Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (5): 52305   https://doi.org/10.1007/s11467-023-1296-0
  本期目录
Efficient high harmonic generation in nonlinear photonic moiré superlattice
Tingyin Ning1,2(), Yingying Ren1,2, Yanyan Huo1,2, Yangjian Cai1,2
1. Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
2. Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
 全文: PDF(5005 KB)   HTML
Abstract

Photonic moiré superlattice as an emerging platform of flatbands can tightly confine the light inside the cavity and has important applications not only in linear optics but also in nonlinear optics. In this paper, we numerically investigate the third- and fifth-order harmonic generation (THG and FHG) in photonic moiré superlattices fabricated by the nonlinear material silicon. The high conversion efficiency of THG and FHG is obtained at a relatively low intensity of fundamental light, e.g., the maximum conversion efficiency of THG and FHG arrives even up to be 10−2 and 10−9 at the fundamental intensity of 30 kW/m2, respectively, in the moiré superlattice of near flat band formed by the twist angle 6.01°. The results indicate the photonic moiré superlattice of a high-quality factor and flatbands is a promising platform for efficient nonlinear processes and advanced photonic devices.

Key wordsmoiré superlattice    resonant mode    harmonic generation
收稿日期: 2022-12-06      出版日期: 2023-05-26
Corresponding Author(s): Tingyin Ning   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(5): 52305.
Tingyin Ning, Yingying Ren, Yanyan Huo, Yangjian Cai. Efficient high harmonic generation in nonlinear photonic moiré superlattice. Front. Phys. , 2023, 18(5): 52305.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1296-0
https://academic.hep.com.cn/fop/CN/Y2023/V18/I5/52305
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 W. Boyd R., Nonlinear Optics, 3rd Ed., Elsevier, Academic Press, 2008
2 A. Franken P. , E. Hill A. , W. Peters C. , Weinreich G. . Generation of optical harmonics. Phys. Rev. Lett., 1961, 7(4): 118
https://doi.org/10.1103/PhysRevLett.7.118
3 Kauranen M. , V. Zayats A. . Nonlinear plasmonics. Nat. Photonics, 2012, 6(11): 737
https://doi.org/10.1038/nphoton.2012.244
4 Kivshar Y. . All-dielectric meta-optics and non-linear nanophotonics. Natl. Sci. Rev., 2018, 5(2): 144
https://doi.org/10.1093/nsr/nwy017
5 Sain B. , Meier C. , Zentgraf T. . Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review. Adv. Photonics, 2019, 1(2): 024002
https://doi.org/10.1117/1.AP.1.2.024002
6 K. Chen C. , R. B. de Castro A. , R. Shen Y. . Surface-enhanced second-harmonic. Phys. Rev. Lett., 1981, 46(2): 145
https://doi.org/10.1103/PhysRevLett.46.145
7 W. Klein M. , Enkrich C. , Wegener M. , Linden S. . Second harmonic generation from magnetic metamaterials. Science, 2006, 313(5786): 502
https://doi.org/10.1126/science.1129198
8 Celebrano M. , Wu X. , Baselli M. , Großmann S. , Biagioni P. , Locatelli A. , De Angelis C. , Cerullo G. , Osellame R. , Hecht B. , Duò L. , Ciccacci F. , Finazzi M. . Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol., 2015, 10(5): 412
https://doi.org/10.1038/nnano.2015.69
9 Zhang Y. , K. Grady N. , Ayala-Orozco C. , J. Halas N. . Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett., 2011, 11(12): 5519
https://doi.org/10.1021/nl2033602
10 Karnieli A. , Li Y. , Arie A. . The geometric phase in nonlinear frequency conversion. Front. Phys., 2022, 17(1): 12301
https://doi.org/10.1007/s11467-021-1102-9
11 P. Markowicz P. , Tiryaki H. , Pudavar H. , N. Prasad P. , N. Lepeshkin N. , W. Boyd R. . Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals. Phys. Rev. Lett., 2004, 92(8): 083903
https://doi.org/10.1103/PhysRevLett.92.083903
12 Diziain S. , Geiss R. , Zilk M. , Schrempel F. , B. Kley E. , Tünnermann A. , Pertsch T. . Second harmonic generation in free-standing lithium niobite photonic crystal L3 cavity. Appl. Phys. Lett., 2013, 103(5): 051117
https://doi.org/10.1063/1.4817507
13 Yamada S. , S. Song B. , Jeon S. , Upham J. , Tanaka Y. , Asano T. , Noda S. . Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity. Opt. Lett., 2014, 39(7): 1768
https://doi.org/10.1364/OL.39.001768
14 Siltanen M. , Leivo S. , Voima P. , Kauranen M. , Karvinen P. , Vahimaa P. , Kuittinen M. . Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating. Appl. Phys. Lett., 2007, 91(11): 111109
https://doi.org/10.1063/1.2783969
15 Ning T. , Pietarinen H. , Hyvärinen O. , Kumar R. , Kaplas T. , Kauranen M. , Genty G. . Efficient second-harmonic generation in silicon nitride resonant waveguide gratings. Opt. Lett., 2012, 37(20): 4269
https://doi.org/10.1364/OL.37.004269
16 Quaranta G. , Basset G. , J. F. Martin O. , Gallinet B. . Recent advances in resonant waveguide gratings. Laser Photonics Rev., 2018, 12(9): 1800017
https://doi.org/10.1002/lpor.201800017
17 S. Ilchenko V. , A. Savchenkov A. , B. Matsko A. , Maleki L. . Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 2004, 92(4): 043903
https://doi.org/10.1103/PhysRevLett.92.043903
18 S. Levy J. , A. Foster M. , L. Gaeta A. , Lipson M. . Harmonic generation in silicon nitride ring resonators. Opt. Express, 2011, 19(12): 11415
https://doi.org/10.1364/OE.19.011415
19 F. Bi Z. , W. Rodriguez A. , Hashemi H. , Duchesne D. , Loncar M. , M. Wang K. , G. Johnson S. . High-efficiency second-harmonic generation in doubly-resonant (2) microring resonantors. Opt. Express, 2012, 20(7): 7526
https://doi.org/10.1364/OE.20.007526
20 Li G. , Zhang S. , Zentgraf T. . Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2017, 2(5): 17010
https://doi.org/10.1038/natrevmats.2017.10
21 Krasnok A. , Tymchenko M. , Alù A. . Nonliear metasurfaces: A paradigm shift in nonlinear optics. Mater. Today, 2018, 21(1): 8
https://doi.org/10.1016/j.mattod.2017.06.007
22 Huang T. , Zhao X. , Zeng S. , Crunteanu A. , P. Shum P. , Yu N. . Planar nonlinear metasurface optics and their applications. Rep. Prog. Phys., 2020, 83(12): 126101
https://doi.org/10.1088/1361-6633/abb56e
23 Liu S. , B. Sinclair M. , Saravi S. , A. Keeler G. , Yang Y. , Reno J. , M. Peake G. , Setzpfandt F. , Staude I. , Pertsch T. , Brener I. . Resonantly enhanced second-harmonic generation using III−V semiconductor all-dielectric metasurfaces. Nano Lett., 2016, 16(9): 5426
https://doi.org/10.1021/acs.nanolett.6b01816
24 Rocco D. , A. Vincenti M. , De Angelis C. . Boosting second harmonic radiation from AlGaAs nanoantennas with epsilon-near-zero materials. Appl. Sci. (Basel), 2018, 8(11): 2212
https://doi.org/10.3390/app8112212
25 Yang Y. , Wang W. , Boulesbaa A. , I. Kravchenko I. , P. Briggs D. , Puretzky A. , Geohegan D. , Valentine J. . Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 2015, 15(11): 7388
https://doi.org/10.1021/acs.nanolett.5b02802
26 Xu L. , Rahmani M. , Z. Kamali K. , Lamprianidis A. , Ghirardini L. , Sautter J. , Camacho-Morales R. , Chen H. , Parry M. , Staude I. , Zhang G. , Neshev D. , E. Miroshnichenko A. . Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light Sci. Appl., 2018, 7(1): 44
27 W. Hsu C. , Zhen B. , D. Stone A. , D. Joannopoulos J. , Soljacic M. . Bound states in the continuum. Nat. Rev. Mater., 2016, 1(9): 16048
https://doi.org/10.1038/natrevmats.2016.48
28 Kang L. , Bao H. , H. Werner D. . Efficient second-harmonic generation in high Q-factor asymmetric lithium niobite metasurfaces. Opt. Lett., 2021, 46(3): 633
https://doi.org/10.1364/OL.413764
29 Han Z. , Ding F. , Cai Y. , Levy U. . Significantly enhanced second-harmonic generations with all-dielectric antenna array working in the quasi-bound states in the continuum and excited by linearly polarized plane waves. Nanophotonics, 2021, 10(3): 1189
https://doi.org/10.1515/nanoph-2020-0598
30 Liu Z. , Xu Y. , Lin Y. , Xiang J. , Feng T. , Cao Q. , Li J. , Lan S. , Liu J. . High-Q quasi-bound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 2019, 123(25): 253901
https://doi.org/10.1103/PhysRevLett.123.253901
31 Carletti L. , S. Kruk S. , A. Bogdanov A. , De Angelis C. , Kivshar Y. . High-harmonic generation at the nanoscale boosted by bound states in the continuum. Phys. Rev. Res., 2019, 1(2): 023016
https://doi.org/10.1103/PhysRevResearch.1.023016
32 Xiao S. , Qin M. , Duan J. , Wu F. , Liu T. . Polarization-controlled dynamically switchable high-harmonic generation from all-dielectric metasurfaces governed by dual bound states in the continuum. Phys. Rev. B, 2022, 105(19): 195440
https://doi.org/10.1103/PhysRevB.105.195440
33 Xiao S. , Qin M. , Duan J. , Liu T. . Robust enhancement of high-harmonic generation from all-dielectric metasurfaces enabled by polarization-insensitive bound states in the continuum. Opt. Express, 2022, 30(18): 32590
https://doi.org/10.1364/OE.468925
34 Zograf G. , Koshelev K. , Zalogina A. , Korolev V. , Hollinger R. , Y. Choi D. , Zuerch M. , Spielmann C. , Luther-Davies B. , Kartashov D. , V. Makarov S. , S. Kruk S. , Kivshar Y. . High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photonics, 2022, 9(2): 567
https://doi.org/10.1021/acsphotonics.1c01511
35 Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
36 Cao Y. , Fatemi V. , Demir A. , Fang S. , L. Tomarken S. , Y. Luo J. , D. Sanchez-Yamagishi J. , Watanabe K. , Taniguchi T. , Kaxiras E. , C. Ashoori R. , Jarillo-Herrero P. . Correlated insulator behavior at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
https://doi.org/10.1038/nature26154
37 Zhang W. , Zou D. , Pei Q. , He W. , Sun H. , Zhang X. . Moiré circuits: Engineering magic-angle behavior. Phys. Rev. B, 2021, 104(20): L201408
https://doi.org/10.1103/PhysRevB.104.L201408
38 Wang P. , Zheng Y. , Chen X. , Huang C. , Kartashov Y. , Torner L. , Konotop V. , Ye F. . Localization and delocalization of light in photonic moiré lattices. Nature, 2020, 577(7788): 42
https://doi.org/10.1038/s41586-019-1851-6
39 Chen Z. , Liu X. , Zeng J. . Electromagnetically induced moiré optical lattices in a coherent atomic gas. Front. Phys., 2022, 17(4): 42508
https://doi.org/10.1007/s11467-022-1153-6
40 R. Mao X. , K. Shao Z. , Y. Luan H. , L. Wang S. , M. Ma R. . Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol., 2021, 16(10): 1099
https://doi.org/10.1038/s41565-021-00956-7
41 Zhang Z. , Liu D. , Huo Y. , Ning T. . Ultralow-level all-optical self-switching in a nanostructured moiré superlattice. Opt. Lett., 2022, 47(20): 5260
https://doi.org/10.1364/OL.468191
42 Z. Zhang H. , Y. Qin H. , X. Zhang W. , Huang L. , D. Zhang X. . Moiré graphene nanoribbons: Nearly perfect absorptions and highly efficient reflections with wide angles. Opt. Express, 2022, 30(2): 2219
https://doi.org/10.1364/OE.445348
43 Hong P. , Xu L. , Ying C. , Rahmani M. . Flatband mode in photonic moiré lattice for boosting second-harmonic generation with monolayer van der Waals crystals. Opt. Lett., 2022, 47(9): 2326
https://doi.org/10.1364/OL.453625
44 Ha S. , H. Park N. , Kim H. , Shin J. , Choi J. , Park S. , Y. Moon J. , Chae K. , Jung J. , H. Lee J. , Yoo Y. , Y. Park J. , J. Ahn K. , I. Yeom D. . Enhanced third-harmonic generation by manipulating the twist angle of bilayer graphene. Light Sci. Appl., 2021, 10(1): 19
https://doi.org/10.1038/s41377-020-00459-5
45 Y. Yang F. , S. Song W. , H. Meng F. , C. Luo F. , Lou S. , R. Lin S. , L. Gong Z. , H. Cao J. , S. Barnard E. , Chan E. , Yang L. , Yao J. . Tunable second harmonic generation in twisted bilayer graphene. Matter, 2020, 3(4): 1361
https://doi.org/10.1016/j.matt.2020.08.018
46 J. Du L. , Y. Dai Y. , P. Sun Z. . Twisting for tunable nonlinear optics. Matter, 2020, 3(4): 987
https://doi.org/10.1016/j.matt.2020.09.013
47 Ning T. , Li X. , Zhao Y. , Yin L. , Huo Y. , Zhao L. , Yue Q. . Giant enhancement of harmonic generation in all-dielectric resonant waveguide gratings of quasi-bound states in the continuum. Opt. Express, 2020, 28(23): 34024
https://doi.org/10.1364/OE.409276
48 Koshelev K. , Tang Y. , Li K. , Y. Choi D. , Li G. , Kivshar Y. . Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics, 2019, 6(7): 1639
https://doi.org/10.1021/acsphotonics.9b00700
49 E. Aspnes D. , A. Studna A. , functions Dielectric , parameters of Si optical . InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B, 1983, 27(2): 985
https://doi.org/10.1103/PhysRevB.27.985
50 Schinke C. , Christian Peest P. , Schmidt J. , Brendel R. , Bothe K. , R. Vogt M. , Kröger I. , Winter S. , Schirmacher A. , Lim S. , T. Nguyen H. , MacDonald D. . Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv., 2015, 5(6): 067168
https://doi.org/10.1063/1.4923379
51 Huang L. , Zhang W. , Zhang X. . Moiré quasibound states in the continuum. Phys. Rev. Lett., 2022, 128(25): 253901
https://doi.org/10.1103/PhysRevLett.128.253901
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed