Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 64402   https://doi.org/10.1007/s11467-023-1313-3
  本期目录
Machine learning transforms the inference of the nuclear equation of state
Yongjia Wang1, Qingfeng Li1,2,3()
1. School of Science, Huzhou University, Huzhou 313000, China
2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3. School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(3007 KB)   HTML
Abstract

Our knowledge of the properties of dense nuclear matter is usually obtained indirectly via nuclear experiments, astrophysical observations, and nuclear theory calculations. Advancing our understanding of the nuclear equation of state (EOS, which is one of the most important properties and of central interest in nuclear physics) has relied on various data produced from experiments and calculations. We review how machine learning is revolutionizing the way we extract EOS from these data, and summarize the challenges and opportunities that come with the use of machine learning.

Key wordsnuclear equation of state    machine learning    nuclear theory    nuclear experiment
收稿日期: 2023-04-11      出版日期: 2023-06-21
Corresponding Author(s): Qingfeng Li   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 64402.
Yongjia Wang, Qingfeng Li. Machine learning transforms the inference of the nuclear equation of state. Front. Phys. , 2023, 18(6): 64402.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1313-3
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/64402
Fig.1  
1 Drischler C. , Holt J. , Wellenhofer C. . Chiral effective field theory and the high-density nuclear equation of state. Annu. Rev. Nucl. Part. Sci., 2021, 71(1): 403
https://doi.org/10.1146/annurev-nucl-102419-041903
2 A. Li B. , W. Chen L. , M. Ko C. . Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep., 2008, 464(4−6): 113
https://doi.org/10.1016/j.physrep.2008.04.005
3 Oertel M. , Hempel M. , Klähn T. , Typel S. . Equations of state for supernovae and compact stars. Rev. Mod. Phys., 2017, 89(1): 015007
https://doi.org/10.1103/RevModPhys.89.015007
4 Sorensen A.Agarwal K.W. Brown K., et al.., Dense nuclear matter equation of state from heavy-ion collisions, arXiv: 2301.13253 (2023)
5 Lattimer J. . Neutron stars and the nuclear matter equation of state. Annu. Rev. Nucl. Part. Sci., 2021, 71(1): 433
https://doi.org/10.1146/annurev-nucl-102419-124827
6 A. López J. , O. Dorso C. , A. Frank G. . Properties of nuclear pastas. Front. Phys. (Beijing), 2021, 16(2): 24301
https://doi.org/10.1007/s11467-020-1004-2
7 Tsang M. , Stone J. , Camera F. , Danielewicz P. , Gandolfi S. , Hebeler K. , J. Horowitz C. , Lee J. , G. Lynch W. , Kohley Z. , Lemmon R. , Möller P. , Murakami T. , Riordan S. , Roca-Maza X. , Sammarruca F. , W. Steiner A. , Vidaña I. , J. Yennello S. . Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C, 2012, 86(1): 015803
https://doi.org/10.1103/PhysRevC.86.015803
8 Wolter H. , Colonna M. , Cozma D. . et al.. Transport model comparison studies of intermediate-energy heavy-ion collisions. Prog. Part. Nucl. Phys., 2022, 125: 103962
https://doi.org/10.1016/j.ppnp.2022.103962
9 J. Wang Y. , F. Li Q. . Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies. Front. Phys. (Beijing), 2020, 15(4): 44302
https://doi.org/10.1007/s11467-020-0964-6
10 I. Jordan M. , M. Mitchell T. . Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
https://doi.org/10.1126/science.aaa8415
11 Carleo G. , Cirac I. , Cranmer K. , Daudet L. , Schuld M. , Tishby N. , Vogt-Maranto L. , Zdeborová L. . Machine learning and the physical sciences. Rev. Mod. Phys., 2019, 91(4): 045002
https://doi.org/10.1103/RevModPhys.91.045002
12 J. Hey A.Tansley S.M. Tolle K., et al.., The Fourth Paradigm: Data-Intensive Scientific Discovery, Vol. 1, Microsoft research Redmond, WA, 2009
13 Gazula S. , Clark J. , Bohr H. . Learning and prediction of nuclear stability by neural networks. Nucl. Phys. A., 1992, 540(1−2): 1
https://doi.org/10.1016/0375-9474(92)90191-L
14 Bass S. , Bischoff A. , Hartnack C. , A. Maruhn J. , Reinhardt J. , Stocker H. , Greiner W. . Neural networks for impact parameter determination. J. Phys. G Nucl. Part. Phys., 1994, 20(1): L21
https://doi.org/10.1088/0954-3899/20/1/004
15 Bedaque P. , Boehnlein A. , Cromaz M. , Diefenthaler M. , Elouadrhiri L. , Horn T. , Kuchera M. , Lawrence D. , Lee D. , Lidia S. , McKeown R. , Melnitchouk W. , Nazarewicz W. , Orginos K. , Roblin Y. , Scott Smith M. , Schram M. , N. Wang X. . A. I. for nuclear physics. Eur. Phys. J. A, 2021, 57(3): 100
https://doi.org/10.1140/epja/s10050-020-00290-x
16 Boehnlein A. , Diefenthaler M. , Sato N. , Schram M. , Ziegler V. , Fanelli C. , Hjorth-Jensen M. , Horn T. , P. Kuchera M. , Lee D. , Nazarewicz W. , Ostroumov P. , Orginos K. , Poon A. , N. Wang X. , Scheinker A. , S. Smith M. , G. Pang L. . Colloquium: Machine learning in nuclear physics. Rev. Mod. Phys., 2022, 94(3): 031003
https://doi.org/10.1103/RevModPhys.94.031003
17 B. He W.G. Ma Y.G. Pang L.C. Song H.Zhou K., High energy nuclear physics meets Machine Learning, arXiv: 2303.06752 (2023)
18 He W.Li Q.Ma Y.M. Niu Z.C. Pei J.X. Zhang Y., Machine learning in nuclear physics at low and intermediate energies, arXiv: 2301.06396 (2023)
19 Morfouace P. , Tsang C. , Zhang Y. , G. Lynch W. , B. Tsang M. , D. S. Coupland D. , Youngs M. , Chajecki Z. , A. Famiano M. , K. Ghosh T. , Jhang G. , Lee J. , Liu H. , Sanetullaev A. , Showalter R. , Winkelbauer J. . Constraining the symmetry energy with heavy-ion collisions and Bayesian analyses. Phys. Lett. B, 2019, 799: 135045
https://doi.org/10.1016/j.physletb.2019.135045
20 O. Kuttan M.Steinheimer J.Zhou K.Stoecker H., The QCD EoS of dense nuclear matter from Bayesian analysis of heavy ion collision data, arXiv: 2211.11670 (2022)
21 A. Li B.J. Xie W., Bayesian inference of in-medium baryon−baryon scattering cross sections from HADES proton flow data, arXiv: 2303.10474 (2023)
22 Huth S. , T. Pang P. , Tews I. , Dietrich T. , Le Fèvre A. , Schwenk A. , Trautmann W. , Agarwal K. , Bulla M. , W. Coughlin M. , Van Den Broeck C. . Constraining neutron-star matter with microscopic and macroscopic collisions. Nature, 2022, 606(7913): 276
https://doi.org/10.1038/s41586-022-04750-w
23 G. Pang L. , Zhou K. , Su N. , Petersen H. , Stöcker H. , N. Wang X. . An equation-of-state-meter of quantum chromodynamics transition from deep learning. Nat. Commun., 2018, 9(1): 210
https://doi.org/10.1038/s41467-017-02726-3
24 Wang Y. , Gao Z. , Lü H. , Li Q. . Decoding the nuclear symmetry energy event-by-event in heavy-ion collisions with machine learning. Phys. Lett. B, 2022, 835: 137508
https://doi.org/10.1016/j.physletb.2022.137508
25 Zhou K.Wang L.G. Pang L.Z. Shi S., Exploring QCD matter in extreme conditions with Machine Learning, arXiv: 2303.15136 (2023)
26 Raissi M. , Perdikaris P. , E. Karniadakis G. . Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 2019, 378: 686
https://doi.org/10.1016/j.jcp.2018.10.045
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed