Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 63304   https://doi.org/10.1007/s11467-023-1315-1
  本期目录
Alloy-induced reduction and anisotropy change of lattice thermal conductivity in Ruddlesden– Popper phase halide perovskites
Huimin Mu1, Kun Zhou2, Fuyu Tian2, Yansong Zhou1, Guoqi Zhao2, Yuhao Fu1(), Lijun Zhang2()
1. State Key Laboratory of Superhard Materials, International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
2. State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, International Center of Computational Method and Software, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
 全文: PDF(4961 KB)   HTML
Abstract

The effective modulation of the thermal conductivity of halide perovskites is of great importance in optimizing their optoelectronic device performance. Based on first-principles lattice dynamics calculations, we found that alloying at the B and X sites can significantly modulate the thermal transport properties of 2D Ruddlesden−Popper (RP) phase halide perovskites, achieving a range of lattice thermal conductivity values from the lowest ( κc = 0.05 W·m−1·K−1@Cs4AgBiI8) to the highest ( κ a/b = 0.95 W·m−1·K−1@Cs4NaBiCl4I4). Compared with the pure RP-phase halide perovskites and three-dimensional halide perovskite alloys, the two-dimensional halide perovskite introduces more phonon branches through alloying, resulting in stronger phonon branch coupling, which effectively scatters phonons and reduces thermal conductivity. Alloying can also dramatically regulate the thermal transport anisotropy of RP-phase halide perovskites, with the anisotropy ratio ranging from 1.22 to 4.13. Subsequently, analysis of the phonon transport modes in these structures revealed that the lower phonon velocity and shorter phonon lifetime were the main reasons for their low thermal conductivity. This work further reduces the lattice thermal conductivity of 2D pure RP-phase halide perovskites by alloying methods and provides a strong support for theoretical guidance by gaining insight into the interesting phonon transport phenomena in these compounds.

Key wordsfirst-principles lattice dynamics calculations    Boltzmann transport    all-inorganic RP-phase halide perovskite alloys    thermal conductivity
收稿日期: 2023-04-19      出版日期: 2023-06-30
Corresponding Author(s): Yuhao Fu,Lijun Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 63304.
Huimin Mu, Kun Zhou, Fuyu Tian, Yansong Zhou, Guoqi Zhao, Yuhao Fu, Lijun Zhang. Alloy-induced reduction and anisotropy change of lattice thermal conductivity in Ruddlesden– Popper phase halide perovskites. Front. Phys. , 2023, 18(6): 63304.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1315-1
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/63304
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Park H., Ha C., H. Lee J.. Advances in piezoelectric halide perovskites for energy harvesting applications. J. Mater. Chem. A, 2020, 8(46): 24353
https://doi.org/10.1039/D0TA08780G
2 Zhang L., Jiang J., Multunas C., Ming C., Chen Z., Hu Y., Lu Z., Pendse S., Jia R., Chandra M., Sun Y., Lu T., Ping Y., Sundararaman R., Shi J.. Room-temperature electrically switchable spin–valley coupling in a van Der Waals ferroelectric halide perovskite with persistent spin helix. Nat. Photonics, 2022, 16(7): 529
https://doi.org/10.1038/s41566-022-01016-9
3 Zhang D., Zhang Q., Zhu Y., Poddar S., Zhang Y., Gu L., Zeng H., Fan Z.. Metal halide perovskite nanowires: Synthesis, integration, properties, and applications in optoelectronics. Adv. Energy Mater., 2022, 2022: 2201735
https://doi.org/10.1002/aenm.202201735
4 Haeger T., Heiderhoff R., Riedl T.. Thermal properties of metal-halide perovskites. J. Mater. Chem. C, 2020, 8(41): 14289
https://doi.org/10.1039/D0TC03754K
5 Li Y., Na G., Luo S., He X., Zhang L.. Structural, thermodynamical and electronic properties of all-inorganic lead halide perovskites. Acta Phys. -Chim. Sin., 2020, 37(4): 2007015
https://doi.org/10.3866/PKU.WHXB202007015
6 Feng W., Zhao R., Wang X., Xing B., Zhang Y., He X., Zhang L.. Global instability index as a crystallographic stability descriptor of halide and chalcogenide perovskites. J. Energy Chem., 2022, 70: 1
https://doi.org/10.1016/j.jechem.2022.02.018
7 Jiang N., Xing B., Wang Y., Zhang H., Yin D., Liu Y., Bi Y., Zhang L., Feng J., Sun H.. Mechanically and operationally stable flexible inverted perovskite solar cells with 20.32% efficiency by a simple oligomer cross-linking method. Sci. Bull. (Beijing), 2022, 67(8): 794
https://doi.org/10.1016/j.scib.2022.02.010
8 Lee W., Li H., B. Wong A., Zhang D., Lai M., Yu Y., Kong Q., Lin E., J. Urban J., C. Grossman J., Yang P.. Ultralow thermal conductivity in all-inorganic halide perovskites. Proc. Natl. Acad. Sci. USA, 2017, 114(33): 8693
https://doi.org/10.1073/pnas.1711744114
9 Haque E., A. Hossain M.. Electronic, phonon transport and thermoelectric properties of Cs2InAgCl6 from first-principles study. Comput. Condens. Matter, 2019, 19: e00374
https://doi.org/10.1016/j.cocom.2019.e00374
10 Fallah M., M. Moghaddam H.. Ultra-low lattice thermal conductivity and high thermoelectric efficiency in Cs2SnX6 (X=Br, I): A DFT study. Mater. Sci. Semicond. Process., 2021, 133: 105984
https://doi.org/10.1016/j.mssp.2021.105984
11 Cai Y., Faizan M., Shen X., M. Mebed A., A. Alrebdi T., He X.. NaBeAs and NaBeSb: Novel ternary pnictides with enhanced thermoelectric performance. J. Phys. Chem. C, 2023, 127(4): 1733
https://doi.org/10.1021/acs.jpcc.2c07676
12 Qian F., Hu M., Gong J., Ge C., Zhou Y., Guo J., Chen M., Ge Z., P. Padture N., Zhou Y., Feng J.. Enhanced thermoelectric performance in lead-free inorganic CsSn1–xGexI3 perovskite semiconductors. J. Phys. Chem. C, 2020, 124(22): 11749
https://doi.org/10.1021/acs.jpcc.0c00459
13 Mahmood Q., Hassan M., Yousaf N., A. AlObaid A., I. Al-Muhimeed T., Morsi M., Albalawi H., A. Alamri O.. Study of lead-free double perovskites halides Cs2TiCl6, and Cs2TiBr6 for optoelectronics, and thermoelectric applications. Mater. Sci. Semicond. Process., 2022, 137: 106180
https://doi.org/10.1016/j.mssp.2021.106180
14 X. Chen Y., Qin W., Mansoor A., Abbas A., Li F., Liang G., Fan P., U. Muzaffar M., Jabar B., Ge Z., Zheng Z.. Realizing high thermoelectric performance via selective resonant doping in oxyselenide BiCuSeO. Nano Res., 2023, 16(1): 1679
https://doi.org/10.1007/s12274-022-4810-8
15 Lin X., Dai X., Ye Z., Shu Y., Song Z., Peng X.. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots. Nano Res., 2022, 15(10): 9402
https://doi.org/10.1007/s12274-022-4942-x
16 Zhu Z., Tiwari J., Feng T., Shi Z., Lou Y., Xu B.. High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in N-type PbS. Nano Res., 2022, 15(5): 4739
https://doi.org/10.1007/s12274-022-4117-9
17 Kawano S., Tadano T., Iikubo S.. Effect of Halogen ions on the low thermal conductivity of cesium halide perovskite. J. Phys. Chem. C, 2021, 125(1): 91
https://doi.org/10.1021/acs.jpcc.0c08324
18 Sajjad M., Mahmood Q., Singh N., A. Larsson J.. Ultralow lattice thermal conductivity in double perovskite Cs2PtI6: A promising thermoelectric material. ACS Appl. Energy Mater., 2020, 3(11): 11293
https://doi.org/10.1021/acsaem.0c02236
19 Ahmad S., Fu P., Yu S., Yang Q., Liu X., Wang X., Wang X., Guo X., Li C.. Dion–Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule, 2019, 3(3): 794
https://doi.org/10.1016/j.joule.2018.11.026
20 Azmi R., Ugur E., Seitkhan A., Aljamaan F., S. Subbiah A., Liu J., T. Harrison G., I. Nugraha M., K. Eswaran M., Babics M., Chen Y., Xu F., G. Allen T., Rehman A., L. Wang C., D. Anthopoulos T., Schwingenschlögl U., De Bastiani M., Aydin E., De Wolf S.. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science, 2022, 376(6588): 73
https://doi.org/10.1126/science.abm5784
21 Wei Y., Chen B., Zhang F., Tian Y., Yang X., Cai B., Zhao J.. Compositionally designed 2D Ruddlesden–Popper perovskites for efficient and stable solar cells. Solar RRL, 2021, 5(4): 2000661
https://doi.org/10.1002/solr.202000661
22 Zhao G., Xie J., Zhou K., Xing B., Wang X., Tian F., He X., Zhang L.. High-throughput computational material screening of the cycloalkane-based two-dimensional Dion–Jacobson halide perovskites for optoelectronics. Chin. Phys. B, 2022, 31(3): 037104
https://doi.org/10.1088/1674-1056/ac4036
23 H. Tan P., Zhang L., Dai L., Zhou S.. Preface to the special issue on 2D-materials-related physical properties and optoelectronic devices. J. Semicond., 2019, 40(6): 060101
https://doi.org/10.1088/1674-4926/40/6/060101
24 Yan X., Fan W., Cheng F., Sun H., Xu C., Wang L., Kang Z., Zhang Y.. Ion migration in hybrid perovskites: Classification, identification, and manipulation. Nano Today, 2022, 44: 101503
https://doi.org/10.1016/j.nantod.2022.101503
25 D. Christodoulides A., Guo P., Dai L., M. Hoffman J., Li X., Zuo X., Rosenmann D., Brumberg A., G. Kanatzidis M., D. Schaller R., A. Malen J.. Signatures of coherent phonon transport in ultralow thermal conductivity two-dimensional Ruddlesden–Popper phase perovskites. ACS Nano, 2021, 15(3): 4165
https://doi.org/10.1021/acsnano.0c03595
26 Pipitone C., Boldrini S., Ferrario A., Garcìa-Espejo G., Guagliardi A., Masciocchi N., Martorana A., Giannici F.. Ultralow thermal conductivity in 1D and 2D imidazolium-based lead halide perovskites. Appl. Phys. Lett., 2021, 119(10): 101104
https://doi.org/10.1063/5.0061204
27 Thakur S., Dai Z., Karna P., P. Padture N., Giri A.. Tailoring the thermal conductivity of two-dimensional metal halide perovskites. Mater. Horiz., 2022, 9(12): 3087
https://doi.org/10.1039/D2MH01070D
28 Li C., Ma H., Li T., Dai J., A. J. Rasel M., Mattoni A., Alatas A., G. Thomas M., W. Rouse Z., Shragai A., P. Baker S., Ramshaw B., P. Feser J., B. Mitzi D., Tian Z.. Remarkably weak anisotropy in thermal conductivity of two-dimensional hybrid perovskite butylammonium lead iodide crystals. Nano Lett., 2021, 21(9): 3708
https://doi.org/10.1021/acs.nanolett.0c04550
29 Ge C., Hu M., Wu P., Tan Q., Chen Z., Wang Y., Shi J., Feng J., Ultralow thermal conductivityand ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl. Br, I). J. Phys. Chem. C, 2018, 122(28): 15973
https://doi.org/10.1021/acs.jpcc.8b05919
30 A. Elbaz G., L. Ong W., A. Doud E., Kim P., W. Paley D., Roy X., A. Malen J.. Phonon speed, not scattering, differentiates thermal transport in lead halide perovskites. Nano Lett., 2017, 17(9): 5734
https://doi.org/10.1021/acs.nanolett.7b02696
31 Acharyya P., Ghosh T., Pal K., Kundu K., Singh Rana K., Pandey J., Soni A., V. Waghmare U., Biswas K.. Intrinsically ultralow thermal conductivity in Ruddlesden–Popper 2D perovskite Cs2PbI2Cl2 : Localized anharmonic vibrations and dynamic octahedral distortions. J. Am. Chem. Soc., 2020, 142(36): 15595
https://doi.org/10.1021/jacs.0c08044
32 Tang J., Qin C., Yu H., Zeng Z., Cheng L., Ge B., Chen Y., Li W., Pei Y.. Ultralow lattice thermal conductivity enables high thermoelectric performance in BaAg2Te2 alloys. Mater. Today Phys., 2022, 22: 100591
https://doi.org/10.1016/j.mtphys.2021.100591
33 Parashchuk T., Knura R., Cherniushok O., T. Wojciechowski K.. Ultralow lattice thermal conductivity and improved thermoelectric performance in Cl-doped Bi2Te3–xSex alloys. ACS Appl. Mater. Interfaces, 2022, 14(29): 33567
https://doi.org/10.1021/acsami.2c08686
34 Q. Cao Y., J. Zhu T., B. Zhao X.. Low thermal conductivity and improved figure of merit in fine-grained binary PbTe thermoelectric alloys. J. Phys. D Appl. Phys., 2009, 42(1): 015406
https://doi.org/10.1088/0022-3727/42/1/015406
35 Wang X., Faizan M., Zhou K., Zou H., Xu Q., Fu Y., Zhang L.. Exploration of B-site alloying in partially reducing Pb toxicity and regulating thermodynamic stability and electronic properties of halide perovskites. Sci. China Phys. Mech. Astron., 2023, 66(3): 237311
https://doi.org/10.1007/s11433-022-2020-5
36 J. Slade T., P. Bailey T., A. Grovogui J., Hua X., Zhang X., J. Kuo J., Hadar I., J. Snyder G., Wolverton C., P. Dravid V., Uher C., G. Kanatzidis M.. High thermoelectric performance in PbSe–NaSbSe2 alloys from valence band convergence and low thermal conductivity. Adv. Energy Mater., 2019, 9(30): 1901377
https://doi.org/10.1002/aenm.201901377
37 Zheng Y., Liu C., Miao L., Li C., Huang R., Gao J., Wang X., Chen J., Zhou Y., Nishibori E.. Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity. Nano Energy, 2019, 59: 311
https://doi.org/10.1016/j.nanoen.2019.02.045
38 Kresse G., Furthmüller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
39 Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
40 Braga C.P. Travis K., A configurational temperature Nosé–Hoover thermostat, J. Chem. Phys. 123(13), 134101 (2005)
41 Hellman O., Steneteg P., A. Abrikosov I., I. Simak S.. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B, 2013, 87(10): 104111
https://doi.org/10.1103/PhysRevB.87.104111
42 Hellman O., A. Abrikosov I., I. Simak S.. Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B, 2011, 84(18): 180301
https://doi.org/10.1103/PhysRevB.84.180301
43 Li W., Carrete J., A. Katcho N., Mingo N.. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun., 2014, 185(6): 1747
https://doi.org/10.1016/j.cpc.2014.02.015
44 A. Broido D., Malorny M., Birner G., Mingo N., A. Stewart D.. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett., 2007, 91(23): 231922
https://doi.org/10.1063/1.2822891
45 Ward A.A. Broido D.A. Stewart D.Deinzer G., Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B 80(12), 125203 (2009)
46 Li W., Lindsay L., A. Broido D., A. Stewart D., Mingo N.. Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Phys. Rev. B, 2012, 86(17): 174307
https://doi.org/10.1103/PhysRevB.86.174307
47 D. Shannon R.. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 1976, 32(5): 751
https://doi.org/10.1107/S0567739476001551
48 Pu W., Xiao W., Wang J., Li X., Wang L.. Screening of perovskite materials for solar cell applications by first-principles calculations. Mater. Des., 2021, 198: 109387
https://doi.org/10.1016/j.matdes.2020.109387
49 L. Ivanov I., S. Steparuk A., S. Bolyachkina M., S. Tsvetkov D., P. Safronov A., Yu. Zuev A.. Thermodynamics of formation of hybrid perovskite-type methylammonium lead halides. J. Chem. Thermodyn., 2018, 116: 253
https://doi.org/10.1016/j.jct.2017.09.026
50 Komiya K.Morisaku N.Rong R.Takahashi Y.Shinzato Y. Yukawa H.Morinaga M., Synthesis and decomposition of perovskite-type hydrides, MMgH3 (M=Na, K, Rb), J. Alloys Compd. 453(1–2), 157 (2008)
51 Gold-Parker A., M. Gehring P., M. Skelton J., C. Smith I., Parshall D., M. Frost J., I. Karunadasa H., Walsh A., F. Toney M.. Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodide. Proc. Natl. Acad. Sci. USA, 2018, 115(47): 11905
https://doi.org/10.1073/pnas.1812227115
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed