Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (4): 43304   https://doi.org/10.1007/s11467-023-1297-z
  本期目录
Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer
Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan(), Jinlan Wang()
Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
 全文: PDF(6096 KB)   HTML
Abstract

As a two-dimensional material with a hollow hexatomic ring structure, Néel-type anti-ferromagnetic (AFM) GdI3 can be used as a theoretical model to study the effect of electron doping. Based on first-principles calculations, we find that the Fermi surface nesting occurs when more than 1/3 electron per Gd is doped, resulting in the failure to obtain a stable ferromagnetic (FM) state. More interestingly, GdI3 with appropriate Mg/Ca doping (1/6 Mg/Ca per Gd) turns to be half-metallic FM state. This AFM−FM transition results from the transfer of doped electrons to the spatially expanded Gd-5d orbital, which leads to the FM coupling of local half-full Gd-4f electrons through 5d−4f hybridization. Moreover, the shortened Gd−Gd length is the key to the formation of the stable ferromagnetic coupling. Our method provides new insights into obtaining stable FM materials from AFM materials.

Key wordstwo-dimensional materials    electronic structure    magnetism
收稿日期: 2022-12-22      出版日期: 2023-05-26
Corresponding Author(s): Shijun Yuan,Jinlan Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(4): 43304.
Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan, Jinlan Wang. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer. Front. Phys. , 2023, 18(4): 43304.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1297-z
https://academic.hep.com.cn/fop/CN/Y2023/V18/I4/43304
Fig.1  
Orderabd1d2d3Energy
FM13.07926.3693.8244.0644.5270.0
Néel13.26926.5724.1744.5494.560345.8
Zigzag13.35026.2463.8174.4004.62911.3
Stripy113.08026.5823.7734.2584.594143.1
Stripy213.08426.3983.8414.1044.59730.5
GdI37.7857.7854.494???
(GdI3)2Mg7.78712.4163.4074.832??
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Gong C. , Li L. , L. Li Z. , W. Ji H. , Stern A. , Xia Y. , Cao T. , Bao W. , Z. Wang C. , A. Wang Y. , Q. Qiu Z. , J. Cava R. , G. Louie S. , Xia J. , Zhang X. . Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
2 Huang B. , Clark G. , Navarro-Moratalla E. , R. Klein D. , Cheng R. , L. Seyler K. , Zhong D. , Schmidgall E. , A. McGuire M. , H. Cobden D. , Yao W. , Xiao D. , Jarillo-Herrero P. , D. Xu X. . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
3 An M. , Dong S. . Ferroic orders in two-dimensional transition/rare-earth metal halides. APL Mater., 2020, 8(11): 110704
https://doi.org/10.1063/5.0031870
4 Cheng X. , X. Cheng Z. , Wang C. , L. Li M. , F. Gu P. , Q. Yang S. , P. Li Y. , Watanabe K. , Taniguchi T. , Ji W. , Dai L. . Light helicity detector based on 2D magnetic semiconductor CrI3. Nat. Commun., 2021, 12(1): 6874
https://doi.org/10.1038/s41467-021-27218-3
5 Ding N. , Chen J. , Dong S. , Stroppa A. . Ferroelectricity and ferromagnetism in a VOI2 monolayer: Role of the Dzyaloshinskii−Moriya interaction. Phys. Rev. B, 2020, 102(16): 165129
https://doi.org/10.1103/PhysRevB.102.165129
6 Gong C. , Zhang X. . Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363(6428): eaav4450
https://doi.org/10.1126/science.aav4450
7 Hidalgo-Sacoto R. , I. Gonzalez R. , E. Vogel E. , Allende S. , D. Mella J. , Cardenas C. , E. Troncoso R. , Munoz F. . Magnon valley Hall effect in CrI3-based van der Waals heterostructures. Phys. Rev. B, 2020, 101(20): 205425
https://doi.org/10.1103/PhysRevB.101.205425
8 X. Huang C. , P. Du Y. , P. Wu H. , J. Xiang H. , M. Deng K. , J. Kan E. . Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett., 2018, 120(14): 147601
https://doi.org/10.1103/PhysRevLett.120.147601
9 Y. Kim S. , Y. Kim T. , J. Sandilands L. , Sinn S. , C. Lee M. , Son J. , Lee S. , Y. Choi K. , Kim W. , G. Park B. , Jeon C. , D. Kim H. , H. Park C. , G. Park J. , J. Moon S. , W. Noh T. . Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett., 2018, 120(13): 136402
https://doi.org/10.1103/PhysRevLett.120.136402
10 A. McGuire M. , O. Garlea V. , Kc S. , R. Cooper V. , Yan J. , Cao H. , C. Sales B. . Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. Phys. Rev. B, 2017, 95(14): 144421
https://doi.org/10.1103/PhysRevB.95.144421
11 L. Sun Q. , Kioussis N. . Prediction of manganese trihalides as two-dimensional Dirac half-metals. Phys. Rev. B, 2018, 97(9): 094408
https://doi.org/10.1103/PhysRevB.97.094408
12 Tang X. , Z. Kou L. . Two-dimensional ferroics and multiferroics: Platforms for new physics and applications. J. Phys. Chem. Lett., 2019, 10(21): 6634
https://doi.org/10.1021/acs.jpclett.9b01969
13 H. Wu M. , Jena P. . The rise of two-dimensional van der Waals ferroelectrics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(5): e1365
https://doi.org/10.1002/wcms.1365
14 Zhou S. , You L. , L. Zhou H. , Pu Y. , G. Gui Z. , L. Wang J. . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
https://doi.org/10.1007/s11467-020-0986-0
15 Y. He X.T. Lin F.Liu F.Shi W., 3D Dirac semimetals supported tunable terahertz BIC metamaterials, Nanophotonics 11(21), 4705 (2022)
16 Leng J. , Peng J. , Jin A. , Cao D. , J. Liu D. , Y. He X. , T. Lin F. , Liu F. . Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol., 2022, 146: 107570
https://doi.org/10.1016/j.optlastec.2021.107570
17 Peng J. , Y. He X. , Y. Y. Shi C. , Leng J. , T. Lin F. , Liu F. , Zhang H. , Z. Shi W. . Investigation of graphene supported terahertz elliptical metamaterials. Physica E, 2020, 124: 114309
https://doi.org/10.1016/j.physe.2020.114309
18 Y. He X.Liu F.T. Lin F.Shi W., 3D Dirac semimetal supported tunable TE modes, Ann. Phys. 534(4), 2100355 (2022)
19 L. L. Zhuang H. , R. C. Kent P. , G. Hennig R. . Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys. Rev. B, 2016, 93(13): 134407
https://doi.org/10.1103/PhysRevB.93.134407
20 Wang B. , H. Zhang Y. , Ma L. , S. Wu Q. , L. Guo Y. , W. Zhang X. , L. Wang J. , (X = P MnX . As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. Nanoscale, 2019, 11(10): 4204
https://doi.org/10.1039/C8NR09734H
21 Wang B. , W. Zhang X. , H. Zhang Y. , J. Yuan S. , Guo Y. , Dong S. , L. Wang J. . Prediction of a two-dimensional high-Tc f-electron ferromagnetic semiconductor. Mater. Horiz., 2020, 7(6): 1623
https://doi.org/10.1039/D0MH00183J
22 Guo Y. , H. Zhang Y. , H. Lu S. , W. Zhang X. , H. Zhou Q. , J. Yuan S. , L. Wang J. . Coexistence of semiconducting ferromagnetics and piezoelectrics down 2D limit from non van der Waals antiferromagnetic LiNbO3-type FeTiO3. J. Phys. Chem. Lett., 2022, 13(8): 1991
https://doi.org/10.1021/acs.jpclett.2c00091
23 A. Broadway D. , C. Scholten S. , Tan C. , Dontschuk N. , E. Lillie S. , C. Johnson B. , L. Zheng G. , H. Wang Z. , R. Oganov A. , J. Tian S. , H. Li C. , C. Lei H. , Wang L. , C. L. Hollenberg L. , P. Tetienne J. . Imaging domain reversal in an ultrathin van der Waals ferromagnet. Adv. Mater., 2020, 32(39): 2003314
https://doi.org/10.1002/adma.202003314
24 A. McGuire M. , Clark G. , Kc S. , M. Chance W. , E. Jellison G. , R. Cooper V. , Xu X. , C. Sales B. . Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys. Rev. Mater., 2017, 1(1): 014001
https://doi.org/10.1103/PhysRevMaterials.1.014001
25 J. Tian S. , F. Zhang J. , H. Li C. , P. Ying T. , Y. Li S. , Zhang X. , Liu K. , C. Lei H. . Ferromagnetic van der Waals crystal VI3. J. Am. Chem. Soc., 2019, 141(13): 5326
https://doi.org/10.1021/jacs.8b13584
26 W. Zhang Z. , Z. Shang J. , Y. Jiang C. , Rasmita A. , B. Gao W. , Yu T. . Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett., 2019, 19(5): 3138
https://doi.org/10.1021/acs.nanolett.9b00553
27 Dagotto E. . Complexity in strongly correlated electronic systems. Science, 2005, 309(5732): 257
https://doi.org/10.1126/science.1107559
28 B. Asprey L. , K. Keenan T. , H. Kruse F. . Preparation and crystal data for lanthanide and actinide triiodides. Inorg. Chem., 1964, 3(8): 1137
https://doi.org/10.1021/ic50018a015
29 P. You H. , Zhang Y. , Chen J. , Ding N. , An M. , Miao L. , Dong S. . Peierls transition driven ferroelasticity in the two-dimensional df hybrid magnets. Phys. Rev. B, 2021, 103(16): L161408
https://doi.org/10.1103/PhysRevB.103.L161408
30 P. You H. , Ding N. , Chen J. , Y. Yao X. , Dong S. . Gadolinium halide monolayers: A fertile family of two-dimensional 4f magnets. ACS Appl. Electron. Mater., 2022, 4(7): 3168
https://doi.org/10.1021/acsaelm.2c00384
31 Kresse G. , Furthmuller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
32 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
33 Larson P. , R. L. Lambrecht W. , Chantis A. , van Schilfgaarde M. . Electronic structure of rare-earth nitrides using the LSDA plus U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B, 2007, 75(4): 045114
https://doi.org/10.1103/PhysRevB.75.045114
34 H. Zhang Y.Wang B.Guo Y.Li Q.N. Wang J., A universal framework for metropolis Monte Carlo simulation of magnetic Curie temperature, Comput. Mater. Sci. 197, 110638 (2021)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed