Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (5): 53605   https://doi.org/10.1007/s11467-023-1309-z
  本期目录
Topological non-Hermitian skin effect
Rijia Lin1, Tommy Tai2,3(), Linhu Li1(), Ching Hua Lee3()
1. Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
2. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3. Department of Physics, National University of Singapore, Singapore 117542, Singapore
 全文: PDF(12753 KB)   HTML
Abstract

This article reviews recent developments in the non-Hermitian skin effect (NHSE), particularly on its rich interplay with topology. The review starts off with a pedagogical introduction on the modified bulk-boundary correspondence, the synergy and hybridization of NHSE and band topology in higher dimensions, as well as, the associated topology on the complex energy plane such as spectral winding topology and spectral graph topology. Following which, emerging topics are introduced such as non-Hermitian criticality, dynamical NHSE phenomena, and the manifestation of NHSE beyond the traditional linear non-interacting crystal lattices, particularly its interplay with quantum many-body interactions. Finally, we survey the recent demonstrations and experimental proposals of NHSE.

Key wordsnon-Hermitian skin effect    topological phases
收稿日期: 2023-04-08      出版日期: 2023-07-04
Corresponding Author(s): Tommy Tai,Linhu Li,Ching Hua Lee   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(5): 53605.
Rijia Lin, Tommy Tai, Linhu Li, Ching Hua Lee. Topological non-Hermitian skin effect. Front. Phys. , 2023, 18(5): 53605.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1309-z
https://academic.hep.com.cn/fop/CN/Y2023/V18/I5/53605
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
1 M. Bender C. , Boettcher S. . Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
https://doi.org/10.1103/PhysRevLett.80.5243
2 M. Bender C. . Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
https://doi.org/10.1088/0034-4885/70/6/R03
3 Rotter I. . A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor., 2009, 42(15): 153001
https://doi.org/10.1088/1751-8113/42/15/153001
4 Yoshida T. , Peters R. , Kawakami N. . Non-Hermitian perspective of the band structure in heavy-Fermion systems. Phys. Rev. B, 2018, 98(3): 035141
https://doi.org/10.1103/PhysRevB.98.035141
5 Shen H. , Fu L. . Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett., 2018, 121(2): 026403
https://doi.org/10.1103/PhysRevLett.121.026403
6 Yamamoto K. , Nakagawa M. , Adachi K. , Takasan K. , Ueda M. , Kawakami N. . Theory of non-Hermitian Fermionic superfluidity with a complex-valued interaction. Phys. Rev. Lett., 2019, 123(12): 123601
https://doi.org/10.1103/PhysRevLett.123.123601
7 Ma G. , Sheng P. . Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv., 2016, 2(2): e1501595
https://doi.org/10.1126/sciadv.1501595
8 C. S. A. Cummer J. , Alù A. . Controlling sound with acoustic metamaterials. Nat. Rev. Mater., 2016, 1(3): 16001
https://doi.org/10.1038/natrevmats.2016.1
9 Zangeneh-Nejad F. , Fleury R. . Active times for acoustic metamaterials. Reviews in Physics, 2019, 4: 100031
https://doi.org/10.1016/j.revip.2019.100031
10 Feng L. , El-Ganainy R. , Ge L. . Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 2017, 11(12): 752
https://doi.org/10.1038/s41566-017-0031-1
11 El-Ganainy R. , G. Makris K. , Khajavikhan M. , H. Musslimani Z. , Rotter S. , N. Christodoulides D. . Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
https://doi.org/10.1038/nphys4323
12 Longhi S. . Parity−time symmetry meets photonics: A new twist in non-Hermitian optics. Europhys. Lett., 2017, 120(6): 64001
https://doi.org/10.1209/0295-5075/120/64001
13 Ozawa T. , M. Price H. , Amo A. , Goldman N. , Hafezi M. , Lu L. , C. Rechtsman M. , Schuster D. , Simon J. , Zilberberg O. , Carusotto I. . Topological photonics. Rev. Mod. Phys., 2019, 91(1): 015006
https://doi.org/10.1103/RevModPhys.91.015006
14 Xiao L. , Deng T. , Wang K. , Zhu G. , Wang Z. , Yi W. , Xue P. . Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys., 2020, 16(7): 761
https://doi.org/10.1038/s41567-020-0836-6
15 Mostafazadeh A. . Pseudo-hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys., 2002, 43(1): 205
https://doi.org/10.1063/1.1418246
16 Günther U. , Rotter I. , F. Samsonov B. . Projective Hilbert space structures at exceptional points. J. Phys. A Math. Theor., 2007, 40(30): 8815
https://doi.org/10.1088/1751-8113/40/30/014
17 E. F. Foa Torres L. . Perspective on topological states of non-Hermitian lattices. Journal of Physics: Materials, 2019, 3: 014002
https://doi.org/10.1088/2515-7639/ab4092
18 Lin Z. , Ramezani H. , Eichelkraut T. , Kottos T. , Cao H. , N. Christodoulides D. . Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
https://doi.org/10.1103/PhysRevLett.106.213901
19 Feng L. , L. Xu Y. , S. Fegadolli W. , H. Lu M. , E. B. Oliveira J. , R. Almeida V. , F. Chen Y. , Scherer A. . Experimental demonstration of a unidirectional reflectionless parity−time metamaterial at optical frequencies. Nat. Mater., 2013, 12(2): 108
https://doi.org/10.1038/nmat3495
20 Wiersig J. . Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 2014, 112(20): 203901
https://doi.org/10.1103/PhysRevLett.112.203901
21 P. Liu Z. , Zhang J. , K. Özdemir Ş. , Peng B. , Jing H. , Y. Lü X. , W. Li C. , Yang L. , Nori F. , Liu Y. . Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 2016, 117(11): 110802
https://doi.org/10.1103/PhysRevLett.117.110802
22 Hodaei H. , U. Hassan A. , Wittek S. , Garcia-Gracia H. , El-Ganainy R. , N. Christodoulides D. , Khajavikhan M. . Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548(7666): 187
https://doi.org/10.1038/nature23280
23 Chen W. , K. Özdemir Ş. , Zhao G. , Wiersig J. , Yang L. . Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548(7666): 192
https://doi.org/10.1038/nature23281
24 Dembowski C. , D. Gräf H. , L. Harney H. , Heine A. , D. Heiss W. , Rehfeld H. , Richter A. . Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 2001, 86(5): 787
https://doi.org/10.1103/PhysRevLett.86.787
25 Gao T. , Estrecho E. , Y. Bliokh K. , C. H. Liew T. , D. Fraser M. , Brodbeck S. , Kamp M. , Schneider C. , Höfling S. , Yamamoto Y. , Nori F. , S. Kivshar Y. , G. Truscott A. , G. Dall R. , A. Ostrovskaya E. . Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 2015, 526(7574): 554
https://doi.org/10.1038/nature15522
26 A. Mailybaev A. , N. Kirillov O. , P. Seyranian A. . Geometric phase around exceptional points. Phys. Rev. A, 2005, 72(1): 014104
https://doi.org/10.1103/PhysRevA.72.014104
27 E. Lee T. . Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett., 2016, 116(13): 133903
https://doi.org/10.1103/PhysRevLett.116.133903
28 Leykam D. , Y. Bliokh K. , Huang C. , D. Chong Y. , Nori F. . Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett., 2017, 118(4): 040401
https://doi.org/10.1103/PhysRevLett.118.040401
29 Yin C. , Jiang H. , Li L. , Lü R. , Chen S. . Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems. Phys. Rev. A, 2018, 97(5): 052115
https://doi.org/10.1103/PhysRevA.97.052115
30 Shen H. , Zhen B. , Fu L. . Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 2018, 120(14): 146402
https://doi.org/10.1103/PhysRevLett.120.146402
31 Li L. , H. Lee C. , Gong J. . Geometric characterization of non-Hermitian topological systems through the singularity ring in pseudospin vector space. Phys. Rev. B, 2019, 100(7): 075403
https://doi.org/10.1103/PhysRevB.100.075403
32 Hu W. , Wang H. , P. Shum P. , D. Chong Y. . Exceptional points in a non-Hermitian topological pump. Phys. Rev. B, 2017, 95(18): 184306
https://doi.org/10.1103/PhysRevB.95.184306
33 U. Hassan A. , Zhen B. , Soljačić M. , Khajavikhan M. , N. Christodoulides D. . Dynamically encircling exceptional points: Exact evolution and polarization state conversion. Phys. Rev. Lett., 2017, 118(9): 093002
https://doi.org/10.1103/PhysRevLett.118.093002
34 Z. Hasan M. , L. Kane C. . Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
35 L. Qi X. , C. Zhang S. . Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
36 A. Bernevig B.L. Hughes T., Topological Insulators and Topological Superconductors, Princeton University Press, 2013
37 S. Rudner M. , S. Levitov L. . Topological transition in a non-Hermitian quantum walk. Phys. Rev. Lett., 2009, 102(6): 065703
https://doi.org/10.1103/PhysRevLett.102.065703
38 C. Hu Y. , L. Hughes T. . Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians. Phys. Rev. B, 2011, 84(15): 153101
https://doi.org/10.1103/PhysRevB.84.153101
39 Esaki K. , Sato M. , Hasebe K. , Kohmoto M. . Edge states and topological phases in non-Hermitian systems. Phys. Rev. B, 2011, 84(20): 205128
https://doi.org/10.1103/PhysRevB.84.205128
40 Diehl S. , Rico E. , A. Baranov M. , Zoller P. . Topology by dissipation in atomic quantum wires. Nat. Phys., 2011, 7(12): 971
https://doi.org/10.1038/nphys2106
41 Zhu B. , Lü R. , Chen S. . PT symmetry in the non-Hermitian Su−Schrieffer−Heeger model with complex boundary potentials. Phys. Rev. A, 2014, 89(6): 062102
https://doi.org/10.1103/PhysRevA.89.062102
42 Malzard S. , Poli C. , Schomerus H. . Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity−time symmetry. Phys. Rev. Lett., 2015, 115(20): 200402
https://doi.org/10.1103/PhysRevLett.115.200402
43 K. Harter A. , E. Lee T. , N. Joglekar Y. . PT-breaking threshold in spatially asymmetric Aubry−André and Harper models: Hidden symmetry and topological states. Phys. Rev. A, 2016, 93(6): 062101
https://doi.org/10.1103/PhysRevA.93.062101
44 Xiong Y. . Why does bulk boundary correspondence fail in some non-Hermitian topological models. J. Phys. Commun., 2018, 2(3): 035043
https://doi.org/10.1088/2399-6528/aab64a
45 M. Martinez Alvarez V. , E. Barrios Vargas J. , E. F. Foa Torres L. . Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B, 2018, 97(12): 121401
https://doi.org/10.1103/PhysRevB.97.121401
46 Yao S. , Wang Z. . Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
https://doi.org/10.1103/PhysRevLett.121.086803
47 Yokomizo K. , Murakami S. . Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 2019, 123(6): 066404
https://doi.org/10.1103/PhysRevLett.123.066404
48 H. Lee C. , Li L. , Thomale R. , Gong J. . Unraveling non-Hermitian pumping: Emergent spectral singularities and anomalous responses. Phys. Rev. B, 2020, 102(8): 085151
https://doi.org/10.1103/PhysRevB.102.085151
49 Fu Y. , Wan S. . Degeneracy and defectiveness in non-Hermitian systems with open boundary. Phys. Rev. B, 2022, 105(7): 075420
https://doi.org/10.1103/PhysRevB.105.075420
50 H. Lee C. , Thomale R. . Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 2019, 99(20): 201103
https://doi.org/10.1103/PhysRevB.99.201103
51 K. Kunst F. , Edvardsson E. , C. Budich J. , J. Bergholtz E. . Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808
https://doi.org/10.1103/PhysRevLett.121.026808
52 Y. Zou Y.Zhou Y.M. Chen L.Ye P., Measuring non-unitarity in non-Hermitian quantum systems, arXiv: 2208.14944 (2022)
53 Song F. , Yao S. , Wang Z. . Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
https://doi.org/10.1103/PhysRevLett.123.170401
54 C. Wanjura C. , Brunelli M. , Nunnenkamp A. . Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun., 2020, 11(1): 3149
https://doi.org/10.1038/s41467-020-16863-9
55 C. Wanjura C. , Brunelli M. , Nunnenkamp A. . Correspondence between non-Hermitian topology and directional amplification in the presence of disorder. Phys. Rev. Lett., 2021, 127(21): 213601
https://doi.org/10.1103/PhysRevLett.127.213601
56 T. Xue W. , R. Li M. , M. Hu Y. , Song F. , Wang Z. . Simple formulas of directional amplification from non-Bloch band theory. Phys. Rev. B, 2021, 103(24): L241408
https://doi.org/10.1103/PhysRevB.103.L241408
57 Longhi S. . Self-healing of non-Hermitian topological skin modes. Phys. Rev. Lett., 2022, 128(15): 157601
https://doi.org/10.1103/PhysRevLett.128.157601
58 T. Xue W. , M. Hu Y. , Song F. , Wang Z. . Non-Hermitian edge burst. Phys. Rev. Lett., 2022, 128(12): 120401
https://doi.org/10.1103/PhysRevLett.128.120401
59 C. Budich J. , J. Bergholtz E. . Non-Hermitian topological sensors. Phys. Rev. Lett., 2020, 125(18): 180403
https://doi.org/10.1103/PhysRevLett.125.180403
60 X. Guo C. , H. Liu C. , M. Zhao X. , Liu Y. , Chen S. . Exact solution of non-Hermitian systems with generalized boundary conditions: Size-dependent boundary effect and fragility of the skin effect. Phys. Rev. Lett., 2021, 127(11): 116801
https://doi.org/10.1103/PhysRevLett.127.116801
61 Li L. , H. Lee C. , Gong J. . Impurity induced scale-free localization. Commun. Phys., 2021, 4(1): 42
https://doi.org/10.1038/s42005-021-00547-x
62 Li L. , H. Lee C. , Mu S. , Gong J. . Critical non-Hermitian skin effect. Nat. Commun., 2020, 11: 5491
https://doi.org/10.1038/s41467-020-18917-4
63 Yokomizo K. , Murakami S. . Scaling rule for the critical non-Hermitian skin effect. Phys. Rev. B, 2021, 104(16): 165117
https://doi.org/10.1103/PhysRevB.104.165117
64 H. Liu C. , Zhang K. , Yang Z. , Chen S. . Helical damping and dynamical critical skin effect in open quantum systems. Phys. Rev. Res., 2020, 2(4): 043167
https://doi.org/10.1103/PhysRevResearch.2.043167
65 Q. Sun X. , Zhu P. , L. Hughes T. . Geometric response and disclination-induced skin effects in non-Hermitian systems. Phys. Rev. Lett., 2021, 127(6): 066401
https://doi.org/10.1103/PhysRevLett.127.066401
66 A. Bhargava B. , C. Fulga I. , van den Brink J. , G. Moghaddam A. . Non-Hermitian skin effect of dislocations and its topological origin. Phys. Rev. B, 2021, 104(24): L241402
https://doi.org/10.1103/PhysRevB.104.L241402
67 Schindler F. , Prem A. . Dislocation non-Hermitian skin effect. Phys. Rev. B, 2021, 104(16): L161106
https://doi.org/10.1103/PhysRevB.104.L161106
68 Panigrahi A. , Moessner R. , Roy B. . Non-Hermitian dislocation modes: Stability and melting across exceptional points. Phys. Rev. B, 2022, 106(4): L041302
https://doi.org/10.1103/PhysRevB.106.L041302
69 Manna S.Roy B., Inner skin effects on non-Hermitian topological fractals, arXiv: 2202.07658 (2022)
70 Zhang K. , Yang Z. , Fang C. . Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496
https://doi.org/10.1038/s41467-022-30161-6
71 Helbig T. , Hofmann T. , Imhof S. , Abdelghany M. , Kiessling T. , W. Molenkamp L. , H. Lee C. , Szameit A. , Greiter M. , Thomale R. . Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 2020, 16(7): 747
https://doi.org/10.1038/s41567-020-0922-9
72 Hofmann T. , Helbig T. , Schindler F. , Salgo N. , Brzezińska M. , Greiter M. , Kiessling T. , Wolf D. , Vollhardt A. , Kabaši A. , H. Lee C. , Bilušić A. , Thomale R. , Neupert T. . Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res., 2020, 2(2): 023265
https://doi.org/10.1103/PhysRevResearch.2.023265
73 Liu S. , Shao R. , Ma S. , Zhang L. , You O. , Wu H. , J. Xiang Y. , J. Cui T. , Zhang S. . Non-Hermitian skin effect in a non-Hermitian electrical circuit. Research, 2021, 2021: 5608038
https://doi.org/10.34133/2021/5608038
74 Zou D. , Chen T. , He W. , Bao J. , H. Lee C. , Sun H. , Zhang X. . Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun., 2021, 12(1): 7201
https://doi.org/10.1038/s41467-021-26414-5
75 Zhang X. , Tian Y. , H. Jiang J. , H. Lu M. , F. Chen Y. . Observation of higher-order non-Hermitian skin effect. Nat. Commun., 2021, 12(1): 5377
https://doi.org/10.1038/s41467-021-25716-y
76 Shang C. , Liu S. , Shao R. , Han P. , Zang X. , Zhang X. , N. Salama K. , Gao W. , H. Lee C. , Thomale R. , Manchon A. , Zhang S. , J. Cui T. , Schwingenschlögl U. . Experimental identification of the second-order non-Hermitian skin effect with physics-graph-informed machine learning. Adv. Sci. (Weinh.), 2022, 9(36): 2202922
https://doi.org/10.1002/advs.202202922
77 Zhang L. , Yang Y. , Ge Y. , J. Guan Y. , Chen Q. , Yan Q. , Chen F. , Xi R. , Li Y. , Jia D. , Q. Yuan S. , X. Sun H. , Chen H. , Zhang B. . Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun., 2021, 12(1): 6297
https://doi.org/10.1038/s41467-021-26619-8
78 Gao H.Xue H.Gu Z.Li L.Zhu W.Su Z.Zhu J.Zhang B.D. Chong Y., Non-Hermitian skin effect in a ring resonator lattice, arXiv: 2205.14824 (2022)
79 Weidemann S. , Kremer M. , Helbig T. , Hofmann T. , Stegmaier A. , Greiter M. , Thomale R. , Szameit A. . Topological funneling of light. Science, 2020, 368(6488): 311
https://doi.org/10.1126/science.aaz8727
80 Song Y. , Liu W. , Zheng L. , Zhang Y. , Wang B. , Lu P. . Two-dimensional non-Hermitian skin effect in a synthetic photonic lattice. Phys. Rev. Appl., 2020, 14(6): 064076
https://doi.org/10.1103/PhysRevApplied.14.064076
81 Xiao L. , Deng T. , Wang K. , Wang Z. , Yi W. , Xue P. . Observation of non-Bloch parity-time symmetry and exceptional points. Phys. Rev. Lett., 2021, 126(23): 230402
https://doi.org/10.1103/PhysRevLett.126.230402
82 Wang K. , Li T. , Xiao L. , Han Y. , Yi W. , Xue P. . Detecting non-Bloch topological invariants in quantum dynamics. Phys. Rev. Lett., 2021, 127(27): 270602
https://doi.org/10.1103/PhysRevLett.127.270602
83 Brandenbourger M. , Locsin X. , Lerner E. , Coulais C. . Non-reciprocal robotic metamaterials. Nat. Commun., 2019, 10(1): 4608
https://doi.org/10.1038/s41467-019-12599-3
84 Ghatak A. , Brandenbourger M. , van Wezel J. , Coulais C. . Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl. Acad. Sci. USA, 2020, 117(47): 29561
https://doi.org/10.1073/pnas.2010580117
85 Gou W. , Chen T. , Xie D. , Xiao T. , S. Deng T. , Gadway B. , Yi W. , Yan B. . Tunable non-reciprocal quantum transport through a dissipative Aharonov−Bohm ring in ultracold atoms. Phys. Rev. Lett., 2020, 124(7): 070402
https://doi.org/10.1103/PhysRevLett.124.070402
86 Liang Q. , Xie D. , Dong Z. , Li H. , Li H. , Gadway B. , Yi W. , Yan B. . Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett., 2022, 129(7): 070401
https://doi.org/10.1103/PhysRevLett.129.070401
87 S. Scheurer M. , J. Slager R. . Unsupervised machine learning and band topology. Phys. Rev. Lett., 2020, 124(22): 226401
https://doi.org/10.1103/PhysRevLett.124.226401
88 W. Yu L. , L. Deng D. . Unsupervised learning of non-Hermitian topological phases. Phys. Rev. Lett., 2021, 126(24): 240402
https://doi.org/10.1103/PhysRevLett.126.240402
89 Yang R. , W. Tan J. , Tai T. , M. Koh J. , Li L. , Longhi S. , H. Lee C. . Designing non-Hermitian real spectra through electrostatics. Sci. Bull. (Beijing), 2022, 67(18): 1865
https://doi.org/10.1016/j.scib.2022.08.005
90 Oztas Z. , Candemir N. . Su−Schrieffer−Heeger model with imaginary gauge field. Phys. Lett. A, 2019, 383(15): 1821
https://doi.org/10.1016/j.physleta.2019.02.037
91 Zhu W. , X. Teo W. , Li L. , Gong J. . Delocalization of topological edge states. Phys. Rev. B, 2021, 103(19): 195414
https://doi.org/10.1103/PhysRevB.103.195414
92 Cheng J. , Zhang X. , H. Lu M. , F. Chen Y. . Competition between band topology and non-Hermiticity. Phys. Rev. B, 2022, 105(9): 094103
https://doi.org/10.1103/PhysRevB.105.094103
93 Okuma N. , Sato M. . Non-Hermitian topological phenomena: A review. Annu. Rev. Condens. Matter Phys., 2022, 14: 83
https://doi.org/10.1146/annurev-conmatphys-040521-033133
94 R. Wang X. , X. Guo C. , P. Kou S. . Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems. Phys. Rev. B, 2020, 101(12): 121116
https://doi.org/10.1103/PhysRevB.101.121116
95 H. Lee C. , Li L. , Gong J. . Hybrid higher-order skin-topological modes in nonreciprocal systems. Phys. Rev. Lett., 2019, 123(1): 016805
https://doi.org/10.1103/PhysRevLett.123.016805
96 Li L. , H. Lee C. , Gong J. . Topological switch for non-Hermitian skin effect in cold-atom systems with loss. Phys. Rev. Lett., 2020, 124(25): 250402
https://doi.org/10.1103/PhysRevLett.124.250402
97 Li Y. , Liang C. , Wang C. , Lu C. , C. Liu Y. . Gain-loss-induced hybrid skin-topological effect. Phys. Rev. Lett., 2022, 128(22): 223903
https://doi.org/10.1103/PhysRevLett.128.223903
98 Zhu W. , Gong J. . Hybrid skin-topological modes without asymmetric couplings. Phys. Rev. B, 2022, 106(3): 035425
https://doi.org/10.1103/PhysRevB.106.035425
99 Kawabata K. , Sato M. , Shiozaki K. . Higher-order non-Hermitian skin effect. Phys. Rev. B, 2020, 102(20): 205118
https://doi.org/10.1103/PhysRevB.102.205118
100 Okugawa R. , Takahashi R. , Yokomizo K. . Second- order topological non-Hermitian skin effects. Phys. Rev. B, 2020, 102(24): 241202
https://doi.org/10.1103/PhysRevB.102.241202
101 Fu Y. , Hu J. , Wan S. . Non-Hermitian second-order skin and topological modes. Phys. Rev. B, 2021, 103(4): 045420
https://doi.org/10.1103/PhysRevB.103.045420
102 Zhang K. , Yang Z. , Fang C. . Correspondence be- tween winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402
https://doi.org/10.1103/PhysRevLett.125.126402
103 S. Borgnia D. , J. Kruchkov A. , J. Slager R. . Non-Hermitian boundary modes and topology. Phys. Rev. Lett., 2020, 124(5): 056802
https://doi.org/10.1103/PhysRevLett.124.056802
104 Okuma N. , Kawabata K. , Shiozaki K. , Sato M. . Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 2020, 124(8): 086801
https://doi.org/10.1103/PhysRevLett.124.086801
105 Li L. , Mu S. , H. Lee C. , Gong J. . Quantized classical response from spectral winding topology. Nat. Commun., 2021, 12(1): 5294
https://doi.org/10.1038/s41467-021-25626-z
106 Q. Liang H. , Mu S. , Gong J. , Li L. . Anomalous hybridization of spectral winding topology in quantized steady-state responses. Phys. Rev. B, 2022, 105(24): L241402
https://doi.org/10.1103/PhysRevB.105.L241402
107 Longhi S. . Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 2019, 122(23): 237601
https://doi.org/10.1103/PhysRevLett.122.237601
108 Jiang H. , J. Lang L. , Yang C. , L. Zhu S. , Chen S. . Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
https://doi.org/10.1103/PhysRevB.100.054301
109 Longhi S. . Metal−insulator phase transition in a non-Hermitian Aubry−André−Harper model. Phys. Rev. B, 2019, 100(12): 125157
https://doi.org/10.1103/PhysRevB.100.125157
110 B. Zeng Q. , Xu Y. . Winding numbers and generalized mobility edges in non-Hermitian systems. Phys. Rev. Res., 2020, 2(3): 033052
https://doi.org/10.1103/PhysRevResearch.2.033052
111 B. Zeng Q. , B. Yang Y. , Xu Y. . Topological phases in non-Hermitian Aubry−André−Harper models. Phys. Rev. B, 2020, 101(2): 020201
https://doi.org/10.1103/PhysRevB.101.020201
112 Liu Y. , P. Jiang X. , Cao J. , Chen S. . Non-Hermitian mobility edges in one-dimensional quasicrystals with parity−time symmetry. Phys. Rev. B, 2020, 101(17): 174205
https://doi.org/10.1103/PhysRevB.101.174205
113 J. Zhai L. , Yin S. , Y. Huang G. . Many-body localization in a non-Hermitian quasiperiodic system. Phys. Rev. B, 2020, 102(6): 064206
https://doi.org/10.1103/PhysRevB.102.064206
114 Cai X. . Boundary-dependent self-dualities, winding numbers, and asymmetrical localization in non-Hermitian aperiodic one-dimensional models. Phys. Rev. B, 2021, 103(1): 014201
https://doi.org/10.1103/PhysRevB.103.014201
115 Liu Y. , Wang Y. , J. Liu X. , Zhou Q. , Chen S. . Exact mobility edges, PT-symmetry breaking, and skin effect in one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 103(1): 014203
https://doi.org/10.1103/PhysRevB.103.014203
116 Liu Y. , Zhou Q. , Chen S. . Localization transition, spectrum structure, and winding numbers for one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 104(2): 024201
https://doi.org/10.1103/PhysRevB.104.024201
117 Claes J. , L. Hughes T. . Skin effect and winding number in disordered non-Hermitian systems. Phys. Rev. B, 2021, 103(14): L140201
https://doi.org/10.1103/PhysRevB.103.L140201
118 Longhi S. . Non-Hermitian topological mobility edges and transport in photonic quantum walks. Opt. Lett., 2022, 47(12): 2951
https://doi.org/10.1364/OL.460484
119 Zhang X. , Li G. , Liu Y. , Tai T. , Thomale R. , H. Lee C. . Tidal surface states as fingerprints of non-Hermitian nodal knot metals. Commun. Phys., 2021, 4(1): 47
https://doi.org/10.1038/s42005-021-00535-1
120 Herviou L. , H. Bardarson J. , Regnault N. . Defining a bulk-edge correspondence for non-Hermitian Hamiltonians via singular-value decomposition. Phys. Rev. A, 2019, 99(5): 052118
https://doi.org/10.1103/PhysRevA.99.052118
121 G. Zirnstein H. , Refael G. , Rosenow B. . Bulk-boundary correspondence for non-Hermitian Hamiltonians via Green functions. Phys. Rev. Lett., 2021, 126(21): 216407
https://doi.org/10.1103/PhysRevLett.126.216407
122 P. Su W. , R. Schrieffer J. , J. Heeger A. . Solitons in polyacetylene. Phys. Rev. Lett., 1979, 42(25): 1698
https://doi.org/10.1103/PhysRevLett.42.1698
123 Creutz M. . End states, ladder compounds, and domain-wall Fermions. Phys. Rev. Lett., 1999, 83(13): 2636
https://doi.org/10.1103/PhysRevLett.83.2636
124 Q. Liang H. , Li L. . Topological properties of non-Hermitian Creutz ladders. Chin. Phys. B, 2022, 31(1): 010310
https://doi.org/10.1088/1674-1056/ac3991
125 Edvardsson E. , K. Kunst F. , Yoshida T. , J. Bergholtz E. . Phase transitions and generalized biorthogonal polarization in non-Hermitian systems. Phys. Rev. Res., 2020, 2(4): 043046
https://doi.org/10.1103/PhysRevResearch.2.043046
126 Masuda S. , Nakamura M. . Relationship between the electronic polarization and the winding number in non-Hermitian systems. J. Phys. Soc. Jpn., 2022, 91(4): 043701
https://doi.org/10.7566/JPSJ.91.043701
127 Masuda S. , Nakamura M. . Electronic polarization in non-Bloch band theory. J. Phys. Soc. Jpn., 2022, 91(11): 114705
https://doi.org/10.7566/JPSJ.91.114705
128 S. Deng T. , Yi W. . Non-Bloch topological invariants in a non-Hermitian domain wall system. Phys. Rev. B, 2019, 100(3): 035102
https://doi.org/10.1103/PhysRevB.100.035102
129 Liu H.Lu M.Q. Zhang Z.Jiang H., Modified generalized-Brillouin-zone theory with on-site disorders, arXiv: 2208.03013 (2022)
130 Yang Z. , Zhang K. , Fang C. , Hu J. . Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett., 2020, 125(22): 226402
https://doi.org/10.1103/PhysRevLett.125.226402
131 Tai T.H. Lee C., Zoology of non-Hermitian spectra and their graph topology, arXiv: 2202.03462 (2022)
132 Q. Zhang Z. , Liu H. , Liu H. , Jiang H. , C. Xie X. . Bulk-boundary correspondence in disordered non-Hermitian systems. Sci. Bull. (Beijing), 2023, 68(2): 157
https://doi.org/10.1016/j.scib.2023.01.002
133 Chen R. , Z. Chen C. , Zhou B. , H. Xu D. . Finite-size effects in non-Hermitian topological systems. Phys. Rev. B, 2019, 99(15): 155431
https://doi.org/10.1103/PhysRevB.99.155431
134 M. Rafi-Ul-Islam S. , B. Siu Z. , Sahin H. , H. Lee C. , B. A. Jalil M. . Unconventional skin modes in generalized topolectrical circuits with multiple asymmetric couplings. Phys. Rev. Res., 2022, 4(4): 043108
https://doi.org/10.1103/PhysRevResearch.4.043108
135 Wang W. , Wang X. , Ma G. . Non-Hermitian morphing of topological modes. Nature, 2022, 608(7921): 50
https://doi.org/10.1038/s41586-022-04929-1
136 Wang W. , Wang X. , Ma G. . Extended state in a localized continuum. Phys. Rev. Lett., 2022, 129(26): 264301
https://doi.org/10.1103/PhysRevLett.129.264301
137 Longhi S. . Non-Hermitian gauged topological laser arrays. Ann. Phys., 2018, 530(7): 1800023
https://doi.org/10.1002/andp.201800023
138 Tang M.Wang J.Valligatla S.N. Saggau C.Dong H., et al.., Symmetry induced selective excitation of topological states in SSH waveguide arrays, arXiv: 2211.06228 (2022)
139 D. M. Haldane F. . Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 1988, 61(18): 2015
https://doi.org/10.1103/PhysRevLett.61.2015
140 L. Qi X. , L. Hughes T. , C. Zhang S. . Topological field theory of time-reversal invariant insulators. Phys. Rev. B, 2008, 78(19): 195424
https://doi.org/10.1103/PhysRevB.78.195424
141 Z. Chang C. , Zhang J. , Feng X. , Shen J. , Zhang Z. , Guo M. , Li K. , Ou Y. , Wei P. , L. Wang L. , Q. Ji Z. , Feng Y. , Ji S. , Chen X. , Jia J. , Dai X. , Fang Z. , C. Zhang S. , He K. , Wang Y. , Lu L. , C. Ma X. , K. Xue Q. . Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
https://doi.org/10.1126/science.1234414
142 H. Lee C. , L. Qi X. . Lattice construction of pseu-dopotential Hamiltonians for fractional Chern insulators. Phys. Rev. B, 2014, 90(8): 085103
https://doi.org/10.1103/PhysRevB.90.085103
143 Neupert T. , Chamon C. , Iadecola T. , H. Santos L. , Mudry C. . Fractional (Chern and topological) insulators. Phys. Scr., 2015, T164: 014005
https://doi.org/10.1088/0031-8949/2015/T164/014005
144 Yao S. , Song F. , Wang Z. . Non-Hermitian Chern bands. Phys. Rev. Lett., 2018, 121(13): 136802
https://doi.org/10.1103/PhysRevLett.121.136802
145 Kawabata K. , Shiozaki K. , Ueda M. . Anomalous helical edge states in a non-Hermitian Chern insulator. Phys. Rev. B, 2018, 98(16): 165148
https://doi.org/10.1103/PhysRevB.98.165148
146 X. Xiao Y. , T. Chan C. . Topology in non-Hermitian Chern insulators with skin effect. Phys. Rev. B, 2022, 105(7): 075128
https://doi.org/10.1103/PhysRevB.105.075128
147 Liu H. , S. You J. , Ryu S. , C. Fulga I. . Supermetal−insulator transition in a non-Hermitian network model. Phys. Rev. B, 2021, 104(15): 155412
https://doi.org/10.1103/PhysRevB.104.155412
148 M. Philip T. , R. Hirsbrunner M. , J. Gilbert M. . Loss of Hall conductivity quantization in a non-Hermitian quantum anomalous Hall insulator. Phys. Rev. B, 2018, 98(15): 155430
https://doi.org/10.1103/PhysRevB.98.155430
149 Sayyad S. , D. Hannukainen J. , G. Grushin A. . Non-Hermitian chiral anomalies. Phys. Rev. Res., 2022, 4(4): L042004
https://doi.org/10.1103/PhysRevResearch.4.L042004
150 Bessho T. , Sato M. . Nielsen−Ninomiya theorem with bulk topology: Duality in Floquet and non-Hermitian systems. Phys. Rev. Lett., 2021, 127(19): 196404
https://doi.org/10.1103/PhysRevLett.127.196404
151 Wang C. , R. Wang X. . Hermitian chiral boundary states in non-Hermitian topological insulators. Phys. Rev. B, 2022, 105(12): 125103
https://doi.org/10.1103/PhysRevB.105.125103
152 H. Lee C. , Wang Y. , Chen Y. , Zhang X. . Electromagnetic response of quantum Hall systems in dimensions five and six and beyond. Phys. Rev. B, 2018, 98(9): 094434
https://doi.org/10.1103/PhysRevB.98.094434
153 Petrides I. , M. Price H. , Zilberberg O. . Six-dimensional quantum Hall effect and three-dimensional topological pumps. Phys. Rev. B, 2018, 98(12): 125431
https://doi.org/10.1103/PhysRevB.98.125431
154 Shao K. , T. Cai Z. , Geng H. , Chen W. , Y. Xing D. . Cyclotron quantization and mirror-time transition on nonreciprocal lattices. Phys. Rev. B, 2022, 106(8): L081402
https://doi.org/10.1103/PhysRevB.106.L081402
155 Deng K. , Flebus B. . Non-Hermitian skin effect in magnetic systems. Phys. Rev. B, 2022, 105(18): L180406
https://doi.org/10.1103/PhysRevB.105.L180406
156 M. Denner M.Schindler F., Magnetic flux response of non-Hermitian topological phases, arXiv: 2208.11712 (2022)
157 Lu M. , X. Zhang X. , Franz M. . Magnetic suppression of non-Hermitian skin effects. Phys. Rev. Lett., 2021, 127(25): 256402
https://doi.org/10.1103/PhysRevLett.127.256402
158 Zhen B. , W. Hsu C. , Igarashi Y. , Lu L. , Kaminer I. , Pick A. , L. Chua S. , D. Joannopoulos J. , Soljačić M. . Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525(7569): 354
https://doi.org/10.1038/nature14889
159 Xu Y. , T. Wang S. , M. Duan L. . Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett., 2017, 118(4): 045701
https://doi.org/10.1103/PhysRevLett.118.045701
160 Liu J. , Li Z. , G. Chen Z. , Tang W. , Chen A. , Liang B. , Ma G. , C. Cheng J. . Experimental realization of Weyl exceptional rings in a synthetic three-dimensional non-Hermitian phononic crystal. Phys. Rev. Lett., 2022, 129(8): 084301
https://doi.org/10.1103/PhysRevLett.129.084301
161 Cerjan A. , Huang S. , Wang M. , P. Chen K. , Chong Y. , C. Rechtsman M. . Experimental realization of a Weyl exceptional ring. Nat. Photonics, 2019, 13(9): 623
https://doi.org/10.1038/s41566-019-0453-z
162 Tang W.Ding K.Ma G., Realization and topological properties of third-order exceptional lines embedded in exceptional surfaces, arXiv: 2211.15921 (2022)
163 Bzdušek T. , S. Wu Q. , Rüegg A. , Sigrist M. , A. Soluyanov A. . Nodal-chain metals. Nature, 2016, 538: 75
https://doi.org/10.1038/nature19099
164 Huh Y. , G. Moon E. , B. Kim Y. . Long-range Coulomb interaction in nodal-ring semimetals. Phys. Rev. B, 2016, 93(3): 035138
https://doi.org/10.1103/PhysRevB.93.035138
165 Li L. , A. N. Araujo M. . Topological insulating phases from two-dimensional nodal loop semimetals. Phys. Rev. B, 2016, 94(16): 165117
https://doi.org/10.1103/PhysRevB.94.165117
166 Li L. , Yin C. , Chen S. , A. N. Araujo M. . Chiral topological insulating phases from three-dimensional nodal loop semimetals. Phys. Rev. B, 2017, 95(12): 121107
https://doi.org/10.1103/PhysRevB.95.121107
167 Li L. , Chesi S. , Yin C. , Chen S. . 2π-flux loop semimetals. Phys. Rev. B, 2017, 96(8): 081116
https://doi.org/10.1103/PhysRevB.96.081116
168 Yan Z. , Bi R. , Shen H. , Lu L. , C. Zhang S. , Wang Z. . Nodal-link semimetals. Phys. Rev. B, 2017, 96(4): 041103
https://doi.org/10.1103/PhysRevB.96.041103
169 Li S. , M. Yu Z. , Liu Y. , Guan S. , S. Wang S. , Zhang X. , Yao Y. , A. Yang S. . Type-II nodal loops: Theory and material realization. Phys. Rev. B, 2017, 96(8): 081106
https://doi.org/10.1103/PhysRevB.96.081106
170 Li L. , H. Yap H. , A. N. Araújo M. , Gong J. . Engineering topological phases with a three-dimensional nodal-loop semimetal. Phys. Rev. B, 2017, 96(23): 235424
https://doi.org/10.1103/PhysRevB.96.235424
171 Zhou Y. , Xiong F. , Wan X. , An J. . Hopf-link topological nodal-loop semimetals. Phys. Rev. B, 2018, 97(15): 155140
https://doi.org/10.1103/PhysRevB.97.155140
172 Pezzini S. , R. van Delft M. , M. Schoop L. , V. Lotsch B. , Carrington A. , I. Katsnelson M. , E. Hussey N. , Wiedmann S. . Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. Nat. Phys., 2018, 14(2): 178
https://doi.org/10.1038/nphys4306
173 Zhang X. , M. Yu Z. , Zhu Z. , Wu W. , S. Wang S. , L. Sheng X. , A. Yang S. . Nodal loop and nodal surface states in the Ti3Al family of materials. Phys. Rev. B, 2018, 97(23): 235150
https://doi.org/10.1103/PhysRevB.97.235150
174 H. Lee C. , W. Ho W. , Yang B. , Gong J. , Papić Z. . Floquet mechanism for non-Abelian fractional quantum Hall states. Phys. Rev. Lett., 2018, 121(23): 237401
https://doi.org/10.1103/PhysRevLett.121.237401
175 N. Ünal F. , Bouhon A. , J. Slager R. . Topological Euler class as a dynamical observable in optical lattices. Phys. Rev. Lett., 2020, 125(5): 053601
https://doi.org/10.1103/PhysRevLett.125.053601
176 Bouhon A. , S. Wu Q. , J. Slager R. , Weng H. , V. Yazyev O. , Bzdušek T. . Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe. Nat. Phys., 2020, 16(11): 1137
https://doi.org/10.1038/s41567-020-0967-9
177 H. Lee C. , H. Yap H. , Tai T. , Xu G. , Zhang X. , Gong J. . Enhanced higher harmonic generation from nodal topology. Phys. Rev. B, 2020, 102(3): 035138
https://doi.org/10.1103/PhysRevB.102.035138
178 S. Ang Y.H. Lee C.K. Ang L., Universal scaling and signatures of nodal structures in electron tunneling from two-dimensional semimetals, arXiv: 2003.14004 (2020)
179 Yang E. , Yang B. , You O. , C. Chan H. , Mao P. , Guo Q. , Ma S. , Xia L. , Fan D. , Xiang Y. , Zhang S. . Observation of non-Abelian nodal links in photonics. Phys. Rev. Lett., 2020, 125(3): 033901
https://doi.org/10.1103/PhysRevLett.125.033901
180 H. Lee C. , Sutrisno A. , Hofmann T. , Helbig T. , Liu Y. , S. Ang Y. , K. Ang L. , Zhang X. , Greiter M. , Thomale R. . Imaging nodal knots in momentum space through topolectrical circuits. Nat. Commun., 2020, 11: 4385
https://doi.org/10.1038/s41467-020-17716-1
181 Tai T. , H. Lee C. . Anisotropic nonlinear optical response of nodal-loop materials. Phys. Rev. B, 2021, 103(19): 195125
https://doi.org/10.1103/PhysRevB.103.195125
182 M. Lenggenhager P. , Liu X. , S. Tsirkin S. , Neupert T. , Bzdušek T. . From triple-point materials to multiband nodal links. Phys. Rev. B, 2021, 103(12): L121101
https://doi.org/10.1103/PhysRevB.103.L121101
183 Wang M. , Liu S. , Ma Q. , Y. Zhang R. , Wang D. , Guo Q. , Yang B. , Ke M. , Liu Z. , T. Chan C. . Experimental observation of non-Abelian earring nodal links in phononic crystals. Phys. Rev. Lett., 2022, 128(24): 246601
https://doi.org/10.1103/PhysRevLett.128.246601
184 J. Slager R.Bouhon A.N. Ünal F., Floquet multi-gap topology: Non-Abelian braiding and anomalous Dirac string phase, arXiv: 2208.12824 (2022)
185 Peng B. , Bouhon A. , Monserrat B. , J. Slager R. . Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates. Nat. Commun., 2022, 13(1): 423
https://doi.org/10.1038/s41467-022-28046-9
186 Bouhon A.J. Slager R., Multi-gap topological conversion of Euler class via band-node braiding: Minimal models, PT-linked nodal rings, and chiral heirs, arXiv: 2203.16741 (2022)
187 Park H. , Wong S. , Bouhon A. , J. Slager R. , S. Oh S. . Topological phase transitions of non-Abelian charged nodal lines in spring-mass systems. Phys. Rev. B, 2022, 105(21): 214108
https://doi.org/10.1103/PhysRevB.105.214108
188 Yang X. , Cao Y. , Zhai Y. . Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Chin. Phys. B, 2022, 31(1): 010308
https://doi.org/10.1088/1674-1056/ac3738
189 Li L. , H. Lee C. , Gong J. . Realistic Floquet semimetal with exotic topological linkages between arbitrarily many nodal loops. Phys. Rev. Lett., 2018, 121(3): 036401
https://doi.org/10.1103/PhysRevLett.121.036401
190 Yan Z. , Wang Z. . Floquet multi-Weyl points in crossing-nodal-line semimetals. Phys. Rev. B, 2017, 96(4): 041206
https://doi.org/10.1103/PhysRevB.96.041206
191 Carlström J. , J. Bergholtz E. . Exceptional links and twisted Fermi ribbons in non-Hermitian systems. Phys. Rev. A, 2018, 98(4): 042114
https://doi.org/10.1103/PhysRevA.98.042114
192 Chen R. , Zhou B. , H. Xu D. . Floquet Weyl semimetals in light-irradiated type-II and hybrid line-node semimetals. Phys. Rev. B, 2018, 97(15): 155152
https://doi.org/10.1103/PhysRevB.97.155152
193 Carlström J. , Stålhammar M. , C. Budich J. , J. Bergholtz E. . Knotted non-Hermitian metals. Phys. Rev. B, 2019, 99(16): 161115
https://doi.org/10.1103/PhysRevB.99.161115
194 W. Kim K. , Kwon H. , Park K. . Floquet topological semimetal with a helical nodal line in 2+1 dimensions. Phys. Rev. B, 2019, 99(11): 115136
https://doi.org/10.1103/PhysRevB.99.115136
195 Stålhammar M. , Rødland L. , Arone G. , C. Budich J. , Bergholtz E. . Hyperbolic nodal band structures and knot invariants. SciPost Phys., 2019, 7: 019
https://doi.org/10.21468/SciPostPhys.7.2.019
196 Salerno G. , Goldman N. , Palumbo G. . Floquet-engineering of nodal rings and nodal spheres and their characterization using the quantum metric. Phys. Rev. Res., 2020, 2(1): 013224
https://doi.org/10.1103/PhysRevResearch.2.013224
197 Meng H. , Wang L. , H. Lee C. , S. Ang Y. . Terahertz polarization conversion from optical dichroism in a topological Dirac semimetal. Appl. Phys. Lett., 2022, 121(19): 193102
https://doi.org/10.1063/5.0122299
198 Qin F. , H. Lee C. , Chen R. . Light-induced phase crossovers in a quantum spin Hall system. Phys. Rev. B, 2022, 106(23): 235405
https://doi.org/10.1103/PhysRevB.106.235405
199 Wu H. , H. An J. . Non-Hermitian Weyl semimetal and its Floquet engineering. Phys. Rev. B, 2022, 105(12): L121113
https://doi.org/10.1103/PhysRevB.105.L121113
200 Wang K. , Xiao L. , C. Budich J. , Yi W. , Xue P. . Simulating exceptional non-Hermitian metals with single-photon interferometry. Phys. Rev. Lett., 2021, 127(2): 026404
https://doi.org/10.1103/PhysRevLett.127.026404
201 A. Benalcazar W. , A. Bernevig B. , L. Hughes T. . Quantized electric multipole insulators. Science, 2017, 357(6346): 61
https://doi.org/10.1126/science.aah6442
202 Edvardsson E. , K. Kunst F. , J. Bergholtz E. . Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence. Phys. Rev. B, 2019, 99(8): 081302
https://doi.org/10.1103/PhysRevB.99.081302
203 K. Ghosh A. , Nag T. . Non-Hermitian higher-order topological superconductors in two dimensions: Statics and dynamics. Phys. Rev. B, 2022, 106(14): L140303
https://doi.org/10.1103/PhysRevB.106.L140303
204 M. Kim K. , J. Park M. . Disorder-driven phase transition in the second-order non-Hermitian skin effect. Phys. Rev. B, 2021, 104(12): L121101
https://doi.org/10.1103/PhysRevB.104.L121101
205 T. Lei Z.H. Lee C.H. Li L., PT-activated non-Hermitian skin modes, arXiv: 2304.13955v1 (2023)
206 Note that asymmetric couplings are not always need to break reciprocity [98].
207 Li J. , K. Harter A. , Liu J. , de Melo L. , N. Joglekar Y. , Luo L. . Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun., 2019, 10(1): 855
https://doi.org/10.1038/s41467-019-08596-1
208 Wu H. , Q. Wang B. , H. An J. . Floquet second-order topological insulators in non-Hermitian systems. Phys. Rev. B, 2021, 103(4): L041115
https://doi.org/10.1103/PhysRevB.103.L041115
209 W. Zhou L. , W. Bomantara R. , L. Wu S. . qth-root non-Hermitian Floquet topological insulators. SciPost Phys., 2022, 13: 015
https://doi.org/10.21468/SciPostPhys.13.2.015
210 Cao Y. , Li Y. , Yang X. . Non-Hermitian bulk-boundary correspondence in a periodically driven system. Phys. Rev. B, 2021, 103(7): 075126
https://doi.org/10.1103/PhysRevB.103.075126
211 Ezawa M. . Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization. Phys. Rev. B, 2019, 99(20): 201411
https://doi.org/10.1103/PhysRevB.99.201411
212 Ezawa M. . Non-Hermitian boundary and interface states in nonreciprocal higher-order topological metals and electrical circuits. Phys. Rev. B, 2019, 99(12): 121411
https://doi.org/10.1103/PhysRevB.99.121411
213 Song Z. , Fang Z. , Fang C. . (d-2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett., 2017, 119(24): 246402
https://doi.org/10.1103/PhysRevLett.119.246402
214 Khalaf E. . Higher-order topological insulators and superconductors protected by inversion symmetry. Phys. Rev. B, 2018, 97(20): 205136
https://doi.org/10.1103/PhysRevB.97.205136
215 Trifunovic L. , W. Brouwer P. . Higher-order topological band structures. physica status solidi (b), 2021, 258: 2000090
https://doi.org/10.1002/pssb.202000090
216 A. Li C.Trauzettel B.Neupert T.B. Zhang S., Enhancement of second-order non-Hermitian skin effect by magnetic fields, arXiv: 2212.14691v1 (2022)
217 Jiang H.H. Lee C., Dimensional transmutation from non-hermiticity, arXiv: 2207.08843 (2022)
218 Zhu P.Q. Sun X.L. Hughes T.Bahl G., Higher rank chirality and non-Hermitian skin effect in a topolectrical circuit, arXiv: 2207.02228 (2022)
219 Song F.Y. Wang H.Wang Z., Non-Bloch PT symmetry breaking: Universal threshold and dimensional surprise, A Festschrift in Honor of the C. N. Yang Centenary, arXiv: 2102.02230 (2022)
220 Jiang H. , H. Lee C. . Filling up complex spectral regions through non-Hermitian disordered chains. Chin. Phys. B, 2022, 31(5): 050307
https://doi.org/10.1088/1674-1056/ac4a73
221 Kawabata K. , Shiozaki K. , Ueda M. , Sato M. . Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015
https://doi.org/10.1103/PhysRevX.9.041015
222 Theiler J. . Estimating fractal dimension. J. Opt. Soc. Am. A, 1990, 7(6): 1055
https://doi.org/10.1364/JOSAA.7.001055
223 L. Qi X., Exact holographic mapping and emergent space−time geometry, arXiv: 1309.6282 (2013)
224 H. Lee C. , L. Qi X. . Exact holographic mapping in free Fermion systems. Phys. Rev. B, 2016, 93(3): 035112
https://doi.org/10.1103/PhysRevB.93.035112
225 Gu Y. , H. Lee C. , Wen X. , Y. Cho G. , Ryu S. , L. Qi X. . Holographic duality between (2+1)-dimensional quantum anomalous Hall state and (3+1)-dimensional topological insulators. Phys. Rev. B, 2016, 94(12): 125107
https://doi.org/10.1103/PhysRevB.94.125107
226 Yoshida T. , Mizoguchi T. , Hatsugai Y. . Mirror skin effect and its electric circuit simulation. Phys. Rev. Res., 2020, 2(2): 022062
https://doi.org/10.1103/PhysRevResearch.2.022062
227 H. Liu C. , Chen S. . Topological classification of defects in non-Hermitian systems. Phys. Rev. B, 2019, 100(14): 144106
https://doi.org/10.1103/PhysRevB.100.144106
228 H. Liu C. , Hu H. , Chen S. . Symmetry and topological classification of Floquet non-Hermitian systems. Phys. Rev. B, 2022, 105(21): 214305
https://doi.org/10.1103/PhysRevB.105.214305
229 Okugawa R. , Takahashi R. , Yokomizo K. . Non-Hermitian band topology with generalized inversion symmetry. Phys. Rev. B, 2021, 103(20): 205205
https://doi.org/10.1103/PhysRevB.103.205205
230 M. Vecsei P. , M. Denner M. , Neupert T. , Schindler F. . Symmetry indicators for inversion-symmetric non-Hermitian topological band structures. Phys. Rev. B, 2021, 103(20): L201114
https://doi.org/10.1103/PhysRevB.103.L201114
231 Gong Z. , Ashida Y. , Kawabata K. , Takasan K. , Higashikawa S. , Ueda M. . Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
https://doi.org/10.1103/PhysRevX.8.031079
232 M. Denner M. , Skurativska A. , Schindler F. , H. Fischer M. , Thomale R. , Bzdušek T. , Neupert T. . Exceptional topological insulators. Nat. Commun., 2021, 12: 5681
https://doi.org/10.1038/s41467-021-25947-z
233 Nakamura D.Bessho T.Sato M., Bulk-boundary correspondence in point-gap topological phases, arXiv: 2205.15635 (2022)
234 Song F. , Yao S. , Wang Z. . Non-Hermitian topological invariants in real space. Phys. Rev. Lett., 2019, 123(24): 246801
https://doi.org/10.1103/PhysRevLett.123.246801
235 Z. Tang L. , F. Zhang L. , Q. Zhang G. , W. Zhang D. . Topological Anderson insulators in two-dimensional non-Hermitian disordered systems. Phys. Rev. A, 2020, 101(6): 063612
https://doi.org/10.1103/PhysRevA.101.063612
236 A. A. Ghorashi S. , Li T. , Sato M. , L. Hughes T. . Non-Hermitian higher-order Dirac semimetals. Phys. Rev. B, 2021, 104(16): L161116
https://doi.org/10.1103/PhysRevB.104.L161116
237 A. A. Ghorashi S. , Li T. , Sato M. . Non-Hermitian higher-order Weyl semimetals. Phys. Rev. B, 2021, 104(16): L161117
https://doi.org/10.1103/PhysRevB.104.L161117
238 Edvardsson E. , Ardonne E. . Sensitivity of non-Hermitian systems. Phys. Rev. B, 2022, 106(11): 115107
https://doi.org/10.1103/PhysRevB.106.115107
239 Böttcher A.M. Grudsky S., Spectral Properties of Banded Toeplitz Matrices, SIAM, 2005
240 Bartlett J. , Hu H. , Zhao E. . Illuminating the bulk-boundary correspondence of a non-Hermitian stub lattice with Majorana stars. Phys. Rev. B, 2021, 104(19): 195131
https://doi.org/10.1103/PhysRevB.104.195131
241 X. Teo W. , Li L. , Zhang X. , Gong J. . Topological characterization of non-Hermitian multiband systems using Majorana’s stellar representation. Phys. Rev. B, 2020, 101(20): 205309
https://doi.org/10.1103/PhysRevB.101.205309
242 S. Pan J. , Li L. , Gong J. . Point-gap topology with complete bulk-boundary correspondence and anomalous amplification in the Fock space of dissipative quantum systems. Phys. Rev. B, 2021, 103(20): 205425
https://doi.org/10.1103/PhysRevB.103.205425
243 Wang K. , Dutt A. , Y. Yang K. , C. Wojcik C. , Vučković J. , Fan S. . Generating arbitrary topological windings of a non-Hermitian band. Science, 2021, 371(6535): 1240
https://doi.org/10.1126/science.abf6568
244 H. Lee C. , Imhof S. , Berger C. , Bayer F. , Brehm J. , W. Molenkamp L. , Kiessling T. , Thomale R. . Topolectrical circuits. Commun. Phys., 2018, 1: 39
https://doi.org/10.1038/s42005-018-0035-2
245 Liu Y. , Zeng Y. , Li L. , Chen S. . Exact solution of the single impurity problem in nonreciprocal lattices: Impurity-induced size-dependent non-Hermitian skin effect. Phys. Rev. B, 2021, 104(8): 085401
https://doi.org/10.1103/PhysRevB.104.085401
246 Ou Z. , Wang Y. , Li L. . Non-Hermitian boundary spectral winding. Phys. Rev. B, 2023, 107: L161404
https://doi.org/10.1103/PhysRevB.107.L161404
247 Okuma N. . Boundary-dependent dynamical instability of bosonic Green’s function: Dissipative Bogoliubov–de Gennes Hamiltonian and its application to non-Hermitian skin effect. Phys. Rev. B, 2022, 105(22): 224301
https://doi.org/10.1103/PhysRevB.105.224301
248 Mao L. , Deng T. , Zhang P. . Boundary condition independence of non-Hermitian Hamiltonian dynamics. Phys. Rev. B, 2021, 104(12): 125435
https://doi.org/10.1103/PhysRevB.104.125435
249 Hu H. , Zhao E. . Knots and non-Hermitian Bloch bands. Phys. Rev. Lett., 2021, 126(1): 010401
https://doi.org/10.1103/PhysRevLett.126.010401
250 Li Y. , Ji X. , Chen Y. , Yan X. , Yang X. . Topological energy braiding of non-Bloch bands. Phys. Rev. B, 2022, 106(19): 195425
https://doi.org/10.1103/PhysRevB.106.195425
251 Louis H., Kauffman, Knots and Physics, Vol. 1, World Scientific, 1991
252 Hu H. , Sun S. , Chen S. . Knot topology of exceptional point and non-Hermitian no−go theorem. Phys. Rev. Res., 2022, 4(2): L022064
https://doi.org/10.1103/PhysRevResearch.4.L022064
253 Li L. , H. Lee C. . Non-Hermitian pseudo-gaps. Sci. Bull. (Beijing), 2022, 67(7): 685
https://doi.org/10.1016/j.scib.2022.01.017
254 Wang K. , Dutt A. , C. Wojcik C. , Fan S. . Topological complex-energy braiding of non-Hermitian bands. Nature, 2021, 598(7879): 59
https://doi.org/10.1038/s41586-021-03848-x
255 Tang W. , Ding K. , Ma G. . Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. Natl. Sci. Rev., 2022, 9(11): nwac010
https://doi.org/10.1093/nsr/nwac010
256 Tang W. , Jiang X. , Ding K. , X. Xiao Y. , Q. Zhang Z. , T. Chan C. , Ma G. . Exceptional nexus with a hybrid topological invariant. Science, 2020, 370(6520): 1077
https://doi.org/10.1126/science.abd8872
257 Fu Y.Zhang Y., Anatomy of open-boundary bulk in multiband non-Hermitian systems, arXiv: 2212.13753 (2022)
258 Kohn W. . Analytic properties of Bloch waves and Wannier functions. Phys. Rev., 1959, 115(4): 809
https://doi.org/10.1103/PhysRev.115.809
259 He L. , Vanderbilt D. . Exponential decay properties of Wannier functions and related quantities. Phys. Rev. Lett., 2001, 86(23): 5341
https://doi.org/10.1103/PhysRevLett.86.5341
260 Brouder C. , Panati G. , Calandra M. , Mourougane C. , Marzari N. . Exponential localization of Wannier functions in insulators. Phys. Rev. Lett., 2007, 98(4): 046402
https://doi.org/10.1103/PhysRevLett.98.046402
261 H. Lee C. , P. Arovas D. , Thomale R. . Band flatness optimization through complex analysis. Phys. Rev. B, 2016, 93(15): 155155
https://doi.org/10.1103/PhysRevB.93.155155
262 Monaco D. , Panati G. , Pisante A. , Teufel S. . Optimal decay of Wannier functions in Chern and quantum Hall insulators. Commun. Math. Phys., 2018, 359(1): 61
https://doi.org/10.1007/s00220-017-3067-7
263 Longhi S. . Non-Bloch-band collapse and chiral Zener tunneling. Phys. Rev. Lett., 2020, 124(6): 066602
https://doi.org/10.1103/PhysRevLett.124.066602
264 Qin F.Ma Y.Shen R.H. Lee C., Universal competitive spectral scaling from the critical non-Hermitian skin effect, arXiv: 2212.13536 (2022)
265 M. Rafi-Ul-Islam S. , B. Siu Z. , Sahin H. , H. Lee C. , B. A. Jalil M. . Critical hybridization of skin modes in coupled non-Hermitian chains. Phys. Rev. Res., 2022, 4(1): 013243
https://doi.org/10.1103/PhysRevResearch.4.013243
266 M. Rafi-Ul-Islam S. , B. Siu Z. , Sahin H. , H. Lee C. , B. A. Jalil M. . System size dependent topological zero modes in coupled topolectrical chains. Phys. Rev. B, 2022, 106(7): 075158
https://doi.org/10.1103/PhysRevB.106.075158
267 Sun G. , C. Tang J. , P. Kou S. . Biorthogonal quantum criticality in non-Hermitian many-body systems. Front. Phys., 2022, 17(3): 33502
https://doi.org/10.1007/s11467-021-1126-1
268 X. Bao X. , F. Guo G. , P. Du X. , Q. Gu H. , Tan L. . The topological criticality in disordered non-Hermitian system. J. Phys.: Condens. Matter, 2021, 33(18): 185401
https://doi.org/10.1088/1361-648X/abee3d
269 Arouca R. , H. Lee C. , M. Smith C. . Unconventional scaling at non-Hermitian critical points. Phys. Rev. B, 2020, 102(24): 245145
https://doi.org/10.1103/PhysRevB.102.245145
270 Aquino R.Lopes N.G. Barci D., Critical and non-critical non-Hermitian topological phase transitions in one dimensional chains, arXiv: 2208.14400 (2022)
271 Rahul S. , Sarkar S. . Topological quantum criticality in non-Hermitian extended Kitaev chain. Sci. Rep., 2022, 12(1): 1
https://doi.org/10.1038/s41598-022-11126-7
272 K. Jian S. , C. Yang Z. , Bi Z. , Chen X. . Yang−Lee edge singularity triggered entanglement transition. Phys. Rev. B, 2021, 104(16): L161107
https://doi.org/10.1103/PhysRevB.104.L161107
273 Shen R.Chen T.Qin F.Zhong Y.H. Lee C., Proposal for observing Yang−Lee criticality in Rydberg atomic arrays, arXiv: 2302.06662 (2023)
274 Zhou B. , Wang R. , Wang B. . Renormalization group approach to non-Hermitian topological quantum criticality. Phys. Rev. B, 2020, 102(20): 205116
https://doi.org/10.1103/PhysRevB.102.205116
275 Yin S. , Y. Huang G. , Y. Lo C. , Chen P. . Kibble−Zurek scaling in the Yang−Lee edge singularity. Phys. Rev. Lett., 2017, 118(6): 065701
https://doi.org/10.1103/PhysRevLett.118.065701
276 Okuma N. , Sato M. . Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems. Phys. Rev. B, 2021, 103(8): 085428
https://doi.org/10.1103/PhysRevB.103.085428
277 Kawabata K.Numasawa T.Ryu S., Entanglement phase transition induced by the non-Hermitian skin effect, arXiv: 2206.05384 (2022)
278 H. Lee C. . Exceptional bound states and negative entanglement entropy. Phys. Rev. Lett., 2022, 128(1): 010402
https://doi.org/10.1103/PhysRevLett.128.010402
279 Peschel I. , Eisler V. . Reduced density matrices and entanglement entropy in free lattice models. J. Phys. A Math. Theor., 2009, 42(50): 504003
https://doi.org/10.1088/1751-8113/42/50/504003
280 L. Qi X. . Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators. Phys. Rev. Lett., 2011, 107(12): 126803
https://doi.org/10.1103/PhysRevLett.107.126803
281 L. Hughes T. , Prodan E. , A. Bernevig B. . Inversion-symmetric topological insulators. Phys. Rev. B, 2011, 83(24): 245132
https://doi.org/10.1103/PhysRevB.83.245132
282 Alexandradinata A. , L. Hughes T. , A. Bernevig B. . Trace index and spectral flow in the entanglement spectrum of topological insulators. Phys. Rev. B, 2011, 84(19): 195103
https://doi.org/10.1103/PhysRevB.84.195103
283 H. Lee C. , Ye P. . Free-Fermion entanglement spectrum through Wannier interpolation. Phys. Rev. B, 2015, 91(8): 085119
https://doi.org/10.1103/PhysRevB.91.085119
284 Herviou L. , Regnault N. , H. Bardarson J. . Entanglement spectrum and symmetries in non-Hermitian Fermionic non-interacting models. SciPost Phys., 2019, 7: 069
https://doi.org/10.21468/SciPostPhys.7.5.069
285 M. Chen L. , A. Chen S. , Ye P. . Entanglement, non-hermiticity, and duality. SciPost Phys., 2021, 11: 003
https://doi.org/10.21468/SciPostPhys.11.1.003
286 Y. Chang P. , S. You J. , Wen X. , Ryu S. . Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res., 2020, 2(3): 033069
https://doi.org/10.1103/PhysRevResearch.2.033069
287 Li H. , Wan S. . Dynamic skin effects in non-Hermitian systems. Phys. Rev. B, 2022, 106(24): L241112
https://doi.org/10.1103/PhysRevB.106.L241112
288 Longhi S. . Non-Hermitian skin effect and self-acceleration. Phys. Rev. B, 2022, 105(24): 245143
https://doi.org/10.1103/PhysRevB.105.245143
289 Li T. , Z. Sun J. , S. Zhang Y. , Yi W. . Non-Bloch quench dynamics. Phys. Rev. Res., 2021, 3(2): 023022
https://doi.org/10.1103/PhysRevResearch.3.023022
290 H. Lee C. , Longhi S. . Ultrafast and anharmonic Rabi oscillations between non-Bloch bands. Commun. Phys., 2020, 3: 1
291 Li L. , X. Teo W. , Mu S. , Gong J. . Direction reversal of non-Hermitian skin effect via coherent coupling. Phys. Rev. B, 2022, 106(8): 085427
https://doi.org/10.1103/PhysRevB.106.085427
292 Peng Y. , Jie J. , Yu D. , Wang Y. . Manipulating the non-Hermitian skin effect via electric fields. Phys. Rev. B, 2022, 106(16): L161402
https://doi.org/10.1103/PhysRevB.106.L161402
293 Zhang X. , Gong J. . Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect. Phys. Rev. B, 2020, 101(4): 045415
https://doi.org/10.1103/PhysRevB.101.045415
294 Longhi S. . Probing non-Hermitian skin effect and non-Bloch phase transitions. Phys. Rev. Res., 2019, 1(2): 023013
https://doi.org/10.1103/PhysRevResearch.1.023013
295 Yang F. , D. Jiang Q. , J. Bergholtz E. . Liouvillian skin effect in an exactly solvable model. Phys. Rev. Res., 2022, 4(2): 023160
https://doi.org/10.1103/PhysRevResearch.4.023160
296 Longhi S. . Unraveling the non-Hermitian skin effect in dissipative systems. Phys. Rev. B, 2020, 102(20): 201103
https://doi.org/10.1103/PhysRevB.102.201103
297 Longhi S. . Stochastic non-Hermitian skin effect. Opt. Lett., 2020, 45(18): 5250
https://doi.org/10.1364/OL.403182
298 Longhi S. . Bulk-edge correspondence and trapping at a non-Hermitian topological interface. Opt. Lett., 2021, 46(24): 6107
https://doi.org/10.1364/OL.445437
299 Longhi S. . Non-Hermitian Hartman effect. Ann. Phys., 2022, 534(10): 2200250
https://doi.org/10.1002/andp.202200250
300 Stegmaier A. , Imhof S. , Helbig T. , Hofmann T. , H. Lee C. , Kremer M. , Fritzsche A. , Feichtner T. , Klembt S. , Höfling S. , Boettcher I. , C. Fulga I. , Ma L. , G. Schmidt O. , Greiter M. , Kiessling T. , Szameit A. , Thomale R. . Topological defect engineering and PT symmetry in non-Hermitian electrical circuits. Phys. Rev. Lett., 2021, 126(21): 215302
https://doi.org/10.1103/PhysRevLett.126.215302
301 Longhi S. . Phase transitions in a non-Hermitian Aubry−André−Harper model. Phys. Rev. B, 2021, 103(5): 054203
https://doi.org/10.1103/PhysRevB.103.054203
302 Suthar K. , C. Wang Y. , P. Huang Y. , H. Jen H. , S. You J. . Non-Hermitian many-body localization with open boundaries. Phys. Rev. B, 2022, 106(6): 064208
https://doi.org/10.1103/PhysRevB.106.064208
303 Zhang B. , Li Q. , Zhang X. , H. Lee C. . Real non-Hermitian energy spectra without any symmetry. Chin. Phys. B, 2022, 31(7): 070308
https://doi.org/10.1088/1674-1056/ac67c6
304 C. Rechtsman M. , M. Zeuner J. , Plotnik Y. , Lumer Y. , Podolsky D. , Dreisow F. , Nolte S. , Segev M. , Szameit A. . Photonic Floquet topological insulators. Nature, 2013, 496: 196
https://doi.org/10.1038/nature12066
305 Fläschner N. , S. Rem B. , Tarnowski M. , Vogel D. , S. Lühmann D. , Sengstock K. , Weitenberg C. . Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science, 2016, 352(6289): 1091
https://doi.org/10.1126/science.aad4568
306 Zhou L. , Gong J. . Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states. Phys. Rev. B, 2018, 98(20): 205417
https://doi.org/10.1103/PhysRevB.98.205417
307 Ma N. , Gong J. . Unsupervised identification of Floquet topological phase boundaries. Phys. Rev. Res., 2022, 4(1): 013234
https://doi.org/10.1103/PhysRevResearch.4.013234
308 Wu H. , H. An J. . Floquet topological phases of non-Hermitian systems. Phys. Rev. B, 2020, 102(4): 041119
https://doi.org/10.1103/PhysRevB.102.041119
309 N. Zhang Y. , Xu S. , D. Liu H. , X. Yi X. . Floquet spectrum and dynamics for non-Hermitian Floquet one-dimension lattice model. Int. J. Theor. Phys., 2021, 60(1): 355
https://doi.org/10.1007/s10773-020-04699-4
310 Zhou L. , Pan J. . Non-Hermitian Floquet topological phases in the double-kicked rotor. Phys. Rev. A, 2019, 100(5): 053608
https://doi.org/10.1103/PhysRevA.100.053608
311 Zhou L. . Dynamical characterization of non-Hermitian Floquet topological phases in one dimension. Phys. Rev. B, 2019, 100(18): 184314
https://doi.org/10.1103/PhysRevB.100.184314
312 S. Rudner M. , H. Lindner N. , Berg E. , Levin M. . Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X, 2013, 3(3): 031005
https://doi.org/10.1103/PhysRevX.3.031005
313 Y. Wang H. , M. Zhao X. , Zhuang L. , M. Liu W. . Non-Floquet engineering in periodically driven dissipative open quantum systems. J. Phys.: Condens. Matter, 2022, 34(36): 365402
https://doi.org/10.1088/1361-648X/ac7c4e
314 Zhou L. , Gu Y. , Gong J. . Dual topological characterization of non-Hermitian Floquet phases. Phys. Rev. B, 2021, 103(4): L041404
https://doi.org/10.1103/PhysRevB.103.L041404
315 Zhang Z. , Delplace P. , Fleury R. . Superior robustness of anomalous non-reciprocal topological edge states. Nature, 2021, 598(7880): 293
https://doi.org/10.1038/s41586-021-03868-7
316 Zhou L. . Non-Hermitian Floquet topological superconductors with multiple Majorana edge modes. Phys. Rev. B, 2020, 101(1): 014306
https://doi.org/10.1103/PhysRevB.101.014306
317 Pan J. , Zhou L. . Non-Hermitian Floquet second order topological insulators in periodically quenched lattices. Phys. Rev. B, 2020, 102(9): 094305
https://doi.org/10.1103/PhysRevB.102.094305
318 Liu H.C. Fulga I., Mixed higher-order topology: Boundary non-Hermitian skin effect induced by a Floquet bulk, arXiv: 2210.03097 (2022)
319 Longhi S. . Non-Hermitian skin effect beyond the tight- binding models. Phys. Rev. B, 2021, 104(12): 125109
https://doi.org/10.1103/PhysRevB.104.125109
320 J. Lang L. , L. Zhu S. , D. Chong Y. . Non-Hermitian topological end breathers. Phys. Rev. B, 2021, 104(2): L020303
https://doi.org/10.1103/PhysRevB.104.L020303
321 H. Lee C. . Many-body topological and skin states without open boundaries. Phys. Rev. B, 2021, 104(19): 195102
https://doi.org/10.1103/PhysRevB.104.195102
322 Shen R. , H. Lee C. . Non-Hermitian skin clusters from strong interactions. Commun. Phys., 2022, 5(1): 1
https://doi.org/10.1038/s42005-022-01015-w
323 Sarkar R. , S. Hegde S. , Narayan A. . Interplay of disorder and point-gap topology: Chiral modes, localization, and non-Hermitian Anderson skin effect in one dimension. Phys. Rev. B, 2022, 106(1): 014207
https://doi.org/10.1103/PhysRevB.106.014207
324 Yuce C. , Ramezani H. . Coexistence of extended and localized states in the one-dimensional non-Hermitian Anderson model. Phys. Rev. B, 2022, 106(2): 024202
https://doi.org/10.1103/PhysRevB.106.024202
325 Roccati F. . Non-Hermitian skin effect as an impurity problem. Phys. Rev. A, 2021, 104(2): 022215
https://doi.org/10.1103/PhysRevA.104.022215
326 Wang C. , R. Wang X. . Chiral hinge transport in disordered non-Hermitian second-order topological insulators. Phys. Rev. B, 2022, 106(4): 045142
https://doi.org/10.1103/PhysRevB.106.045142
327 Longhi S. . Spectral deformations in non-Hermitian lattices with disorder and skin effect: A solvable model. Phys. Rev. B, 2021, 103(14): 144202
https://doi.org/10.1103/PhysRevB.103.144202
328 M. Chen L. , Zhou Y. , A. Chen S. , Ye P. . Quantum entanglement of non-Hermitian quasicrystals. Phys. Rev. B, 2022, 105(12): L121115
https://doi.org/10.1103/PhysRevB.105.L121115
329 Chakrabarty A.Datta S., Skin effect and dynamical delocalization in non-Hermitian quasicrystals with spin-orbit interaction, arXiv: 2208.10359 (2022)
330 Wang W.Hu M.Wang X.Ma G.Ding K., Experimental realization of geometry-dependent skin effect in a reciprocal two-dimensional lattice, arXiv: 2302.06314 (2023)
331 Lv C. , Zhang R. , Zhai Z. , Zhou Q. . Curving the space by non-hermiticity. Nat. Commun., 2022, 13(1): 2184
https://doi.org/10.1038/s41467-022-29774-8
332 X. Wang S. , Wan S. . Duality between the generalized non-Hermitian Hatano−Nelson model in flat space and a Hermitian system in curved space. Phys. Rev. B, 2022, 106(7): 075112
https://doi.org/10.1103/PhysRevB.106.075112
333 W. Lv C.Zhou Q., Emergent spacetimes from Hermitian and non-Hermitian quantum dynamics, arXiv: 2205.07429 (2022)
334 Gao W. , Lawrence M. , Yang B. , Liu F. , Fang F. , Béri B. , Li J. , Zhang S. . Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett., 2015, 114(3): 037402
https://doi.org/10.1103/PhysRevLett.114.037402
335 J. Kollár A. , Fitzpatrick M. , A. Houck A. . Hyperbolic lattices in circuit quantum electrodynamics. Nature, 2019, 571(7763): 45
https://doi.org/10.1038/s41586-019-1348-3
336 M. Lenggenhager P. , Stegmaier A. , K. Upreti L. , Hofmann T. , Helbig T. , Vollhardt A. , Greiter M. , H. Lee C. , Imhof S. , Brand H. , Kießling T. , Boettcher I. , Neupert T. , Thomale R. , Bzdušek T. . Simulating hyperbolic space on a circuit board. Nat. Commun., 2022, 13(1): 4373
https://doi.org/10.1038/s41467-022-32042-4
337 Ezawa M. . Dynamical nonlinear higher-order non-Hermitian skin effects and topological trap-skin phase. Phys. Rev. B, 2022, 105(12): 125421
https://doi.org/10.1103/PhysRevB.105.125421
338 Yuce C. . Nonlinear non-Hermitian skin effect. Phys. Lett. A, 2021, 408: 127484
https://doi.org/10.1016/j.physleta.2021.127484
339 Tuloup T. , W. Bomantara R. , H. Lee C. , Gong J. . Nonlinearity induced topological physics in momentum space and real space. Phys. Rev. B, 2020, 102(11): 115411
https://doi.org/10.1103/PhysRevB.102.115411
340 Hadad Y. , C. Soric J. , B. Khanikaev A. , Alù A. . Self-induced topological protection in nonlinear circuit arrays. Nat. Electron., 2018, 1(3): 178
https://doi.org/10.1038/s41928-018-0042-z
341 Wang Y. , J. Lang L. , H. Lee C. , Zhang B. , D. Chong Y. . Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial. Nat. Commun., 2019, 10(1): 1102
https://doi.org/10.1038/s41467-019-08966-9
342 Kotwal T. , Moseley F. , Stegmaier A. , Imhof S. , Brand H. , Kießling T. , Thomale R. , Ronellenfitsch H. , Dunkel J. . Active topolectrical circuits. Proc. Natl. Acad. Sci. USA, 2021, 118(32): e2106411118
https://doi.org/10.1073/pnas.2106411118
343 Hohmann H. , Hofmann T. , Helbig T. , Imhof S. , Brand H. , K. Upreti L. , Stegmaier A. , Fritzsche A. , Müller T. , Schwingenschlögl U. , H. Lee C. , Greiter M. , W. Molenkamp L. , Kießling T. , Thomale R. . Observation of Cnoidal wave localization in nonlinear topolectric circuits. Phys. Rev. Res., 2023, 5(1): L012041
https://doi.org/10.1103/PhysRevResearch.5.L012041
344 A. Dobrykh D. , V. Yulin A. , P. Slobozhanyuk A. , N. Poddubny A. , S. Kivshar Y. . Nonlinear control of electromagnetic topological edge states. Phys. Rev. Lett., 2018, 121(16): 163901
https://doi.org/10.1103/PhysRevLett.121.163901
345 H. Fu P.Xu Y.H. Lee C.S. Ang Y.F. Liu J., Gate-tunable topological Josephson diode, arXiv: 2212.01980 (2022)
346 Ezawa M. . Nonlinear topological Toda quasicrystal. J. Phys. Soc. Jpn., 2022, 91(8): 084703
https://doi.org/10.7566/JPSJ.91.084703
347 Hofmann T. , Helbig T. , H. Lee C. , Greiter M. , Thomale R. . Chiral voltage propagation and calibration in a topolectrical Chern circuit. Phys. Rev. Lett., 2019, 122(24): 247702
https://doi.org/10.1103/PhysRevLett.122.247702
348 Mu S. , H. Lee C. , Li L. , Gong J. . Emergent Fermi surface in a many-body non-Hermitian fermionic chain. Phys. Rev. B, 2020, 102(8): 081115
https://doi.org/10.1103/PhysRevB.102.081115
349 B. Zhang S. , M. Denner M. , Bzdušek T. , A. Sentef M. , Neupert T. . Symmetry breaking and spectral structure of the interacting Hatano−Nelson model. Phys. Rev. B, 2022, 106(12): L121102
https://doi.org/10.1103/PhysRevB.106.L121102
350 Alsallom F. , Herviou L. , V. Yazyev O. , Brzezińska M. . Fate of the non-Hermitian skin effect in many-body fermionic systems. Phys. Rev. Res., 2022, 4(3): 033122
https://doi.org/10.1103/PhysRevResearch.4.033122
351 Dóra B. , P. Moca C. . Full counting statistics in the many-body Hatano−Nelson model. Phys. Rev. B, 2022, 106(23): 235125
https://doi.org/10.1103/PhysRevB.106.235125
352 Yoshida T. , Kudo K. , Hatsugai Y. . Non-Hermitian fractional quantum Hall states. Sci. Rep., 2019, 9(1): 16895
https://doi.org/10.1038/s41598-019-53253-8
353 N. Wang Y. , L. You W. , Sun G. . Quantum criticality in interacting bosonic Kitaev−Hubbard models. Phys. Rev. A, 2022, 106(5): 053315
https://doi.org/10.1103/PhysRevA.106.053315
354 Mao L.Hao Y.Pan L., Non-Hermitian skin effect in one-dimensional interacting Bose gas, arXiv: 2207.12637 (2022)
355 Chen G.Song F.L. Lado J., Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm, arXiv: 2208.06425 (2022)
356 Yoshida T. , Hatsugai Y. . Reduction of one-dimensional non-Hermitian point-gap topology by interactions. Phys. Rev. B, 2022, 106(20): 205147
https://doi.org/10.1103/PhysRevB.106.205147
357 Zhang W. , Di F. , Yuan H. , Wang H. , Zheng X. , He L. , Sun H. , Zhang X. . Observation of non-Hermitian aggregation effects induced by strong interactions. Phys. Rev. B, 2022, 105(19): 195131
https://doi.org/10.1103/PhysRevB.105.195131
358 Kawabata K. , Shiozaki K. , Ryu S. . Many-body topology of non-Hermitian systems. Phys. Rev. B, 2022, 105(16): 165137
https://doi.org/10.1103/PhysRevB.105.165137
359 Yoshida T. . Real-space dynamical mean field theory study of non-Hermitian skin effect for correlated systems: Analysis based on pseudospectrum. Phys. Rev. B, 2021, 103(12): 125145
https://doi.org/10.1103/PhysRevB.103.125145
360 I. Arkhipov I. , Minganti F. . Emergent non-Hermitian localization phenomena in the synthetic space of zero-dimensional bosonic systems. Phys. Rev. A, 2023, 107(1): 012202
https://doi.org/10.1103/PhysRevA.107.012202
361 Qin F. , Shen R. , H. Lee C. . Non-Hermitian squeezed polarons. Phys. Rev. A, 2023, 107(1): L010202
https://doi.org/10.1103/PhysRevA.107.L010202
362 Micallo T.Lehmann C.C. Budich J., Correlation-induced sensitivity and non-Hermitian skin effect of quasiparticles, arXiv: 2302.00019 (2023)
363 Yang K. , C. Morampudi S. , J. Bergholtz E. . Exceptional spin liquids from couplings to the environment. Phys. Rev. Lett., 2021, 126(7): 077201
https://doi.org/10.1103/PhysRevLett.126.077201
364 Žnidarič M. . Solvable non-Hermitian skin effect in many body unitary dynamics. Phys. Rev. Res., 2022, 4(3): 033041
https://doi.org/10.1103/PhysRevResearch.4.033041
365 Gong Z. , Bello M. , Malz D. , K. Kunst F. . Anomalous behaviors of quantum emitters in non-Hermitian baths. Phys. Rev. Lett., 2022, 129(22): 223601
https://doi.org/10.1103/PhysRevLett.129.223601
366 Roccati F. , Lorenzo S. , Calajò G. , M. Palma G. , Carollo A. , Ciccarello F. . Exotic interactions mediated by a non-Hermitian photonic bath. Optica, 2022, 9(5): 565
https://doi.org/10.1364/OPTICA.443955
367 K. Cao, Q. Du, X. R. Wang, and S. P. Kou, Physics of many-body nonreciprocal model: From non-Hermitian skin effect to quantum Maxwell’s pressure − Demon effect, arXiv: 2109.03690 (2021)
368 G. Zhou T. , N. Zhou Y. , Zhang P. , Zhai H. . Space-time duality between quantum chaos and non-Hermitian boundary effect. Phys. Rev. Res., 2022, 4(2): L022039
https://doi.org/10.1103/PhysRevResearch.4.L022039
369 Xu K. , Zhang X. , Luo K. , Yu R. , Li D. , Zhang H. . Coexistence of topological edge states and skin effects in the non-Hermitian Su−Schrieffer−Heeger model with long-range nonreciprocal hopping in topoelectric realizations. Phys. Rev. B, 2021, 103(12): 125411
https://doi.org/10.1103/PhysRevB.103.125411
370 Deng W. , Chen T. , Zhang X. . nth power root topological phases in Hermitian and non-Hermitian systems. Phys. Rev. Res., 2022, 4(3): 033109
https://doi.org/10.1103/PhysRevResearch.4.033109
371 Zhang H. , Chen T. , Li L. , H. Lee C. , Zhang X. . Electrical circuit realization of topological switching for the non-Hermitian skin effect. Phys. Rev. B, 2023, 107(8): 085426
https://doi.org/10.1103/PhysRevB.107.085426
372 Li L. , H. Lee C. , Gong J. . Emergence and full 3d-imaging of nodal boundary Seifert surfaces in 4D topological matter. Commun. Phys., 2019, 2(1): 135
https://doi.org/10.1038/s42005-019-0235-4
373 Lin Q. , Li T. , Xiao L. , Wang K. , Yi W. , Xue P. . Topological phase transitions and mobility edges in non-Hermitian quasicrystals. Phys. Rev. Lett., 2022, 129(11): 113601
https://doi.org/10.1103/PhysRevLett.129.113601
374 Lin Q. , Li T. , Xiao L. , Wang K. , Yi W. , Xue P. . Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229
https://doi.org/10.1038/s41467-022-30938-9
375 S. Palacios L. , Tchoumakov S. , Guix M. , Pagonabarraga I. , Sánchez S. , G. Grushin A. . Guided accumulation of active particles by topological design of a second-order skin effect. Nat. Commun., 2021, 12(1): 4691
https://doi.org/10.1038/s41467-021-24948-2
376 F. Yu Y. , W. Yu L. , G. Zhang W. , L. Zhang H. , L. Ouyang X. , Q. Liu Y. , L. Deng D. , Duan L.-M. . Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins. npj Quantum Inform., 2022, 8: 116
https://doi.org/10.1038/s41534-022-00629-w
377 J. Bergholtz E. , C. Budich J. , K. Kunst F. . Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 2021, 93(1): 015005
https://doi.org/10.1103/RevModPhys.93.015005
378 Zhang X. , Zhang T. , H. Lu M. , F. Chen Y. . A review on non-Hermitian skin effect. Adv. Phys. X, 2022, 7(1): 2109431
https://doi.org/10.1080/23746149.2022.2109431
379 Zhu B. , Wang Q. , Leykam D. , Xue H. , W. Qi J. , D. Chong Y. . Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian skin effect. Phys. Rev. Lett., 2022, 129(1): 013903
https://doi.org/10.1103/PhysRevLett.129.013903
380 Mandal S. , Banerjee R. , C. H. Liew T. . From the topological spin-Hall effect to the non-Hermitian skin effect in an elliptical micropillar chain. ACS Photonics, 2022, 9(2): 527
https://doi.org/10.1021/acsphotonics.1c01425
381 Xu X. , Bao R. , C. H. Liew T. . Non-Hermitian topological exciton−polariton corner modes. Phys. Rev. B, 2022, 106(20): L201302
https://doi.org/10.1103/PhysRevB.106.L201302
382 F. Yu Z. , K. Xue J. , Zhuang L. , Zhao J. , M. Liu W. . Non-Hermitian spectrum and multistability in exciton−polariton condensates. Phys. Rev. B, 2021, 104(23): 235408
https://doi.org/10.1103/PhysRevB.104.235408
383 Yang M. , Wang L. , Wu X. , Xiao H. , Yu D. , Yuan L. , Chen X. . Concentrated subradiant modes in a one-dimensional atomic array coupled with chiral waveguides. Phys. Rev. A, 2022, 106(4): 043717
https://doi.org/10.1103/PhysRevA.106.043717
384 Lin Z. , Ding L. , Ke S. , Li X. . Steering non-Hermitian skin modes by synthetic gauge fields in optical ring resonators. Opt. Lett., 2021, 46(15): 3512
https://doi.org/10.1364/OL.431904
385 Zhong J. , Wang K. , Park Y. , Asadchy V. , C. Wojcik C. , Dutt A. , Fan S. . Nontrivial point-gap topology and non-Hermitian skin effect in photonic crystals. Phys. Rev. B, 2021, 104(12): 125416
https://doi.org/10.1103/PhysRevB.104.125416
386 Price H. , Chong Y. , Khanikaev A. , Schomerus H. , J. Maczewsky L. . et al.. Roadmap on topological photonics. J. Phys.: Photonics, 2022, 4: 032501
https://doi.org/10.1088/2515-7647/ac4ee4
387 Yan Q.Chen H.Yang Y., Non-Hermitian skin effect and delocalized edge states in photonic crystals with anomalous parity−time symmetry, arXiv: 2111.08213 (2021)
388 C. Xie L.Jin L.Song Z., Antihelical edge states in two-dimensional photonic topological metals, arXiv: 2302.05842 (2023)
389 Lin Q.Yi W.Xue P., Manipulating non-reciprocity in a two-dimensional magnetic quantum walk, arXiv: 2212.00387 (2022)
390 Li T. , S. Zhang Y. , Yi W. . Two-dimensional quantum walk with non-Hermitian skin effects. Chin. Phys. Lett., 2021, 38(3): 030301
https://doi.org/10.1088/0256-307X/38/3/030301
391 G. Pyrialakos G. , Ren H. , S. Jung P. , Khajavikhan M. , N. Christodoulides D. . Thermalization dynamics of nonlinear non-Hermitian optical lattices. Phys. Rev. Lett., 2022, 128(21): 213901
https://doi.org/10.1103/PhysRevLett.128.213901
392 Fleckenstein C. , Zorzato A. , Varjas D. , J. Bergholtz E. , H. Bardarson J. , Tiwari A. . Non-Hermitian topology in monitored quantum circuits. Phys. Rev. Res., 2022, 4(3): L032026
https://doi.org/10.1103/PhysRevResearch.4.L032026
393 H. Lin S. , Dilip R. , G. Green A. , Smith A. , Pollmann F. . Real- and imaginary-time evolution with compressed quantum circuits. PRX Quantum, 2021, 2(1): 010342
https://doi.org/10.1103/PRXQuantum.2.010342
394 Liu T. , G. Liu J. , Fan H. . Probabilistic non-unitary gate in imaginary time evolution. Quantum Inform. Process., 2021, 20(6): 1
https://doi.org/10.1007/s11128-021-03145-6
395 Kamakari H. , N. Sun S. , Motta M. , J. Minnich A. . Digital quantum simulation of open quantum systems using quantum imaginary–time evolution. PRX Quantum, 2022, 3(1): 010320
https://doi.org/10.1103/PRXQuantum.3.010320
396 Smith A. , S. Kim M. , Pollmann F. , Knolle J. . Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inform., 2019, 5: 106
https://doi.org/10.1038/s41534-019-0217-0
397 M. Koh J. , Tai T. , H. Phee Y. , E. Ng W. , H. Lee C. . Stabilizing multiple topological Fermions on a quantum computer. npj Quantum Inform., 2022, 8: 16
https://doi.org/10.1038/s41534-022-00527-1
398 M. Koh J. , Tai T. , H. Lee C. . Simulation of interaction-induced chiral topological dynamics on a digital quantum computer. Phys. Rev. Lett., 2022, 129(14): 140502
https://doi.org/10.1103/PhysRevLett.129.140502
399 M. Koh J.Tai T.H. Lee C., Observation of higher-order topological states on a quantum computer, arXiv: 2303.02179 (2023)
400 Chen T.Shen R.H. Lee C.Yang B., High-fidelity realization of the Aklt state on a NISQ-era quantum processor, arXiv: 2210.13840 (2022)
401 Schomerus H. . Nonreciprocal response theory of non-Hermitian mechanical metamaterials: Response phase transition from the skin effect of zero modes. Phys. Rev. Res., 2020, 2(1): 013058
https://doi.org/10.1103/PhysRevResearch.2.013058
402 Braghini D. , G. G. Villani L. , I. N. Rosa M. , R. de F Arruda J. . Non-Hermitian elastic waveguides with piezoelectric feedback actuation: Non-reciprocal bands and skin modes. J. Phys. D Appl. Phys., 2021, 54(28): 285302
https://doi.org/10.1088/1361-6463/abf9d9
403 Jin Y. , Zhong W. , Cai R. , Zhuang X. , Pennec Y. , Djafari-Rouhani B. . Non-Hermitian skin effect in a phononic beam based on piezoelectric feedback control. Appl. Phys. Lett., 2022, 121(2): 022202
https://doi.org/10.1063/5.0097530
404 Wen P. , Wang M. , L. Long G. . Optomechanically induced transparency and directional amplification in a non-Hermitian optomechanical lattice. Opt. Express, 2022, 30(22): 41012
https://doi.org/10.1364/OE.473652
405 Ren Z. , Liu D. , Zhao E. , He C. , K. Pak K. , Li J. , B. Jo G. . Chiral control of quantum states in non-Hermitian spin–orbit-coupled Fermions. Nat. Phys., 2022, 18(4): 385
https://doi.org/10.1038/s41567-021-01491-x
406 Guo S. , Dong C. , Zhang F. , Hu J. , Yang Z. . Theoretical prediction of a non-Hermitian skin effect in ultracold-atom systems. Phys. Rev. A, 2022, 106(6): L061302
https://doi.org/10.1103/PhysRevA.106.L061302
407 Zhou L. , Li H. , Yi W. , Cui X. . Engineering non-Hermitian skin effect with band topology in ultracold gases. Commun. Phys., 2022, 5(1): 252
https://doi.org/10.1038/s42005-022-01021-y
408 Qin Y.Zhang K.H. Li L., Geometry-dependent skin effect and anisotropic Bloch oscillations in a non-Hermitian optical lattice, arXiv: 2304.03792v1 (2023)
409 Li H. , Cui X. , Yi W. . Non-Hermitian skin effect in a spin−orbit-coupled Bose−Einstein condensate. JUSTC, 2022, 52(8): 2
https://doi.org/10.52396/JUSTC-2022-0003
410 Yoshida T. , Mizoguchi T. , Hatsugai Y. . Non-Hermitian topology in Rock–Paper–Scissors games. Sci. Rep., 2022, 12(1): 560
https://doi.org/10.1038/s41598-021-04178-8
411 Dobrinevski A. , Frey E. . Extinction in neutrally stable stochastic Lotka−Volterra models. Phys. Rev. E, 2012, 85(5): 051903
https://doi.org/10.1103/PhysRevE.85.051903
412 Knebel J. , Krüger T. , F. Weber M. , Frey E. . Coexistence and survival in conservative Lotka−Volterra networks. Phys. Rev. Lett., 2013, 110(16): 168106
https://doi.org/10.1103/PhysRevLett.110.168106
413 Knebel J. , M. Geiger P. , Frey E. . Topological phase transition in coupled Rock−Paper−Scissors cycles. Phys. Rev. Lett., 2020, 125(25): 258301
https://doi.org/10.1103/PhysRevLett.125.258301
414 Yoshida T. , Mizoguchi T. , Hatsugai Y. . Chiral edge modes in evolutionary game theory: A kagome network of Rock−Paper−Scissors cycles. Phys. Rev. E, 2021, 104(2): 025003
https://doi.org/10.1103/PhysRevE.104.025003
415 Umer M. , Gong J. . Topologically protected dynamics in three-dimensional nonlinear antisymmetric Lotka−Volterra systems. Phys. Rev. B, 2022, 106(24): L241403
https://doi.org/10.1103/PhysRevB.106.L241403
416 Scheibner C. , T. M. Irvine W. , Vitelli V. . Non-Hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett., 2020, 125(11): 118001
https://doi.org/10.1103/PhysRevLett.125.118001
417 Fruchart M. , Hanai R. , B. Littlewood P. , Vitelli V. . Non-reciprocal phase transitions. Nature, 2021, 592(7854): 363
https://doi.org/10.1038/s41586-021-03375-9
418 Yu T. , Zeng B. . Giant microwave sensitivity of a magnetic array by long-range chiral interaction driven skin effect. Phys. Rev. B, 2022, 105(18): L180401
https://doi.org/10.1103/PhysRevB.105.L180401
419 Zeng B. , Yu T. . Radiation-free and non-Hermitian topology inertial defect states of on-chip magnons. Phys. Rev. Res., 2023, 5(1): 013003
https://doi.org/10.1103/PhysRevResearch.5.013003
420 Franca S. , Könye V. , Hassler F. , van den Brink J. , Fulga C. . Non-Hermitian physics without gain or loss: The skin effect of reflected waves. Phys. Rev. Lett., 2022, 129(8): 086601
https://doi.org/10.1103/PhysRevLett.129.086601
421 Zhang X.Zhang B.Zhao W.H. Lee C., Observation of non-local impedance response in a passive electrical circuit, arXiv: 2211.09152 (2022)
422 Geng H. , Y. Wei J. , H. Zou M. , Sheng L. , Chen W. , Y. Xing D. . Nonreciprocal charge and spin transport induced by non-Hermitian skin effect in mesoscopic heterojunctions. Phys. Rev. B, 2023, 107(3): 035306
https://doi.org/10.1103/PhysRevB.107.035306
423 Ghaemi-Dizicheh H. , Schomerus H. . Compatibility of transport effects in non-Hermitian nonreciprocal systems. Phys. Rev. A, 2021, 104(2): 023515
https://doi.org/10.1103/PhysRevA.104.023515
424 Schomerus H. . Fundamental constraints on the observability of non-Hermitian effects in passive systems. Phys. Rev. A, 2022, 106(6): 063509
https://doi.org/10.1103/PhysRevA.106.063509
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed