Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 63601   https://doi.org/10.1007/s11467-023-1305-3
  本期目录
Synthetic two-dimensional electronics for transistor scaling
Zihan Wang, Yan Yang, Bin Hua, Qingqing Ji()
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
 全文: PDF(8268 KB)   HTML
Abstract

Two-dimensional (2D) materials have been considered to hold promise for transistor ultrascaling, thanks to their atomically thin body immune to short-channel effects. The lower channel size limit of 2D transistors is yet to be revealed, as this size is below the spatial resolution of most lithographic techniques. In recent years, chemical approaches such as chemical vapor deposition (CVD) and metalorganic CVD (MOCVD) have been established to grow atomically precise nanostructures and heterostructures, thus allowing for synthetic construction of ultrascaled transistors. In this review, we summarize recent developments on the precise synthesis and defect engineering of electronic nanostructures/heterostructures aiming for transistor applications. We demonstrate with rich examples that ultrascaled 2D transistors are achievable by finely tuning the “growth-as-fabrication” process and could host a plethora of new device physics. Finally, by plotting the scaling trend of 2D transistors, we conclude that synthetic electronics possess superior scaling capability and could facilitate the development of post-Moore nanoelectronics.

Key words2D materials    nanostructures    synthetic electronics    transistor scaling
收稿日期: 2023-03-22      出版日期: 2023-06-25
Corresponding Author(s): Qingqing Ji   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 63601.
Zihan Wang, Yan Yang, Bin Hua, Qingqing Ji. Synthetic two-dimensional electronics for transistor scaling. Front. Phys. , 2023, 18(6): 63601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1305-3
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/63601
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
2 S. Novoselov K.V. Andreeva D.C. Ren W. C. Shan G., Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301(2019)
3 Splendiani A.Sun L.Zhang Y. Li T.Kim J. Chim C.-Y.Galli G.Wang F., Emerging Photoluminescence in Monolayer MoS2, Nano Lett. 10(4), 1271(2010)
4 M. Dong H.D. Guo S.F. Duan Y.Huang F.Xu W. Zhang J., Electronic and optical properties of single-layer MoS2, Front. Phys. 13(4), 137307 (2018)
5 Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A.. Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6(3): 147
https://doi.org/10.1038/nnano.2010.279
6 Roy T., Tosun M., Cao X., Fang H., H. Lien D., Zhao P., Z. Chen Y., L. Chueh Y., Guo J., Javey A.. Dual-gated MoS2 /WSe2 van der Waals tunnel diodes and transistors. ACS Nano, 2015, 9(2): 2071
https://doi.org/10.1021/nn507278b
7 Yan R., Fathipour S., Han Y., Song B., Xiao S., Li M., Ma N., Protasenko V., A. Muller D., Jena D., G. Xing H.. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett., 2015, 15(9): 5791
https://doi.org/10.1021/acs.nanolett.5b01792
8 Schwierz F.. Graphene transistors. Nat. Nanotechnol., 2010, 5(7): 487
https://doi.org/10.1038/nnano.2010.89
9 T. Huang Y., H. Chen Y., J. Ho Y., W. Huang S., R. Chang Y., Watanabe K., Taniguchi T., C. Chiu H., T. Liang C., Sankar R., C. Chou F., W. Chen C., H. Wang W.. High-performance InSe transistors with ohmic contact enabled by nonrectifying barrier-type indium electrodes. ACS Appl. Mater. Interfaces, 2018, 10(39): 33450
https://doi.org/10.1021/acsami.8b10576
10 Jung Y., S. Choi M., Nipane A., Borah A., Kim B., Zangiabadi A., Taniguchi T., Watanabe K., J. Yoo W., Hone J., T. Teherani J.. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron., 2019, 2(5): 187
https://doi.org/10.1038/s41928-019-0245-y
11 L. Chen M.Sun X.Liu H.Wang H.Zhu Q. Wang S.Du H.Dong B.Zhang J.Sun Y. Qiu S.Alava T.Liu S.M. Sun D.Han Z., A FinFET with one atomic layer channel, Nat. Commun. 11(1), 1205 (2020)
12 Furchi M., Urich A., Pospischil A., Lilley G., Unterrainer K., Detz H., Klang P., M. Andrews A., Schrenk W., Strasser G., Mueller T.. Microcavity-integrated graphene photodetector. Nano Lett., 2012, 12(6): 2773
https://doi.org/10.1021/nl204512x
13 Yin Z., Li H., Li H., Jiang L., Shi Y., Sun Y., Lu G., Zhang Q., Chen X., Zhang H.. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6(1): 74
https://doi.org/10.1021/nn2024557
14 S. Lee H., W. Min S., G. Chang Y., K. Park M., Nam T., Kim H., H. Kim J., Ryu S., Im S.. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett., 2012, 12(7): 3695
https://doi.org/10.1021/nl301485q
15 Wang H., Zhang C., Chan W., Tiwari S., Rana F.. Ultrafast response of monolayer molybdenum disulfide photodetectors. Nat. Commun., 2015, 6(1): 8831
https://doi.org/10.1038/ncomms9831
16 S. Mannoor M., Tao H., D. Clayton J., Sengupta A., L. Kaplan D., R. Naik R., Verma N., G. Omenetto F., C. McAlpine M.. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun., 2012, 3(1): 763
https://doi.org/10.1038/ncomms1767
17 Singh E., Meyyappan M., S. Nalwa H.. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces, 2017, 9(40): 34544
https://doi.org/10.1021/acsami.7b07063
18 Yao J., Yang G.. Flexible and high-performance all-2D photodetector for wearable devices. Small, 2018, 14(21): 1704524
https://doi.org/10.1002/smll.201704524
19 Deng D., S. Novoselov K., Fu Q., Zheng N., Tian Z., Bao X.. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol., 2016, 11(3): 218
https://doi.org/10.1038/nnano.2015.340
20 Chia X., Pumera M.. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal., 2018, 1(12): 909
https://doi.org/10.1038/s41929-018-0181-7
21 Wang Y., Mao J., Meng X., Yu L., Deng D., Bao X.. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev., 2019, 119(3): 1806
https://doi.org/10.1021/acs.chemrev.8b00501
22 Mao J.Wang Y.L. Zheng Z.H. Deng D., The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
23 Luo G.Z. Zhang Z.O. Li H.X. Song X.W. Deng G. Cao G.Xiao M.P. Guo G., Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502 (2017)
24 J. Hu M.B. Zhang N.C. Shan G.F. Gao J.Z. Liu J. K. Y. Li R., Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber, Front. Phys. 13(4), 138113 (2018)
25 Cao W.Kang J.Liu W.Banerjee K., A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect, IEEE Trans. Electron Dev. 61(12), 4282 (2014)
26 R. Schaller R.. Moore’s law: Past, present and future. IEEE Spectr., 1997, 34(6): 52
https://doi.org/10.1109/6.591665
27 A. Mack C.. Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf., 2011, 24(2): 202
https://doi.org/10.1109/TSM.2010.2096437
28 Liu H., T. Neal A., D. Ye P.. Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012, 6(10): 8563
https://doi.org/10.1021/nn303513c
29 F. Mak K., Lee C., Hone J., Shan J., F. Heinz T.. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105(13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805
30 Akinwande D., Huyghebaert C., H. Wang C., I. Serna M., Goossens S., J. Li L., S. P. Wong H., H. L. Koppens F.. Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573(7775): 507
https://doi.org/10.1038/s41586-019-1573-9
31 H. Wang Q., Kalantar-Zadeh K., Kis A., N. Coleman J., S. Strano M.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
32 Xia F., Wang H., Xiao D., Dubey M., Ramasubramaniam A.. Two-dimensional material nanophotonics. Nat. Photonics, 2014, 8(12): 899
https://doi.org/10.1038/nphoton.2014.271
33 F. Mak K., Shan J.. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
https://doi.org/10.1038/nphoton.2015.282
34 Hisamoto D.Kaga T.Kawamoto Y.Takeda E., A fully depleted lean-channel transistor (DELTA) - A novel vertical ultrathin SOI MOSFET, in: International Technical Digest on Electron Devices Meeting, 1989, pp 833–836
35 Singh N., Agarwal A., K. Bera L., Y. Liow T., Yang R., C. Rustagi S., H. Tung C., Kumar R., Q. Lo G., Balasubramanian N., L. Kwong D.. High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett., 2006, 27(5): 383
https://doi.org/10.1109/LED.2006.873381
36 Liu Y., Duan X., J. Shin H., Park S., Huang Y., Duan X.. Promises and prospects of two-dimensional transistors. Nature, 2021, 591(7848): 43
https://doi.org/10.1038/s41586-021-03339-z
37 Liu C., Chen H., Wang S., Liu Q., G. Jiang Y., W. Zhang D., Liu M., Zhou P.. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol., 2020, 15(7): 545
https://doi.org/10.1038/s41565-020-0724-3
38 Zhu X., Li D., Liang X., D. Lu W.. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater., 2019, 18(2): 141
https://doi.org/10.1038/s41563-018-0248-5
39 S. Yang C., S. Shang D., Liu N., J. Fuller E., Agrawal S., A. Talin A., Q. Li Y., G. Shen B., Sun Y.. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater., 2018, 28(42): 1804170
https://doi.org/10.1002/adfm.201804170
40 D. Levenson M., S. Viswanathan N., A. Simpson R.. Improving resolution in photolithography with a phase-shifting mask. IEEE Trans. Electron Dev., 1982, 29(12): 1828
https://doi.org/10.1109/T-ED.1982.21037
41 Dong J., Liu J., Kang G., Xie J., Wang Y.. Pushing the resolution of photolithography down to 15 nm by surface plasmon interference. Sci. Rep., 2014, 4(1): 5618
https://doi.org/10.1038/srep05618
42 Selimis A., Mironov V., Farsari M.. Direct laser writing: Principles and materials for scaffold 3D printing. Microelectron. Eng., 2015, 132: 83
https://doi.org/10.1016/j.mee.2014.10.001
43 Duocastella M., Vicidomini G., Korobchevskaya K., Pydzińska K., Ziółek M., Diaspro A., de Miguel G.. Improving the spatial resolution in direct laser writing lithography by using a reversible cationic photoinitiator. J. Phys. Chem. C, 2017, 121(31): 16970
https://doi.org/10.1021/acs.jpcc.7b03591
44 Vieu C.Carcenac F.Pépin A.Chen Y.Mejias M. Lebib A.Manin-Ferlazzo L.Couraud L. Launois H., Electron beam lithography: Resolution limits and applications, Appl. Surf. Sci. 164(1–4), 111 (2000)
45 R. Manfrinato V., Zhang L., Su D., Duan H., G. Hobbs R., A. Stach E., K. Berggren K.. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett., 2013, 13(4): 1555
https://doi.org/10.1021/nl304715p
46 Xu K., Chen D., Yang F., Wang Z., Yin L., Wang F., Cheng R., Liu K., Xiong J., Liu Q., He J.. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett., 2017, 17(2): 1065
https://doi.org/10.1021/acs.nanolett.6b04576
47 Nourbakhsh A.Zubair A.N. Sajjad R.Tavakkoli K. G A.Chen W.Fang S. Ling X.Kong J.S. Dresselhaus M.Kaxiras E.K. Berggren K.Antoniadis D.Palacios T., MoS2 field-effect transistor with sub-10 nm channel length, Nano Lett. 16(12), 7798 (2016) (2016)
48 Xie L., Liao M., Wang S., Yu H., Du L., Tang J., Zhao J., Zhang J., Chen P., Lu X., Wang G., Xie G., Yang R., Shi D., Zhang G.. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater., 2017, 29(37): 1702522
https://doi.org/10.1002/adma.201702522
49 Liu L., Kong L., Li Q., He C., Ren L., Tao Q., Yang X., Lin J., Zhao B., Li Z., Chen Y., Li W., Song W., Lu Z., Li G., Li S., Duan X., Pan A., Liao L., Liu Y.. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron., 2021, 4(5): 342
https://doi.org/10.1038/s41928-021-00566-0
50 B. Desai S., R. Madhvapathy S., B. Sachid A., P. Llinas J., Wang Q., H. Ahn G., Pitner G., J. Kim M., Bokor J., Hu C., S. P. Wong H., Javey A.. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354(6308): 99
https://doi.org/10.1126/science.aah4698
51 Wu F., Tian H., Shen Y., Hou Z., Ren J., Gou G., Sun Y., Yang Y., L. Ren T.. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022, 603(7900): 259
https://doi.org/10.1038/s41586-021-04323-3
52 Zheng W., Xie T., Zhou Y., L. Chen Y., Jiang W., Zhao S., Wu J., Jing Y., Wu Y., Chen G., Guo Y., Yin J., Huang S., Q. Xu H., Liu Z., Peng H.. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun., 2015, 6(1): 6972
https://doi.org/10.1038/ncomms7972
53 Li B., Zhou L., Wu D., Peng H., Yan K., Zhou Y., Liu Z.. Photochemical chlorination of graphene. ACS Nano, 2011, 5(7): 5957
https://doi.org/10.1021/nn201731t
54 Lin M., Wu D., Zhou Y., Huang W., Jiang W., Zheng W., Zhao S., Jin C., Guo Y., Peng H., Liu Z.. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc., 2013, 135(36): 13274
https://doi.org/10.1021/ja406351u
55 Zhou Y., Nie Y., Liu Y., Yan K., Hong J., Jin C., Zhou Y., Yin J., Liu Z., Peng H.. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano, 2014, 8(2): 1485
https://doi.org/10.1021/nn405529r
56 Liu L., Kong L., Li Q., He C., Ren L., Tao Q., Yang X., Lin J., Zhao B., Li Z., Chen Y., Li W., Song W., Lu Z., Li G., Li S., Duan X., Pan A., Liao L., Liu Y.. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron., 2021, 4(5): 342
https://doi.org/10.1038/s41928-021-00566-0
57 A. Ponomarenko L., Schedin F., I. Katsnelson M., Yang R., W. Hill E., S. Novoselov K., K. Geim A.. Chaotic Dirac billiard in graphene quantum dots. Science, 2008, 320(5874): 356
https://doi.org/10.1126/science.1154663
58 Wang X., Dai H.. Etching and narrowing of graphene from the edges. Nat. Chem., 2010, 2(8): 661
https://doi.org/10.1038/nchem.719
59 Jiao L., Zhang L., Wang X., Diankov G., Dai H.. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877
https://doi.org/10.1038/nature07919
60 Shi Z., Yang R., Zhang L., Wang Y., Liu D., Shi D., Wang E., Zhang G.. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater., 2011, 23(27): 3061
https://doi.org/10.1002/adma.201100633
61 Wu J., Pisula W., Müllen K.. Graphenes as potential material for electronics. Chem. Rev., 2007, 107(3): 718
https://doi.org/10.1021/cr068010r
62 Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., P. Seitsonen A., Saleh M., Feng X., Müllen K., Fasel R.. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466(7305): 470
https://doi.org/10.1038/nature09211
63 S. Wang H., Chen L., Elibol K., He L., Wang H., Chen C., Jiang C., Li C., Wu T., X. Cong C., J. Pennycook T., Argentero G., Zhang D., Watanabe K., Taniguchi T., Wei W., Yuan Q., C. Meyer J., Xie X.. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater., 2021, 20(2): 202
https://doi.org/10.1038/s41563-020-00806-2
64 Sprinkle M., Ruan M., Hu Y., Hankinson J., Rubio-Roy M., Zhang B., Wu X., Berger C., A. de Heer W.. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol., 2010, 5(10): 727
https://doi.org/10.1038/nnano.2010.192
65 Deng Y., Zhu C., Wang Y., Wang X., Zhao X., Wu Y., Tang B., Duan R., Zhou K., Liu Z.. Lithography-free, high-density MoTe2 nanoribbon arrays. Mater. Today, 2022, 58: 8
https://doi.org/10.1016/j.mattod.2022.06.002
66 Aljarb A., H. Fu J., C. Hsu C., P. Chuu C., Wan Y., Hakami M., R. Naphade D., Yengel E., J. Lee C., Brems S., A. Chen T., Y. Li M., H. Bae S., T. Hsu W., Cao Z., Albaridy R., Lopatin S., H. Chang W., D. Anthopoulos T., Kim J., J. Li L., Tung V.. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater., 2020, 19(12): 1300
https://doi.org/10.1038/s41563-020-0795-4
67 Chowdhury T., Kim J., C. Sadler E., Li C., W. Lee S., Jo K., Xu W., H. Gracias D., V. Drichko N., Jariwala D., H. Brintlinger T., Mueller T., G. Park H., J. Kempa T.. Substrate-directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical properties. Nat. Nanotechnol., 2020, 15(1): 29
https://doi.org/10.1038/s41565-019-0571-2
68 Schmidt V.V. Wittemann J.Senz S.Gösele U., Silicon nanowires: A review on aspects of their growth and their electrical properties, Adv. Mater. 21(25–26), 2681 (2009)
69 Kong J., T. Soh H., M. Cassell A., F. Quate C., Dai H.. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878
https://doi.org/10.1038/27632
70 Li S., C. Lin Y., Zhao W., Wu J., Wang Z., Hu Z., Shen Y., M. Tang D., Wang J., Zhang Q., Zhu H., Chu L., Zhao W., Liu C., Sun Z., Taniguchi T., Osada M., Chen W., H. Xu Q., T. S. Wee A., Suenaga K., Ding F., Eda G.. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater., 2018, 17(6): 535
https://doi.org/10.1038/s41563-018-0055-z
71 Li X., Li B., Lei J., V. Bets K., Sang X., Okogbue E., Liu Y., R. Unocic R., I. Yakobson B., Hone J., R. Harutyunyan A.. Nickel particle–enabled width-controlled growth of bilayer molybdenum disulfide nanoribbons. Sci. Adv., 2021, 7(50): eabk1892
https://doi.org/10.1126/sciadv.abk1892
72 Duan X., Wang C., C. Shaw J., Cheng R., Chen Y., Li H., Wu X., Tang Y., Zhang Q., Pan A., Jiang J., Yu R., Huang Y., Duan X.. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol., 2014, 9(12): 1024
https://doi.org/10.1038/nnano.2014.222
73 Y. Li M., Shi Y., C. Cheng C., S. Lu L., C. Lin Y., L. Tang H., L. Tsai M., W. Chu C., H. Wei K., H. He J., H. Chang W., Suenaga K., J. Li L.. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science, 2015, 349(6247): 524
https://doi.org/10.1126/science.aab4097
74 Zhang Z., Chen P., Duan X., Zang K., Luo J., Duan X.. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science, 2017, 357(6353): 788
https://doi.org/10.1126/science.aan6814
75 K. Sahoo P., Memaran S., Xin Y., Balicas L., R. Gutiérrez H.. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature, 2018, 553(7686): 63
https://doi.org/10.1038/nature25155
76 Zhang R., Li M., Li L., Wei Z., Jiao F., Geng D., Hu W.. The more, the better–recent advances in construction of 2D multi‐heterostructures. Adv. Funct. Mater., 2021, 31(26): 2102049
https://doi.org/10.1002/adfm.202102049
77 Zhang Z., Huang Z., Li J., Wang D., Lin Y., Yang X., Liu H., Liu S., Wang Y., Li B., Duan X., Duan X.. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol., 2022, 17(5): 493
https://doi.org/10.1038/s41565-022-01106-3
78 Yang H., Heo J., Park S., J. Song H., H. Seo D., E. Byun K., Kim P., Yoo I., J. Chung H., Kim K.. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science, 2012, 336(6085): 1140
https://doi.org/10.1126/science.1220527
79 R. Dean C., F. Young A., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., L. Shepard K., Hone J.. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 2010, 5(10): 722
https://doi.org/10.1038/nnano.2010.172
80 Britnell L., V. Gorbachev R., Jalil R., D. Belle B., Schedin F., Mishchenko A., Georgiou T., I. Katsnelson M., Eaves L., V. Morozov S., M. R. Peres N., Leist J., K. Geim A., S. Novoselov K., A. Ponomarenko L.. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071): 947
https://doi.org/10.1126/science.1218461
81 Georgiou T., Jalil R., D. Belle B., Britnell L., V. Gorbachev R., V. Morozov S., J. Kim Y., Gholinia A., J. Haigh S., Makarovsky O., Eaves L., A. Ponomarenko L., K. Geim A., S. Novoselov K., Mishchenko A.. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol., 2013, 8(2): 100
https://doi.org/10.1038/nnano.2012.224
82 J. Yu W., Liu Y., Zhou H., Yin A., Li Z., Huang Y., Duan X.. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol., 2013, 8(12): 952
https://doi.org/10.1038/nnano.2013.219
83 Britnell L., M. Ribeiro R., Eckmann A., Jalil R., D. Belle B., Mishchenko A., J. Kim Y., V. Gorbachev R., Georgiou T., V. Morozov S., N. Grigorenko A., K. Geim A., Casiraghi C., H. C. Neto A., S. Novoselov K.. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
https://doi.org/10.1126/science.1235547
84 Wu R.Tao Q. Dang W.Liu Y.Li B.Li J.Zhao B. Zhang Z.Ma H.Sun G.Duan X.Duan X., van der Waals epitaxial growth of atomically thin 2D metals on dangling‐bond‐free WSe2 and WS2, Adv. Funct. Mater. 29(12), 1806611 (2019)
85 Fu Q., Wang X., Zhou J., Xia J., Zeng Q., Lv D., Zhu C., Wang X., Shen Y., Li X., Hua Y., Liu F., Shen Z., Jin C., Liu Z.. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater., 2018, 30(12): 4001
https://doi.org/10.1021/acs.chemmater.7b05117
86 Zhang Z., Gong Y., Zou X., Liu P., Yang P., Shi J., Zhao L., Zhang Q., Gu L., Zhang Y.. Epitaxial growth of two-dimensional metal–semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano, 2019, 13(1): 885
https://doi.org/10.1021/acsnano.8b08677
87 Rogée L., Wang L., Zhang Y., Cai S., Wang P., Chhowalla M., Ji W., P. Lau S.. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science, 2022, 376(6596): 973
https://doi.org/10.1126/science.abm5734
88 Hong X., Kim J., F. Shi S., Zhang Y., Jin C., Sun Y., Tongay S., Wu J., Zhang Y., Wang F.. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol., 2014, 9(9): 682
https://doi.org/10.1038/nnano.2014.167
89 Jin G., S. Lee C., F. N. Okello O., H. Lee S., Y. Park M., Cha S., Y. Seo S., Moon G., Y. Min S., H. Yang D., Han C., Ahn H., Lee J., Choi H., Kim J., Y. Choi S., H. Jo M.. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol., 2021, 16(10): 1092
https://doi.org/10.1038/s41565-021-00942-z
90 Xie S., Tu L., Han Y., Huang L., Kang K., U. Lao K., Poddar P., Park C., A. Muller D., A. Jr DiStasio R., Park J.. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science, 2018, 359(6380): 1131
https://doi.org/10.1126/science.aao5360
91 Ichinose N.Maruyama M.Hotta T.Liu Z.Canton-Vitoria R.Okada S.Zeng F.Zhang F. Taniguchi T.Watanabe K.Kitaura R., Two-dimensional atomic-scale ultrathin lateral heterostructures, arXiv: 2208.12696 (2022)
92 Wan Y., Li E., Yu Z., K. Huang J., Y. Li M., S. Chou A., T. Lee Y., J. Lee C., C. Hsu H., Zhan Q., Aljarb A., H. Fu J., P. Chiu S., Wang X., J. Lin J., P. Chiu Y., H. Chang W., Wang H., Shi Y., Lin N., Cheng Y., Tung V., J. Li L.. Low-defect-density WS2 by hydroxide vapor phase deposition. Nat. Commun., 2022, 13(1): 4149
https://doi.org/10.1038/s41467-022-31886-0
93 Stampfer B., Zhang F., Y. Illarionov Y., Knobloch T., Wu P., Waltl M., Grill A., Appenzeller J., Grasser T.. Characterization of single defects in ultrascaled MoS2 field-effect transistors. ACS Nano, 2018, 12(6): 5368
https://doi.org/10.1021/acsnano.8b00268
94 Zhou Y., Zhang J., Song E., Lin J., Zhou J., Suenaga K., Zhou W., Liu Z., Liu J., Lou J., J. Fan H.. Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nat. Commun., 2020, 11(1): 2253
https://doi.org/10.1038/s41467-020-16111-0
95 Jiang J., A. T. Nguyen L., D. Nguyen T., H. Luong D., Y. Kim D., Jin Y., Kim P., L. Duong D., H. Lee Y.. Probing giant Zeeman shift in vanadium-doped WSe2 via resonant magnetotunneling transport. Phys. Rev. B, 2021, 103(1): 014441
https://doi.org/10.1103/PhysRevB.103.014441
96 Mallet P., Chiapello F., Okuno H., Boukari H., Jamet M., Y. Veuillen J.. Bound hole states associated to individual vanadium atoms incorporated into monolayer WSe2. Phys. Rev. Lett., 2020, 125(3): 036802
https://doi.org/10.1103/PhysRevLett.125.036802
97 A. Kastner M.. The single-electron transistor. Rev. Mod. Phys., 1992, 64(3): 849
https://doi.org/10.1103/RevModPhys.64.849
98 Ratner M., A brief history of molecular electronics, Nat. Nanotechnol. 8(6), 378 (2013)
99 Xu G., M. Jr Torres C., Tang J., Bai J., B. Song E., Huang Y., Duan X., Zhang Y., L. Wang K.. Edge effect on resistance scaling rules in graphene nanostructures. Nano Lett., 2011, 11(3): 1082
https://doi.org/10.1021/nl103966t
100 Chen S., Kim S., Chen W., Yuan J., Bashir R., Lou J., M. van der Zande A., P. King W.. Monolayer MoS2 nanoribbon transistors fabricated by scanning probe lithography. Nano Lett., 2019, 19(3): 2092
https://doi.org/10.1021/acs.nanolett.9b00271
101 Shi J., Liu M., Wen J., Ren X., Zhou X., Ji Q., Ma D., Zhang Y., Jin C., Chen H., Deng S., Xu N., Liu Z., Zhang Y.. All chemical vapor deposition synthesis and intrinsic bandgap observation of MoS2/graphene heterostructures. Adv. Mater., 2015, 27(44): 7086
https://doi.org/10.1002/adma.201503342
102 Ling X., Lin Y., Ma Q., Wang Z., Song Y., Yu L., Huang S., Fang W., Zhang X., L. Hsu A., Bie Y., H. Lee Y., Zhu Y., Wu L., Li J., Jarillo-Herrero P., Dresselhaus M., Palacios T., Kong J.. Parallel stitching of 2D materials. Adv. Mater., 2016, 28(12): 2322
https://doi.org/10.1002/adma.201505070
103 Zhao M., Ye Y., Han Y., Xia Y., Zhu H., Wang S., Wang Y., A. Muller D., Zhang X.. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol., 2016, 11(11): 954
https://doi.org/10.1038/nnano.2016.115
104 Behranginia A., Yasaei P., K. Majee A., K. Sangwan V., Long F., J. Foss C., Foroozan T., Fuladi S., R. Hantehzadeh M., Shahbazian-Yassar R., C. Hersam M., Aksamija Z., Salehi-Khojin A.. Direct growth of high mobility and low-noise lateral MoS2–graphene heterostructure electronics. Small, 2017, 13(30): 1604301
https://doi.org/10.1002/smll.201604301
105 S. Leong W., Ji Q., Mao N., Han Y., Wang H., J. Goodman A., Vignon A., Su C., Guo Y., C. Shen P., Gao Z., A. Muller D., A. Tisdale W., Kong J.. Synthetic lateral metal-semiconductor heterostructures of transition metal disulfides. J. Am. Chem. Soc., 2018, 140(39): 12354
https://doi.org/10.1021/jacs.8b07806
106 Cai X., Wu Z., Han X., Chen Y., Xu S., Lin J., Han T., He P., Feng X., An L., Shi R., Wang J., Ying Z., Cai Y., Hua M., Liu J., Pan D., Cheng C., Wang N.. Bridging the gap between atomically thin semiconductors and metal leads. Nat. Commun., 2022, 13(1): 1777
https://doi.org/10.1038/s41467-022-29449-4
107 Li J., Yang X., Liu Y., Huang B., Wu R., Zhang Z., Zhao B., Ma H., Dang W., Wei Z., Wang K., Lin Z., Yan X., Sun M., Li B., Pan X., Luo J., Zhang G., Liu Y., Huang Y., Duan X., Duan X.. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579(7799): 368
https://doi.org/10.1038/s41586-020-2098-y
108 Wu R., Tao Q., Li J., Li W., Chen Y., Lu Z., Shu Z., Zhao B., Ma H., Zhang Z., Yang X., Li B., Duan H., Liao L., Liu Y., Duan X., Duan X.. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron., 2022, 5(8): 497
https://doi.org/10.1038/s41928-022-00800-3
109 Liu Y., Guo J., Wu Y., Zhu E., O. Weiss N., He Q., Wu H., C. Cheng H., Xu Y., Shakir I., Huang Y., Duan X.. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett., 2016, 16(10): 6337
https://doi.org/10.1021/acs.nanolett.6b02713
110 J. McClellan C., Yalon E., K. H. Smithe K., V. Suryavanshi S., Pop E.. High current density in monolayer MoS2 doped by AlOx. ACS Nano, 2021, 15(1): 1587
https://doi.org/10.1021/acsnano.0c09078
111 Kappera R., Voiry D., E. Yalcin S., Jen W., Acerce M., Torrel S., Branch B., Lei S., Chen W., Najmaei S., Lou J., M. Ajayan P., Gupta G., D. Mohite A., Chhowalla M.. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater., 2014, 2(9): 092516
https://doi.org/10.1063/1.4896077
112 M. W. Khalil H., F. Khan M., Eom J., Noh H.. Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl. Mater. Interfaces, 2015, 7(42): 23589
https://doi.org/10.1021/acsami.5b06825
113 K. H. Smithe K., V. Suryavanshi S., Muñoz Rojo M., D. Tedjarati A., Pop E.. Low variability in synthetic monolayer MoS2 devices. ACS Nano, 2017, 11(8): 8456
https://doi.org/10.1021/acsnano.7b04100
114 Kanazawa T., Amemiya T., Ishikawa A., Upadhyaya V., Tsuruta K., Tanaka T., Miyamoto Y.. Few-layer HfS2 transistors. Sci. Rep., 2016, 6(1): 22277
https://doi.org/10.1038/srep22277
115 J. Mleczko M., Zhang C., R. Lee H., H. Kuo H., Magyari-Köpe B., G. Moore R., X. Shen Z., R. Fisher I., Nishi Y., Pop E.. HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides. Sci. Adv., 2017, 3(8): e1700481
https://doi.org/10.1126/sciadv.1700481
116 K. H. Smithe K., D. English C., V. Suryavanshi S., Pop E.. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett., 2018, 18(7): 4516
https://doi.org/10.1021/acs.nanolett.8b01692
117 D. English C.K. H. Smithe K.L. Xu R. Pop E., Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm top gates, in: 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp 5.6.1−5.6.4
118 Wang J., Cai L., Chen J., Guo X., Liu Y., Ma Z., Xie Z., Huang H., Chan M., Zhu Y., Liao L., Shao Q., Chai Y.. Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Sci. Adv., 2021, 7(44): eabf8744
https://doi.org/10.1126/sciadv.abf8744
119 Sebastian A., Pendurthi R., H. Choudhury T., M. Redwing J., Das S.. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun., 2021, 12(1): 693
https://doi.org/10.1038/s41467-020-20732-w
120 Liu W.Kang J.Cao W.Sarkar D.Khatami Y. Jena D.Banerjee K., High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance, in: 2013 IEEE International Electron Devices Meeting, IEEE, Washington, DC, USA, 2013, pp 19.4.1–19.4.4
121 Kappera R., Voiry D., E. Yalcin S., Branch B., Gupta G., D. Mohite A., Chhowalla M.. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater., 2014, 13(12): 1128
https://doi.org/10.1038/nmat4080
122 Smets Q.Arutchelvan G.Jussot J.Verreck D.Asselberghs I.N. Mehta A.Gaur A.Lin D. E. Kazzi S.Groven B.Caymax M.Radu I., Ultra-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 µA/µm drain current, in: 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp 23.2.1–23.2.4
123 Guo Y., Han Y., Li J., Xiang A., Wei X., Gao S., Chen Q.. Study on the resistance distribution at the contact between molybdenum disulfide and metals. ACS Nano, 2014, 8(8): 7771
https://doi.org/10.1021/nn503152r
124 K. H. Smithe K., D. English C., V. Suryavanshi S., Pop E.. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater., 2016, 4(1): 011009
https://doi.org/10.1088/2053-1583/4/1/011009
125 Cui X., M. Shih E., A. Jauregui L., H. Chae S., D. Kim Y., Li B., Seo D., Pistunova K., Yin J., H. Park J., J. Choi H., H. Lee Y., Watanabe K., Taniguchi T., Kim P., R. Dean C., C. Hone J.. Low-temperature Ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett., 2017, 17(8): 4781
https://doi.org/10.1021/acs.nanolett.7b01536
126 J. Chuang H., Chamlagain B., Koehler M., M. Perera M., Yan J., Mandrus D., Tománek D., Zhou Z., Low-resistance 2D/2D Ohmic contacts: A universal approach to high-performance WSe2 . MoS2, and MoSe2 transistors. Nano Lett., 2016, 16(3): 1896
https://doi.org/10.1021/acs.nanolett.5b05066
127 Haratipour N., C. Robbins M., J. Koester S.. Black phosphorus p-MOSFETs with 7-nm HfO2 gate dielectric and low contact resistance. IEEE Electron Device Lett., 2015, 36(4): 411
https://doi.org/10.1109/LED.2015.2407195
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed