15079
266 Adlarson P., (WASA-at-COSY Collaboration ., Data Analysis Center) SAID. et al.. Evidence for a new resonance from polarized neutron−proton scattering. Phys. Rev. Lett., 2014, 112(20): 202301
https://doi.org/10.1103/PhysRevLett.112.202301
267 Adlarson P.. et al.. Neutron−proton scattering in the context of the d*(2380) resonance. Phys. Rev. C, 2014, 90(3): 035204
https://doi.org/10.1103/PhysRevC.90.035204
268 Workman R.. Poles in the SAID NN analysis. EPJ Web Conf., 2014, 81: 02023
269 L. Workman R., J. Briscoe W., I. Strakovsky I.. Sensitivity of the COSY dibaryon candidate to np elastic scattering measurements. Phys. Rev. C, 2016, 93(4): 045201
https://doi.org/10.1103/PhysRevC.93.045201
270 Bashkanov M., J. Brodsky S., Clement H.. Novel six-quark hidden-color dibaryon states in QCD. Phys. Lett. B, 2013, 727(4−5): 438
https://doi.org/10.1016/j.physletb.2013.10.059
271 Goldman T., Maltman K., J. Stephenson G., E. Schmidt K., Wang F.. “Inevitable” nonstrange dibaryon. Phys. Rev. C, 1989, 39(5): 1889
https://doi.org/10.1103/PhysRevC.39.1889
272 L. Ping J., X. Huang H., R. Pang H., Wang F., W. Wong C.. Quark models of dibaryon resonances in nucleon−nucleon scattering. Phys. Rev. C, 2009, 79(2): 024001
https://doi.org/10.1103/PhysRevC.79.024001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed