Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 62303   https://doi.org/10.1007/s11467-023-1314-2
  本期目录
Realization of highly isolated stable few-spin systems based on alkaline-earth fermions
Wen-Wei Wang1,2, Han Zhang1,2(), Chang Qiao1,2, Ming-Cheng Liang1,2,3, Rui Wu1,2, Xibo Zhang1,2,3,4()
1. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3. Beijing Academy of Quantum Information Sciences, Beijing 100193, China
4. Hefei National Laboratory, Hefei 230088, China
 全文: PDF(4516 KB)   HTML
Abstract

Few-level systems consisting of a certain number of spin states have provided the basis of a wide range of cold atom researches. However, more developments are still needed for better preparation of isolated few-spin systems. In this work, we demonstrate a highly nonlinear spin-discriminating (HNSD) method for isolating an arbitrary few-level manifold out of a larger total number of spin ground states in fermionic alkaline-earth atoms. With this method, we realize large and tunable energy shifts for unwanted spin states while inducing negligible shifts for the spin states of interest, which leads to a highly isolated few-spin system under minimal perturbation. Furthermore, the isolated few-spin system exhibits a long lifetime on the hundred-millisecond scale. Using the HNSD method, we demonstrate a characteristic Rabi oscillation between the two states of an isolated two-spin Fermi gas. Our method has wide applicability for realizing long-lived two-spin or high-spin quantum systems based on alkaline-earth fermions.

Key wordsfew-spin system    alkaline-earth atoms    ultracold Fermi gas    a.c. Stark shift    long-lived quantum system
收稿日期: 2023-03-16      出版日期: 2023-07-11
Corresponding Author(s): Han Zhang,Xibo Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 62303.
Wen-Wei Wang, Han Zhang, Chang Qiao, Ming-Cheng Liang, Rui Wu, Xibo Zhang. Realization of highly isolated stable few-spin systems based on alkaline-earth fermions. Front. Phys. , 2023, 18(6): 62303.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1314-2
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/62303
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 D. Ludlow A. , M. Boyd M. , Ye J. , Peik E. , O. Schmidt P. . Optical atomic clocks. Rev. Mod. Phys., 2015, 87(2): 637
https://doi.org/10.1103/RevModPhys.87.637
2 Chin C. , Grimm R. , Julienne P. , Tiesinga E. . Feshbach resonances in ultracold gases. Rev. Mod. Phys., 2010, 82(2): 1225
https://doi.org/10.1103/RevModPhys.82.1225
3 Naidon P. , Endo S. . Efimov physics: A review. Rep. Prog. Phys., 2017, 80(5): 056001
https://doi.org/10.1088/1361-6633/aa50e8
4 Monroe C. , C. Campbell W. , M. Duan L. , X. Gong Z. , V. Gorshkov A. , W. Hess P. , Islam R. , Kim K. , M. Linke N. , Pagano G. , Richerme P. , Senko C. , Y. Yao N. . Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys., 2021, 93(2): 025001
https://doi.org/10.1103/RevModPhys.93.025001
5 K. Asbóth J.Oroszlány L.Pályi A., A Short Course on Topological Insulators, Springer, 2016
6 L. Qi X. , S. Wu Y. , C. Zhang S. . Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B, 2006, 74(8): 085308
https://doi.org/10.1103/PhysRevB.74.085308
7 J. Liu X. , T. Law K. , K. Ng T. . Realization of 2D spin–orbit interaction and exotic topological orders in cold atoms. Phys. Rev. Lett., 2014, 112(8): 086401
https://doi.org/10.1103/PhysRevLett.112.086401
8 Huang L. , Meng Z. , Wang P. , Peng P. , L. Zhang S. , Chen L. , Li D. , Zhou Q. , Zhang J. . Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys., 2016, 12(6): 540
https://doi.org/10.1038/nphys3672
9 Wu Z. , Zhang L. , Sun W. , T. Xu X. , Z. Wang B. , C. Ji S. , Deng Y. , Chen S. , J. Liu X. , W. Pan J. . Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates. Science, 2016, 354(6308): 83
https://doi.org/10.1126/science.aaf6689
10 Sun W. , Z. Wang B. , T. Xu X. , R. Yi C. , Zhang L. , Wu Z. , Deng Y. , J. Liu X. , Chen S. , W. Pan J. . Highly controllable and robust 2D spin–orbit coupling for quantum gases. Phys. Rev. Lett., 2018, 121(15): 150401
https://doi.org/10.1103/PhysRevLett.121.150401
11 T. Xu X. , Y. Wang Z. , H. Jiao R. , R. Yi C. , Sun W. , Chen S. . Ultra-low noise magnetic field for quantum gases. Rev. Sci. Instrum., 2019, 90(5): 054708
https://doi.org/10.1063/1.5087957
12 Ye J. , J. Kimble H. , Katori H. . Quantum state engineering and precision metrology using state-insensitive light traps. Science, 2008, 320(5884): 1734
https://doi.org/10.1126/science.1148259
13 V. Gorshkov A. , Hermele M. , Gurarie V. , Xu C. , S. Julienne P. , Ye J. , Zoller P. , Demler E. , D. Lukin M. , M. Rey A. . Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys., 2010, 6(4): 289
https://doi.org/10.1038/nphys1535
14 J. Daley A. . Quantum computing and quantum simulation with group-II atoms. Quantum Inform. Process., 2011, 10(6): 865
https://doi.org/10.1007/s11128-011-0293-3
15 Taie S. , Yamazaki R. , Sugawa S. , Takahashi Y. . An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling. Nat. Phys., 2012, 8(11): 825
https://doi.org/10.1038/nphys2430
16 Stellmer S.Schreck F.C. Killian T., in: Annual Review of Cold Atoms and Molecules, Vol. 2, Chapter 1, 1st Ed., World Scientific, Singapore, 2014
17 Pagano G.Mancini M.Cappellini G.Lombardi P.Schafer F.Hu H.J. Liu X.Catani J.Sias C.Inguscio M.Fallani L., A one-dimensional liquid of fermions with tunable spin, Nat. Phys. 10(3), 198 (2014)
18 Zhang X. , Bishof M. , L. Bromley S. , V. Kraus C. , S. Safronova M. , Zoller P. , M. Rey A. , Ye J. . Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. Science, 2014, 345(6203): 1467
https://doi.org/10.1126/science.1254978
19 Scazza F. , Hofrichter C. , Höfer M. , C. De Groot P. , Bloch I. , Fölling S. . Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions. Nat. Phys., 2014, 10(10): 779
https://doi.org/10.1038/nphys3061
20 Cappellini G. , Mancini M. , Pagano G. , Lombardi P. , Livi L. , Siciliani de Cumis M. , Cancio P. , Pizzocaro M. , Calonico D. , Levi F. , Sias C. , Catani J. , Inguscio M. , Fallani L. . Direct observation of coherent interorbital spin-exchange dynamics. Phys. Rev. Lett., 2014, 113(12): 120402
https://doi.org/10.1103/PhysRevLett.113.120402
21 G. Lin Y. , Wang Q. , Li Y. , Meng F. , K. Lin B. , J. Zang E. , Sun Z. , Fang F. , C. Li T. , J. Fang Z. . First evaluation and frequency measurement of the strontium optical lattice clock at NIM. Chin. Phys. Lett., 2015, 32(9): 090601
https://doi.org/10.1088/0256-307X/32/9/090601
22 Tian X. , Xu Q. , Yin M. , Kong D. , Wang Y. , Lu B. , Liu H. , Ren J. , Chang H. . Experiment study on optical lattice clock of strontium at NTSC. Acta Opt. Sin., 2015, 35(s1): s102001
https://doi.org/10.3788/AOS201535.s102001
23 Mancini M. , Pagano G. , Cappellini G. , Livi L. , Rider M. , Catani J. , Sias C. , Zoller P. , Inguscio M. , Dalmonte M. , Fallani L. . Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science, 2015, 349(6255): 1510
https://doi.org/10.1126/science.aaa8736
24 Song B.He C.Zhang S.Hajiyev E.Huang W.J. Liu X.B. Jo G., Spin–orbit-coupled two-electron Fermi gases of ytterbium atoms, Phys. Rev. A 94, 061604(R) (2016)
25 F. Livi L. , Cappellini G. , Diem M. , Franchi L. , Clivati C. , Frittelli M. , Levi F. , Calonico D. , Catani J. , Inguscio M. , Fallani L. . Synthetic dimensions and spin–orbit coupling with an optical clock transition. Phys. Rev. Lett., 2016, 117(22): 220401
https://doi.org/10.1103/PhysRevLett.117.220401
26 Kolkowitz S. , L. Bromley S. , Bothwell T. , L. Wall M. , E. Marti G. , P. Koller A. , Zhang X. , M. Rey A. , Ye J. . Spin–orbit-coupled fermions in an optical lattice clock. Nature, 2017, 542(7639): 66
https://doi.org/10.1038/nature20811
27 L. Campbell S.B. Hutson R.E. Marti G.Goban A.D. Oppong N.L. McNally R.Sonderhouse L.M. Robinson J.Zhang W.J. Bloom B.Ye J., A Fermi-degenerate three-dimensional optical lattice clock, Science 358(6359), 90 (2017)
28 Song B. , Zhang L. , He C. , F. J. Poon T. , Hajiyev E. , Zhang S. , J. Liu X. , B. Jo G. . Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv., 2018, 4(2): eaao4748
https://doi.org/10.1126/sciadv.aao4748
29 Goban A. , B. Hutson R. , E. Marti G. , L. Campbell S. , A. Perlin M. , S. Julienne P. , P. D’Incao J. , M. Rey A. , Ye J. . Emergence of multi-body interactions in a fermionic lattice clock. Nature, 2018, 563(7731): 369
https://doi.org/10.1038/s41586-018-0661-6
30 Song B. , He C. , Niu S. , Zhang L. , Ren Z. , J. Liu X. , B. Jo G. . Observation of nodal-line semimetal with ultracold fermions in an optical lattice. Nat. Phys., 2019, 15(9): 911
https://doi.org/10.1038/s41567-019-0564-y
31 Sonderhouse L. , Sanner C. , B. Hutson R. , Goban A. , Bilitewski T. , Yan L. , R. Milner W. , M. Rey A. , Ye J. . Thermodynamics of a deeply degenerate SU(N)-symmetric Fermi gas. Nat. Phys., 2020, 16(12): 1216
https://doi.org/10.1038/s41567-020-0986-6
32 Lauria P. , T. Kuo W. , R. Cooper N. , T. Barreiro J. . Experimental realization of a fermionic spin-momentum lattice. Phys. Rev. Lett., 2022, 128(24): 245301
https://doi.org/10.1103/PhysRevLett.128.245301
33 C. Liang M. , D. Wei Y. , Zhang L. , J. Wang X. , Zhang H. , W. Wang W. , Qi W. , J. Liu X. , Zhang X. . Realization of Qi–Wu–Zhang model in spin–orbit-coupled ultracold fermions. Phys. Rev. Res., 2023, 5(1): L012006
https://doi.org/10.1103/PhysRevResearch.5.L012006
34 Dalibard J. , Gerbier F. , Juzeliunas G. , Ohberg P. . Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 2011, 83(4): 1523
https://doi.org/10.1103/RevModPhys.83.1523
35 Goldman N. , Juzeliunas G. , Ohberg P. , B. Spielman I. . Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys., 2014, 77(12): 126401
https://doi.org/10.1088/0034-4885/77/12/126401
36 Zhai H. . Degenerate quantum gases with spin–orbit coupling: A review. Rep. Prog. Phys., 2015, 78(2): 026001
https://doi.org/10.1088/0034-4885/78/2/026001
37 Zhang L.J. Liu X., in: Synthetic Spin–Orbit Coupling in Cold Atoms, Chapter 1, pp 1–87, edited by W. Zhang, W. Yi, and C. A. R. S. de Melo, World Scientific, Singapore, 2018
38 W. F. Drake (Ed.) G., Atomic, Molecular, & Optical Physics Handbook, American Institute of Physics, Woodbury, N.Y., 1996
39 Zhang H.-W. Wang W.Qiao C.Zhang L.-C. Liang M.Wu R.-J. Wang X.-J. Liu X.Zhang X., Topological spin–orbit-coupled fermions beyond rotating wave approximation, under review by Phys. Rev. Lett.
40 Qi W. , C. Liang M. , Zhang H. , D. Wei Y. , W. Wang W. , J. Wang X. , Zhang X. . Experimental realization of degenerate Fermi gases of 87Sr atoms with 10 or two spin components. Chin. Phys. Lett., 2019, 36(9): 093701
https://doi.org/10.1088/0256-307X/36/9/093701
41 J. Metcalf H.Straten P., Laser Cooling and Trapping, Springer, New York, USA, 1999
42 J. Foot C., Atomic Physics, Oxford: Oxford University Press, 2005
43 A. Steck D., Quantum and Atom Optics, available online at URL: steck.us/teaching, revision 0.12. 5, 26 January 2019
44 Zhai H., Ultracold Atomic Physics, Cambridge University Press, Cambridge, 2021
45 Qiao C. , Zhang W. . Spontaneous decay-induced quantum dynamics in Rydberg-blockaded Λ-type atoms. J. Phys. At. Mol. Opt. Phys., 2021, 54(20): 205501
https://doi.org/10.1088/1361-6455/ac2d81
46 Cohen-Tannoudji C.Guery-Odelin D., Advances in Atomic Physics: An Overview, Singapore: World Scientific, 2011
47 O. Scully M.S. Zubairy M., Quantum Optics, Cambridge University Press, Cambridge, 1997
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed