Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (5): 52304   https://doi.org/10.1007/s11467-023-1294-2
  本期目录
Photonic graphene with reconfigurable geometric structures in coherent atomic ensembles
Fuqiang Niu1,2, Hengfei Zhang1,2, Jinpeng Yuan1,2(), Liantuan Xiao1,2, Suotang Jia1,2, Lirong Wang1,2()
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 全文: PDF(5768 KB)   HTML
Abstract

Photonic graphene, possesses a honeycomb-like geometric structure, provides a superior platform for simulating photonic bandgap, Dirac physics, and topological photonics. Here, the photonic graphene with reconfigurable geometric structures is demonstrated in a 5S1/2 − 5P3/2 − 5D5/2 cascade-type 85Rb atomic ensembles. A strong hexagonal-coupling field, formed by the interference of three identical coupling beams, is responsible for optically inducing photonic graphene in atomic vapor. The incident weak probe beam experiences discrete diffraction, and the observed pattern at the output plane of vapor cell exhibits a clear hexagonal intensity distribution. The complete photonic graphene geometries from transversely stretched to longitudinally stretched are conveniently constructed by varying the spatial arrangement of three coupling beams, and the corresponding diffraction patterns are implemented theoretically and experimentally to map these distorted geometric structures. Moreover, the distribution of lattice sites intensity in photonic graphene is further dynamically adjusted by two-photon detuning and the coupling beams power. This work paves the way for further investigation of light transport and graphene dynamics.

Key wordsatomic ensembles    photonic graphene    geometric structures    discrete diffraction
收稿日期: 2023-02-18      出版日期: 2023-05-12
Corresponding Author(s): Jinpeng Yuan,Lirong Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(5): 52304.
Fuqiang Niu, Hengfei Zhang, Jinpeng Yuan, Liantuan Xiao, Suotang Jia, Lirong Wang. Photonic graphene with reconfigurable geometric structures in coherent atomic ensembles. Front. Phys. , 2023, 18(5): 52304.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1294-2
https://academic.hep.com.cn/fop/CN/Y2023/V18/I5/52304
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 V. Shadrivov I. , A. Sukhorukov A. , S. Kivshar Y. . Complete band gaps in one dimensional left-handed periodic structures. Phys. Rev. Lett., 2005, 95(19): 193903
https://doi.org/10.1103/PhysRevLett.95.193903
2 Baba T. . Slow light in photonic crystals. Nat. Photonics, 2008, 2(8): 465
https://doi.org/10.1038/nphoton.2008.146
3 Lodahl P. , Floris van Driel A. , S. Nikolaev I. , Irman A. , Overgaag K. , Vanmaekelbergh D. , L. Vos W. . Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 2004, 430(7000): 654
https://doi.org/10.1038/nature02772
4 Longo P. , Schmitteckert P. , Busch K. . Few-photon transport in low-dimensional systems: Interaction-induced radiation trapping. Phys. Rev. Lett., 2010, 104(2): 023602
https://doi.org/10.1103/PhysRevLett.104.023602
5 J. Yang Y. , Thirunavukkarasu G. , Babiker M. , Yuan J. . Orbital−angular-momentum mode selection by rotationally symmetric superposition of chiral states with application to electron vortex beams. Phys. Rev. Lett., 2017, 119(9): 094802
https://doi.org/10.1103/PhysRevLett.119.094802
6 D. Wang X. , B. Yu H. , W. Li P. , Z. Zhang Y. , D. Wen Y. , Qiu Y. , Liu Z. , P. Li Y. , Q. Liu L. . Femtosecond laser-based processing methods and their applications in optical device manufacturing: A review. Opt. Laser Technol., 2021, 135: 106687
https://doi.org/10.1016/j.optlastec.2020.106687
7 Ochiai T. , Onoda M. . Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Phys. Rev. B, 2009, 80(15): 155103
https://doi.org/10.1103/PhysRevB.80.155103
8 Y. Zhang Z. , Feng Y. , N. Ning S. , Malpuech G. , D. Solnyshkov D. , F. Xu Z. , P. Zhang Y. , Xiao M. . Imaging lattice switching with Talbot effect in reconfigurable non-Hermitian photonic graphene. Photon. Res., 2022, 10(4): 958
https://doi.org/10.1364/PRJ.447404
9 Plotnik Y. , C. Rechtsman M. , H. Song D. , Heinrich M. , M. Zeuner J. , Nolte S. , Lumer Y. , Malkova N. , J. Xu J. , Szameit A. , G. Chen Z. , Segev M. . Observation of unconventional edge states in ‘photonic graphene’. Nat. Mater., 2014, 13(1): 57
https://doi.org/10.1038/nmat3783
10 Allen L. , W. Beijersbergen M. , J. C. Spreeuw R. , P. Woerdman J. . Orbital angular momentum of light and the transformation of Laguerre−Gaussian laser modes. Phys. Rev. A, 1992, 45(11): 8185
https://doi.org/10.1103/PhysRevA.45.8185
11 Avouris P. , Xia F. . Graphene applications in electronics and photonics. MRS Bull., 2012, 37(12): 1225
https://doi.org/10.1557/mrs.2012.206
12 S. Deng F. , Sun Y. , J. Dong L. , H. Liu Y. , L. Shi Y. . Valley-dependent beam manipulators based on photonic graphene. J. Appl. Phys., 2017, 121(7): 074501
https://doi.org/10.1063/1.4976210
13 M. Davis K. , Miura K. , Sugimoto N. , Hirao K. . Writing waveguides in glass with a femtosecond laser. Opt. Lett., 1996, 21(21): 1729
https://doi.org/10.1364/OL.21.001729
14 Miura K. , R. Qiu J. , Inouye H. , Mitsuyu T. , Hirao K. . Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett., 1997, 71(23): 3329
https://doi.org/10.1063/1.120327
15 R. Gattass R. , Mazur E. . Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2008, 2(4): 219
https://doi.org/10.1038/nphoton.2008.47
16 Z. Tan D. , Wang Z. , B. Xu B. , R. Qiu J. . Photonic circuits written by femtosecond laser in glass: Improved fabrication and recent progress in photonic devices. Adv. Photonics, 2021, 3(2): 024002
https://doi.org/10.1117/1.AP.3.2.024002
17 Wen F. , Zhang X. , P. Ye H. , Wang W. , X. Wang H. , P. Zhang Y. , P. Dai Z. , W. Qiu C. . Efficient and tunable photoinduced honeycomb lattice in an atomic ensemble. Laser Photonics Rev., 2018, 12(9): 1800050
https://doi.org/10.1002/lpor.201800050
18 E. Harris S. . Electromagnetically induced transparency. Phys. Today, 1997, 50(7): 36
https://doi.org/10.1063/1.881806
19 Y. Ling H. , Q. Li Y. , Xiao M. . Electromagnetically induced grating: Homogeneously broadened medium. Phys. Rev. A, 1998, 57(2): 1338
https://doi.org/10.1103/PhysRevA.57.1338
20 P. Yuan J. , H. Li Y. , H. Li S. , Y. Li C. , R. Wang L. , T. Xiao L. , T. Jia S. . Experimental study of discrete diffraction behavior in a coherent atomic system. Laser Phys. Lett., 2017, 14(12): 125206
https://doi.org/10.1088/1612-202X/aa931a
21 P. Yuan J. , H. Wu C. , H. Li Y. , R. Wang L. , Zhang Y. , T. Xiao L. , T. Jia S. . Controllable electromagnetically induced grating in a cascade-type atomic system. Front. Phys., 2019, 14(5): 52603
https://doi.org/10.1007/s11467-019-0924-1
22 D. Wang S. , P. Yuan J. , R. Wang L. , T. Xiao L. , T. Jia S. . Investigation on the Cs 6S1/2 to 7D electric quadrupole transition via monochromatic two-photon process at 767 nm. Front. Phys., 2021, 16(1): 12502
https://doi.org/10.1007/s11467-020-0988-y
23 P. Yuan J. , C. Dong S. , H. Wu C. , R. Wang L. , T. Xiao L. , T. Jia S. . Optically tunable grating in a V + Ξ configuration involving a Rydberg state. Opt. Express, 2020, 28(16): 23820
https://doi.org/10.1364/OE.400618
24 F. Zhang H. , P. Yuan J. , C. Dong S. , H. Wu C. , R. Wang L. , T. Xiao L. , T. Jia S. . All-optical tunable high-order Gaussian beam splitter based on a periodic dielectric atomic structure. Opt. Express, 2021, 29(16): 25439
https://doi.org/10.1364/OE.428311
25 P. Yuan J. , H. Wu C. , R. Wang L. , Chen G. , T. Jia S. . Observation of diffraction pattern in two-dimensional optically induced atomic lattice. Opt. Lett., 2019, 44(17): 4123
https://doi.org/10.1364/OL.44.004123
26 P. Yuan J. , F. Zhang H. , H. Wu C. , R. Wang L. , T. Xiao L. , T. Jia S. . Tunable optical vortex array in a two-dimensional electromagnetically induced atomic lattice. Opt. Lett., 2021, 46(17): 4184
https://doi.org/10.1364/OL.432036
27 P. Yuan J.F. Zhang H.H. Wu C.Chen G.R. Wang L.T. Xiao L.T. Jia S., Creation and control of vortex beam arrays in atomic vapor, Laser Photonics Rev. 2200667, (2023)
28 Shui T. , X. Yang W. , Li L. , Wang X. . Lop-sided Raman−Nath diffraction in PT-antisymmetric atomic lattices. Opt. Lett., 2019, 44(8): 2089
https://doi.org/10.1364/OL.44.002089
29 Y. Zhang Z. , H. Ning S. , Zhong H. , R. Belić M. , Q. Zhang Y. , Feng Y. , Liang S. , P. Zhang Y. , Xiao M. . Experimental demonstration of optical Bloch oscillation in electromagnetically induced photonic lattices. Fundam. Res., 2022, 2(3): 401
https://doi.org/10.1016/j.fmre.2021.08.019
30 Q. Zhang Y. , Zhang D. , Y. Zhang Z. , B. Li C. , P. Zhang Y. , L. Li F. , R. Belić M. , Xiao M. . Optical Bloch oscillation and Zener tunneling in an atomic system. Optica, 2017, 4(5): 571
https://doi.org/10.1364/OPTICA.4.000571
31 Gao J. , Hang C. , X. Huang G. . Linear and nonlinear Bragg diffraction by electromagnetically induced gratings with PT symmetry and their active control in a Rydberg atomic gas. Phys. Rev. A, 2022, 105(6): 063511
https://doi.org/10.1103/PhysRevA.105.063511
32 P. Yuan J. , C. Dong S. , F. Zhang H. , H. Wu C. , R. Wang L. , T. Xiao L. , T. Jia S. . Efficient all-optical modulator based on a periodic dielectric atomic lattice. Opt. Express, 2021, 29(2): 2712
https://doi.org/10.1364/OE.418000
33 W. Brown A. , Xiao M. . All-optical switching and routing based on an electromagnetically induced absorption grating. Opt. Lett., 2005, 30(7): 699
https://doi.org/10.1364/OL.30.000699
34 Alù A. , Engheta N. . All optical metamaterial circuit board at the nanoscale. Phys. Rev. Lett., 2009, 103(14): 143902
https://doi.org/10.1103/PhysRevLett.103.143902
35 C. Rechtsman M. , M. Zeuner J. , Plotnik Y. , Lumer Y. , Podolsky D. , Dreisow F. , Nolte S. , Segev M. , Szameit A. . Photonic Floquet topological insulators. Nature, 2013, 496(7444): 196
https://doi.org/10.1038/nature12066
36 Q. Zhang Y. , K. Wu Z. , R. Belić M. , B. Zheng H. , G. Wang Z. , Xiao M. , P. Zhang Y. . Photonic Floquet topological insulators in atomic ensembles. Laser Photonics Rev., 2015, 9(3): 331
https://doi.org/10.1002/lpor.201400428
37 Y. Zhang Z. , Li F. , Malpuech G. , Q. Zhang Y. , Bleu O. , Koniakhin S. , B. Li C. , P. Zhang Y. , Xiao M. , D. Solnyshkov D. . Particle-like behavior of topological defects in linear wave packets in photonic graphene. Phys. Rev. Lett., 2019, 122(23): 233905
https://doi.org/10.1103/PhysRevLett.122.233905
38 Y. Zhang Z. , Wang R. , Q. Zhang Y. , V. Kartashov Y. , Li F. , Zhong H. , Guan H. , L. Gao K. , L. Li F. , P. Zhang Y. , Xiao M. . Observation of edge solitons in photonic graphene. Nat. Commun., 2020, 11(1): 1902
https://doi.org/10.1038/s41467-020-15635-9
39 Y. Zhang Z. , Liang S. , Li F. , H. Ning S. , M. Li Y. , Malpuech G. , P. Zhang Y. , Xiao M. , Solnyshkov D. . Spin−orbit coupling in photonic graphene. Optica, 2020, 7(5): 455
https://doi.org/10.1364/OPTICA.390386
40 Y. Zhang Z. , Feng Y. , Li F. , Koniakhin S. , B. Li C. , Liu F. , P. Zhang Y. , Xiao M. , Malpuech G. , Solnyshkov D. . Angular-dependent Klein tunneling in photonic graphene. Phys. Rev. Lett., 2022, 129(23): 233901
https://doi.org/10.1103/PhysRevLett.129.233901
41 Tang Q. , Q. Ren B. , O. Kompanets V. , V. Kartashov Y. , D. Li Y. , Q. Zhang Y. . Valley Hall edge solitons in a photonic graphene. Opt. Express, 2021, 29(24): 39755
https://doi.org/10.1364/OE.442338
42 S. Deng F. , M. Li Y. , Sun Y. , Wang X. , W. Guo Z. , L. Shi Y. , T. Jiang H. , Chang K. , Chen H. . Valley-dependent beams controlled by pseudomagnetic field in distorted photonic graphene. Opt. Lett., 2015, 40(14): 3380
https://doi.org/10.1364/OL.40.003380
43 Lederer F. , I. Stegeman G. , N. Christodoulides D. , Assanto G. , Segev M. , Silberberg Y. . Discrete solitons in optics. Phys. Rep., 2008, 463(1−3): 1
https://doi.org/10.1016/j.physrep.2008.04.004
44 Szameit A. , L. Garanovich I. , Heinrich M. , A. Sukhorukov A. , Dreisow F. , Pertsch T. , Nolte S. , Tünnermann A. , Longhi S. , S. Kivshar Y. . Observation of two-dimensional dynamic localization of light. Phys. Rev. Lett., 2010, 104(22): 223903
https://doi.org/10.1103/PhysRevLett.104.223903
45 E. Skipetrov S. , Wulles P. . Topological transitions and Anderson localization of light in disordered atomic arrays. Phys. Rev. A, 2022, 105(4): 043514
https://doi.org/10.1103/PhysRevA.105.043514
46 H. Song D. , Leykam D. , Su J. , Y. Liu X. , Q. Tang L. , Liu S. , L. Zhao J. , K. Efremidis N. , J. Xu J. , G. Chen Z. . Valley vortex states and degeneracy lifting via photonic higher-band excitation. Phys. Rev. Lett., 2019, 122(12): 123903
https://doi.org/10.1103/PhysRevLett.122.123903
47 H. Song D. , Paltoglou V. , Liu S. , Zhu Y. , Gallardo D. , Q. Tang L. , J. Xu J. , Ablowitz M. , K. Efremidis N. , G. Chen Z. . Unveiling pseudospin and angular momentum in photonic graphene. Nat. Commun., 2015, 6(1): 6272
https://doi.org/10.1038/ncomms7272
48 Wen F. , P. Ye H. , Zhang X. , Wang W. , K. Li S. , X. Wang H. , P. Zhang Y. , W. Qiu C. . Optically induced atomic lattice with tunable near-field and far-field diffraction patterns. Photon. Res., 2017, 5(6): 676
https://doi.org/10.1364/PRJ.5.000676
49 F. Zhang H. , P. Yuan J. , T. Xiao L. , T. Jia S. , R. Wang L. . Geometric pattern evolution of photonic graphene in coherent atomic medium. Opt. Express, 2023, 31(7): 11335
https://doi.org/10.1364/OE.483371
50 Pampaloni F.Enderlein J., Gaussian, Hermite-Gaussian, and Laguerre−Gaussian beams: A primer, arXiv: physics/0410021 (2004)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed