Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 64601   https://doi.org/10.1007/s11467-023-1303-5
  本期目录
Experimental studies for nuclear chirality in China
Shouyu Wang1,2(), Chen Liu1,2, Bin Qi1,2, Wenzheng Xu1,2, Hui Zhang1,2
1. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai 264209, China
2. Weihai Research Institute of Industrial Technology of Shandong University, Shandong University, Weihai 264209, China
 全文: PDF(8966 KB)   HTML
Abstract

In the last decade, chiral symmetry in atomic nuclei has attracted significant attention and become one of the hot topics in current nuclear physics frontiers. This paper provides a review of experimental studies for nuclear chirality in China. In particular, the experimental setups, chiral mass regions, lifetime measurements, and simultaneous breaking of chirality and other symmetries are discussed in detail. These studies found a new chiral mass region (A ≈ 80), extended the boundaries of the A ≈ 100 and 130 chiral mass regions, and tested the chiral geometry of 130Cs, 106Ag, 80Br and 76Br by lifetime measurements. In addition, simultaneous breaking of chirality and other symmetries have been studied in 74As, 76Br, 78Br, 80Br, 81Kr and 131Ba.

Key wordsnuclear chirality    lifetime measurements    energy spectra    electromagnetic transition probabilities
收稿日期: 2023-05-03      出版日期: 2023-07-20
Corresponding Author(s): Shouyu Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 64601.
Shouyu Wang, Chen Liu, Bin Qi, Wenzheng Xu, Hui Zhang. Experimental studies for nuclear chirality in China. Front. Phys. , 2023, 18(6): 64601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1303-5
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/64601
Fig.1  
Nuclei Reaction Lab. Detection array
74As [14] 74Ge(α,1p3n) iThemba LABS AFRODITE (8 Clovers & 2 LEPS)
76Br [15] 68Zn(12C,1p3n) CIAE 9 HPGe & 1 LEPS
78Br [16] 70Zn(12C,1p3n) iThemba LABS AFRODITE (8 Clovers & DIAMANT)
80Br [17] 76Ge(11B,α3n) iThemba LABS AFRODITE (8 Clovers)
82Br [19] 82Ge(α,1p3n) iThemba LABS AFRODITE (8 Clovers)
81Kr [20] 82Ge(α,5n) iThemba LABS AFRODITE (8 Clovers)
84Rb [21] 76Ge(11B,3n) CIAE 6 HPGe & 1 Clover
106Mo [22] Spontaneous fission of 252Cf LBNL Gammasphere
98Tc [23] 96Zr(6Li,4n) CIAE 14 HPGe
110Ru [22] Spontaneous fission of 252Cf LBNL Gammasphere
112Ru [22] Spontaneous fission of 252Cf LBNL Gammasphere
104Ag [24] 97Mo(11B,4n) CIAE 13 HPGe
106Ag [25, 26] 100Mo(11B,5n) CIAE 15 HPGe
100Mo(11B,5n) CIAE 10 HPGe & 1 Clover & 2 LEPS
107Ag [27, 28] 100Mo(11B,4n) CIAE 10 HPGe & 1 Clover & 2 LEPS
100Mo(11B,4n) CIAE 12 HPGe & 1 Clover
110Ag [29] 110Pd(7Li,α3n) CIAE 9 HPGe & 1 Clover & 2 LEPS
109In [30] 100Mo(14N,5n) CIAE 9 HPGe & 1 Clover & 2 LEPS
123I [31] 116Cd(14N,α3n) Niels Bohr Institute NORDBALL (19 HPGe&1 LEPS)
126I [32] 124Sn(7Li,5n) CIAE 12 HPGe & 2 LEPS
126Cs [33, 34] 116Cd(14N,4n) IMP 10 HPGe & 1 LEPS
116Cd(14N,4n) Niels Bohr Institute NORDBALL (19HPGe & 1 LEPS)
130Cs [35, 36] 124Sn(11B,5n) CIAE 14 HPGe
131Ba [37] 122Sn(13C,4n) Laboratori Nazionali di Legnaro GALILEO (25 HPGe)
128La [38] 118Sn(14N,4n) CIAE 14 HPGe & 2 LEPS
138Pm [39] 124Te(19F,5n) CIAE 10 HPGe & 1 Clover & 1 LEPS
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 Frauendorf S., Meng J.. Tilted rotation of triaxial nuclei. Nucl. Phys. A, 1997, 617(2): 131
https://doi.org/10.1016/S0375-9474(97)00004-3
2 Koike T.Starosta K.Vaman C.Ahn T.B. Fossan D.M. Clark R.Cromaz M.Y. Lee I. O. Macchiavelli A., Sensitive criterion for chirality; chiral doublet bands in 59104Rh, AIP Conf. Proc. 656, 160 (2003)
3 Koike T., Starosta K., Hamamoto I.. Chiral bands, dynamical spontaneous symmetry breaking, and the selection rule for electromagnetic transitions in the chiral geometry. Phys. Rev. Lett., 2004, 93(17): 172502
https://doi.org/10.1103/PhysRevLett.93.172502
4 Y. Wang S., Q. Zhang S., Qi B., Meng J.. Examining the chiral geometry in 104Rh and 106Rh. Chin. Phys. Lett., 2007, 24(2): 664
https://doi.org/10.1088/0256-307X/24/3/021
5 Frauendorf S.. Spontaneous symmetry breaking in rotating nuclei. Rev. Mod. Phys., 2001, 73(2): 463
https://doi.org/10.1103/RevModPhys.73.463
6 Meng J., Qi B., Q. Zhang S., Y. Wang S.. Chiral symmetry in atomic nuclei. Mod. Phys. Lett. A, 2008, 23(27n30): 2560
https://doi.org/10.1142/S0217732308029800
7 Meng J., Q. Zhang S.. Open problems in understanding the nuclear chirality. J. Phys. G, 2010, 37(6): 064025
https://doi.org/10.1088/0954-3899/37/6/064025
8 A. Bark R., O. Lieder E., M. Lieder R., A. Lawrie E., J. Lawrie J., P. Bvumbi S., Y. Kheswa N., S. Ntshangase S., E. Madiba T., L. Masiteng P., M. Mullins S., Murray S., Papka P., Shirinda O., B. Chen Q., Q. Zhang S., H. Zhang Z., W. Zhao P., Xu C., Meng J., G. Roux D., P. Li Z., Peng J., Qi B., Y. Wang S., G. Xiao Z.. Studies of chirality in the mass 80, 100 and 190 regions. Int. J. Mod. Phys. E, 2014, 23(7): 1461001
https://doi.org/10.1142/S0218301314610011
9 Meng J., W. Zhao P.. Nuclear chiral and magnetic rotation in covariant density functional theory. Phys. Scr., 2016, 91(5): 053008
https://doi.org/10.1088/0031-8949/91/5/053008
10 A. Raduta A.. Specific features and symmetries for magnetic and chiral bands in nuclei. Prog. Part. Nucl. Phys., 2016, 90: 241
https://doi.org/10.1016/j.ppnp.2016.05.002
11 Starosta K., Koike T.. Nuclear chirality, a model and the data. Phys. Scr., 2017, 92(9): 093002
https://doi.org/10.1088/1402-4896/aa800e
12 W. Xiong B., Y. Wang Y.. Nuclear chiral doublet bands data tables. At. Data Nucl. Data Tables, 2019, 125: 193
https://doi.org/10.1016/j.adt.2018.05.002
13 Y. Wang S.. Recent progress in multiple chiral doublet bands. Chin. Phys. C, 2020, 44(11): 112001
https://doi.org/10.1088/1674-1137/abaed2
14 Xiao X., Y. Wang S., Liu C., A. Bark R., Meng J.. et al.. Chirality and octupole correlations in 74As. Phys. Rev. C, 2022, 106(6): 064302
https://doi.org/10.1103/PhysRevC.106.064302
15 Z. Xu W., Y. Wang S., Liu C., G. Wu X., J. Guo R., Qi B., Zhao J., Rohilla A., Jia H., S. Li G., Zheng Y., B. Li C., C. Han X., Mu L., Xiao X., Wang S., P. Sun D., Q. Li Z., M. Zhang Y., L. Wang C., Li Y.. Interplay between nuclear chiral and reflection symmetry breakings revealed by the lifetime measurements in 76Br. Phys. Lett. B, 2022, 833: 137287
https://doi.org/10.1016/j.physletb.2022.137287
16 Liu C., Y. Wang S., A. Bark R., Q. Zhang S., Meng J.. et al.. Evidence for octupole correlations in multiple chiral doublet bands. Phys. Rev. Lett., 2016, 116(11): 112501
https://doi.org/10.1103/PhysRevLett.116.112501
17 Y. Wang S., Qi B., Liu L., Q. Zhang S., Hua H., Q. Li X., Y. Chen Y., H. Zhu L., Meng J., M. Wyngaardt S., Papka P., T. Ibrahim T., A. Bark R., Datta P., A. Lawrie E., J. Lawrie J., N. T. Majola S., L. Masiteng P., M. Mullins S., Gál J., Kalinka G., Molnár J., M. Nyakó B., Timár J., Juhász K., Schwengner R.. The first candidate for chiral nuclei in the A ~ 80 mass region: 80Br. Phys. Lett. B, 2011, 703(1): 40
https://doi.org/10.1016/j.physletb.2011.07.055
18 J. Guo R., Y. Wang S., Schwengner R., Z. Xu W., Qi B., Liu C., Rohilla A., Dönau F., Servene T., Schnare H., Reif J., Winter G., Käubler L., Prade H., Skoda S., Eberth J., G. Thomas H., Becker F., Fiedler B., Freund S., Kasemann S., Steinhardt T., Thelen O., Härtlein T., Ender C., Köck F., Reiter P., Schwalm D.. Lifetime measurements in 80Br and a new region for observation of chiral electromagnetic selection rules. Phys. Lett. B, 2022, 833: 137344
https://doi.org/10.1016/j.physletb.2022.137344
19 Liu C., Y. Wang S., Qi B., Wang S., P. Sun D.. et al.. New candidate chiral nucleus in the A ≈ 80 mass region: 3582 Br47. Phys. Rev. C, 2019, 100(5): 054309
https://doi.org/10.1103/PhysRevC.100.054309
20 Mu L., Y. Wang S., Liu C., Qi B., A. Bark R., Meng J.. et al.. First observation of the coexistence of multiple chiral doublet bands and pseudospin doublet bands in the A ≈ 80 mass region. Phys. Lett. B, 2022, 827: 137006
https://doi.org/10.1016/j.physletb.2022.137006
21 C. Han X., Y. Wang S., Qi B., Liu C., Wang S., P. Sun D., Q. Li Z., Jia H., J. Guo R., Xiao X., Mu L., Lu X., Wang Q., Z. Xu W., W. Li H., G. Wu X., Zheng Y., B. Li C., X. Li T., Y. Huang Z., Y. Wu H., W. Luo D.. First observation of candidate chiral doublet bands in Z = 37 Rb isotopes. Phys. Rev. C, 2021, 104(1): 014327
https://doi.org/10.1103/PhysRevC.104.014327
22 J. Zhu S.H. Hamilton J.V. Ramayya A.K. Hwang J.O. Rasmussen J.X. Luo Y.Li K.G. Wang J. L. Che X.B. Ding H.Frauendorf S.Dimitrov V.Xu Q. Gu L.Y. Yang Y., Search for chiral bands in A ~ 110 neutron-rich nuclei, Chin. Phys. C 33(4), 145 (2009)
23 B. Ding H., J. Zhu S., G. Wang J., Gu L., Xu Q., G. Xiao Z., Y. Yeoha E., Zhang M., H. Zhu L., G. Wu X., Liu Y., Y. He C., L. Wang L., Pan B., S. Li G.. Proposed chiral doublet bands in 98Tc. Chin. Phys. Lett., 2010, 27(7): 072501
https://doi.org/10.1088/0256-307X/27/7/072501
24 G. Wang Z., L. Liu M., H. Zhang Y., H. Zhou X., T. Hu B., T. Zhang N., Guo S., Ding B., D. Fang Y., G. Wang J., S. Li G., H. Qiang Y., C. Li S., S. Gao B., Zheng Y., Hua W., G. Wu X., Y. He C., Zheng Y., B. Li C., J. Liu J., P. Hu S.. High-spin level structure of the doubly odd nucleus 104Ag. Phys. Rev. C, 2013, 88(2): 024306
https://doi.org/10.1103/PhysRevC.88.024306
25 Y. He C.H. Zhu L.G. Wu X.M. Wang Z.Liu Y. Z. Cui X.L. Zhang Z.Meng R.G. Ma R.B. Sun H. X. Wen S.S. Li G.X. Yang C., Experimental study on chirality in 106Ag, Chin. Phys. C. 30(52), 166 (2006)
26 Zheng Y., H. Zhu L., G. Wu X., Y. He C., S. Li G., Hao X., B. Yu B., H. Yao S., Zhang B., Xu C., G. Wang J., Gu L.. Electromagnetic transition strengths and new insight into the chirality in 106Ag. Chin. Phys. Lett., 2014, 31(6): 062101
https://doi.org/10.1088/0256-307X/31/6/062101
27 Zhang B., H. Zhu L., B. Sun H., Y. He C., G. Wu X., B. Lu J., J. Ma Y., Hao X., Zheng Y., B. Yu B., S. Li G., H. Yao S., L. Wang L., Xu C., G. Wang J., Gu L.. New band structures in 107Ag. Chin. Phys. C, 2011, 35(11): 1009
https://doi.org/10.1088/1674-1137/35/11/005
28 Y. He C., Zhang B., H. Zhu L., G. Wu X., B. Sun H., Zheng Y., B. Yu B., L. Wang L., S. Li G., H. Yao S., Xu C., G. Wang J., Gu L.. Quest for chirality in 107Ag. Plasma Sci. Technol., 2012, 14(6): 518
https://doi.org/10.1088/1009-0630/14/6/18
29 Y. Ma K., Wang H., N. Pan H., B. Lu J., J. Ma Y., Yang D., Y. Yang Q., Guan X., Q. Wang J., Y. Liu S., C. Zhang H., G. Wu X., Zheng Y., B. Li C.. High-spin states and possible chirality in odd−odd 110Ag. Phys. Rev. C, 2021, 103(2): 024302
https://doi.org/10.1103/PhysRevC.103.024302
30 Wang M., Y. Wang Y., H. Zhu L., H. Sun B., L. Zhang G., C. He L., W. Qu W., Wang F., F. Wang T., Y. Chen Y., Xiong C., Zhang J., M. Zhang J., Zheng Y., Y. He C., S. Li G., L. Wang J., G. Wu X., H. Yao S., B. Li C., W. Li H., P. Hu S., J. Liu J.. New high-spin structure and possible chirality in 109In. Phys. Rev. C, 2018, 98(1): 014304
https://doi.org/10.1103/PhysRevC.98.014304
31 X. Zhao Y., Komatsubara T., J. Ma Y., H. Zhang Y., Y. Wang S., Z. Liu Y., Furuno K.. Observation of three-quasiparticle doublet bands in 123I: Possible evidence of chirality. Chin. Phys. Lett., 2009, 26(8): 082301
https://doi.org/10.1088/0256-307X/26/8/082301
32 Zheng Y., H. Zhu L., G. Wu X., C. Gao Z., Y. He C., S. Li G., L. Wang L., S. Chen Y., Sun Y., Hao X., Liu Y., Q. Li X., Pan B., J. Ma Y., Y. Li Z., B. Ding H.. Abnormal signature inversion and multiple alignments in doubly odd 126I. Phys. Rev. C, 2012, 86(1): 014320
https://doi.org/10.1103/PhysRevC.86.014320
33 F. Li X., J. Ma Y., Z. Liu Y., B. Lu J., Y. Zhao G., C. Yin L., Meng R., L. Zhang Z., J. Wen L., H. Zhou X., X. Guo Y., G. Lei X., Liu Z., J. He J., Zheng Y.. Search for the chiral band in the N =71 odd−odd nucleus 126Cs. Chin. Phys. Lett., 2002, 19(12): 1779
https://doi.org/10.1088/0256-307X/19/12/311
34 Y. Wang S., Z. Liu Y., Komatsubara T., J. Ma Y., H. Zhang Y.. Candidate chiral doublet bands in the odd−odd nucleus 126Cs. Phys. Rev. C, 2006, 74(1): 017302
https://doi.org/10.1103/PhysRevC.74.017302
35 L. Wang L., G. Wu X., H. Zhu L., S. Li G., Hao X., Zheng Y., Y. He C., Wang L., Q. Li X., Liu Y., Bo P., Y. Li Z., B. Ding H.. Lifetime measurements in chiral nucleus 130Cs. Chin. Phys. C, 2009, 33(S1): 173
https://doi.org/10.1088/1674-1137/33/S1/055
36 G. Wu X., L. Wang L., H. Zhu L., S. Li G., Hao X., Zheng Y., Y. He C., Q. Li X., Pan B., Liu Y., Wang L., X. Zhao Y., Y. Li Z., B. Ding H.. Test of chirality in nucleus 130Cs. Plasma Sci. Technol., 2012, 14(6): 526
https://doi.org/10.1088/1009-0630/14/6/20
37 Guo S., M. Petrache C., Mengoni D., H. Qiang Y., P. Wang Y.. et al.. Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations. Phys. Lett. B, 2020, 807: 135572
https://doi.org/10.1016/j.physletb.2020.135572
38 Y. Ma K., B. Lu J., Yang D., D. Wang H., Z. Liu Y., G. Wu X., Zheng Y., Y. He C.. Candidate chiral doublet bands in 128La. Phys. Rev. C, 2012, 85(3): 037301
https://doi.org/10.1103/PhysRevC.85.037301
39 Y. Ma K., B. Lu J., Zhang Z., Q. Liu J., Yang D., M. Liu Y., Xu X., Y. Li X., Z. Liu Y., G. Wu X., Zheng Y., B. Li C.. Candidate chiral doublet bands in 138Pm. Phys. Rev. C, 2018, 97(1): 014305
https://doi.org/10.1103/PhysRevC.97.014305
40 S. Komati F., A. Bark R., Gál J., Gueorguieva E., Juhász K., Kalinka G., Krasznahorkay A., J. Lawrie J., Lipoglavšek M., Maliage M., Molnár J., M. Mullins S., H. T. Murray S., M. Nyakó B., Ramashidza M., F. Sharpey-Schafer J., N. Scheurer J., Timár J., Vymers P., Zolnai L.. Commissioning of the DIAMANT “chessboard” light‐charged‐particle CsI detector array with AFRODITE. AIP Conf. Proc., 2005, 802: 215
https://doi.org/10.1063/1.2140655
41 N. Scheurer J., Aiche M., M. Aleonard M., Barreaua G., Bourginea F., Boivin D., Cabaussel D., F. Chemin J., P. Doan T., P. Goudour J., Harston M., Brondi A.. Improvements in the in-beam γ-ray spectroscopy provided by an ancillary detector coupled to a Ge γ-spectrometer: The DIAMANT-EUROGAM II example. Nucl. Instrum. Methods Phys. Res. A, 1997, 385(3): 501
https://doi.org/10.1016/S0168-9002(96)01038-8
42 Gál J., Hegyesi G., Molnár J., M. Nyakó B., Kalinka G., N. Scheurer J., M. Aléonard M., F. Chemin J., L. Pedroza J., Juhász K., F. E. Pucknell V.. The VXI electronics of the DIAMANT particle detector array. Nucl. Instrum. Methods Phys. Res. A, 2004, 516(2−3): 502
https://doi.org/10.1016/j.nima.2003.08.158
43 Starosta K., Koike T., J. Chiara C., B. Fossan D., R. LaFosse D., A. Hecht A., W. Beausang C., A. Caprio M., R. Cooper J., Krücken R., R. Novak J., V. Zamfir N., E. Zyromski K., J. Hartley D., L. Balabanski D., Y. Zhang J., Frauendorf S., I. Dimitrov V.. Chiral doublet structures in odd−odd N = 75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86(6): 971
https://doi.org/10.1103/PhysRevLett.86.971
44 Koike T.Starosta K.J. Chiara C.B. Fossan D.R. LaFosse D., Observation of chiral doublet bands in odd−odd N=73 isotones, Phys. Rev. C 63, 061304(R) (2001)
45 Koike T., Starosta K., J. Chiara C., B. Fossan D., R. LaFosse D.. Systematic search of πh11/2⊗νh11/2 chiral doublet bands and role of triaxiality in odd−odd Z = 55 isotopes: 128, 130, 132, 134Cs. Phys. Rev. C, 2003, 67(4): 044319
https://doi.org/10.1103/PhysRevC.67.044319
46 A. Bark R., M. Baxter A., P. Byrne A., D. Dracoulis G., Kibédi T., R. McGoram T., M. Mullins S.. Candidate chiral band in La. Nucl. Phys. A., 2001, 691(3−4): 577
https://doi.org/10.1016/S0375-9474(01)00592-9
47 Rainovski G., S. Paul E., J. Chantler H., J. Nolan P., G. Jenkins D., Wadsworth R., Raddon P., Simons A., B. Fossan D., Koike T., Starosta K., Vaman C., Farnea E., Gadea A., Kröll T., Isocrate R., Angelis G., Curien D., I. Dimitrov V.. Candidate chiral twin bands in the odd−odd nucleus 132Cs: Exploring the limits of chirality in the mass A ≈ 130 region. Phys. Rev. C, 2003, 68(2): 024318
https://doi.org/10.1103/PhysRevC.68.024318
48 A. Hecht A., W. Beausang C., Amro H., J. Barton C., Berant Z., A. Caprio M., F. Casten R., R. Cooper J., J. Hartley D., Krücken R., A. Meyer D., Newman H., R. Novak J., Pietralla N., J. Ressler J., Wolf A., V. Zamfir N., Y. Zhang J., E. Zyromski K.. Evidence for chiral symmetry breaking in 140Eu. Phys. Rev. C, 2003, 68(5): 054310
https://doi.org/10.1103/PhysRevC.68.054310
49 Tonev D., de Angelis G., Petkov P., Dewald A., Brant S., Frauendorf S., L. Balabanski D., Pejovic P., Bazzacco D., Bednarczyk P., Camera F., Fitzler A., Gadea A., Lenzi S., Lunardi S., Marginean N., Möller O., R. Napoli D., Paleni A., M. Petrache C., Prete G., O. Zell K., H. Zhang Y., Y. Zhang J., Zhong Q., Curien D.. Transition probabilities in 134Pr: A test for chirality in nuclear systems. Phys. Rev. Lett., 2006, 96: 052501
https://doi.org/10.1103/PhysRevLett.96.052501
50 M. Petrache C., B. Hagemann G., Hamamoto I., Starosta K.. Risk of misinterpretation of nearly degenerate pair bands as chiral partners in nuclei. Phys. Rev. Lett., 2006, 96: 112502
https://doi.org/10.1103/PhysRevLett.96.112502
51 Grodner E., Srebrny J., A. Pasternak A., Zalewska I., Morek T.. Ch. Droste, J. Mierzejewski, M. Kowalczyk, J. Kownacki, M. Kisieliński, S. G. Rohoziński, T. Koike, K. Starosta, A. Kordyasz, P. J. Napiorkowski, M. Wolińska-Cichocka, E. Ruchowska, W. Pɫóciennik, and J. Perkowski, 128Cs as the best example revealing chiral symmetry breaking. Phys. Rev. Lett., 2006, 97: 172501
https://doi.org/10.1103/PhysRevLett.97.172501
52 Vaman C., B. Fossan D., Koike T., Starosta K., Y. Lee I., O. Macchiavelli A.. Chiral degeneracy in triaxial 104Rh. Phys. Rev. Lett., 2004, 92(3): 032501
https://doi.org/10.1103/PhysRevLett.92.032501
53 Liu C., Y. Wang S., Qi B., P. Sun D., Wang S., J. Xu C., Liu L., Zhang P., Q. Li Z., Wang B., C. Shen X., R. Qin M., L. Liu H., Gao Y., H. Zhu L., G. Wu X., S. Li G., Y. He C., Zheng Y.. Signature splitting, shape evolution, and nearly degenerate bands in 108Ag. Phys. Rev. C, 2013, 88: 037301
https://doi.org/10.1103/PhysRevC.88.037301
54 Z. Xu W., Y. Wang S., G. Wu X., Jia H., Liu C., F. Bai H., J. Li Y., Qi B., Y. Zhang H., S. Li G., Zheng Y., B. Li C., Mu L., Rohilla A., Wang S., P. Sun D., Q. Li Z., B. Zhang N., J. Guo R., C. Han X., Xiao X.. First observation of high-spin states in 116In and possible new region of chirality. Phys. Lett. B, 2023, 839: 137789
https://doi.org/10.1016/j.physletb.2023.137789
55 K. Alexander T.S. Foster J., Advances in Nucl. Phys. 10, Chapter 3, 1978
56 Joshi P., P. Carpenter M., B. Fossan D., Koike T., S. Paul E., Rainovski G., Starosta K., Vaman C., Wadsworth R.. Effect of γ softness on the stability of chiral geometry: Spectroscopy of 106Ag. Phys. Rev. Lett., 2007, 98(10): 102501
https://doi.org/10.1103/PhysRevLett.98.102501
57 Rather N., Datta P., Chattopadhyay S., Rajbanshi S., Goswami A., H. Bhat G., A. Sheikh J., Roy S., Palit R., Pal S., Saha S., Sethi J., Biswas S., Singh P., C. Jain H.. Exploring the origin of nearly degenerate doublet bands in 106Ag. Phys. Rev. Lett., 2014, 112(20): 202503
https://doi.org/10.1103/PhysRevLett.112.202503
58 O. Lieder E., M. Lieder R., A. Bark R., B. Chen Q., Q. Zhang S., Meng J., A. Lawrie E., J. Lawrie J., P. Bvumbi S., Y. Kheswa N., S. Ntshangase S., E. Madiba T., L. Masiteng P., M. Mullins S., Murray S., Papka P., G. Roux D., Shirinda O., H. Zhang Z., W. Zhao P., P. Li Z., Peng J., Qi B., Y. Wang S., G. Xiao Z., Xu C.. Resolution of chiral conundrum in 106Ag: Doppler-shift lifetime investigation. Phys. Rev. Lett., 2014, 112(20): 202502
https://doi.org/10.1103/PhysRevLett.112.202502
59 J. Sun L.. et al.. First application of Markov chain Monte Carlo-based Bayesian data analysis to the Doppler-shift attenuation method. Phys. Lett. B, 2023, 839: 137801
https://doi.org/10.1016/j.physletb.2023.137801
60 A. Butler P., Nazarewicz W.. Intrinsic reflection asymmetry in atomic nuclei. Rev. Mod. Phys., 1996, 68: 349
https://doi.org/10.1103/RevModPhys.68.349
61 Z. Liang H., Meng J., G. Zhou S.. Hidden pseudospin and spin symmetries and their origins in atomic nuclei. Phys. Rep., 2015, 570: 1
https://doi.org/10.1016/j.physrep.2014.12.005
62 Y. Wang S., Q. Zhang S., Qi B., Meng J.. Doublet bands in 126Cs in the triaxial rotor model coupled with two quasiparticles. Phys. Rev. C, 2007, 75: 024309
https://doi.org/10.1103/PhysRevC.75.024309
63 Q. Zhang S., Qi B., Y. Wang S., Meng J.. Chiral bands for a quasi-proton and quasi-neutron coupled with a triaxial rotor. Phys. Rev. C, 2007, 75: 044307
https://doi.org/10.1103/PhysRevC.75.044307
64 Y. Wang S., Q. Zhang S., Qi B., Peng J., M. Yao J., Meng J.. Description of πg9/2⊗νh11/2 doublet bands in 106Rh. Phys. Rev. C, 2008, 77: 034314
https://doi.org/10.1103/PhysRevC.77.034314
65 Y. Wang S., Qi B., P. Sun D.. Theoretical study of positive-parity doublet bands in 124Cs. Phys. Rev. C, 2010, 82: 027303
https://doi.org/10.1103/PhysRevC.82.027303
66 Bhattacharya S., Trivedi T., Negi D., P. Singh R., Muralithar S., Palit R., Ragnarsson I., Nag S., Rajbanshi S., Kumar Raju M., V. Parkar V., Mohanto G., Kumar S., Choudhury D., Kumar R., K. Bhowmik R., C. Pancholi S., K. Jain A.. Evolution of collectivity and evidence of octupole correlations in 73Br. Phys. Rev. C, 2019, 100: 014315
https://doi.org/10.1103/PhysRevC.100.014315
67 Jia H., Qi B., Liu C., Y. Wang S.. Coexistence of chiral symmetry and pseudospin symmetry in one nucleus: Triplet bands in 105Ag. J. Phys. G: Nucl. Part. Phys., 2019, 46: 035102
https://doi.org/10.1088/1361-6471/ab025c
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed