Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 62302   https://doi.org/10.1007/s11467-023-1316-0
  本期目录
Structure and dynamics of binary Bose−Einstein condensates with vortex phase imprinting
Jianchong Xing1, Wenkai Bai1, Bo Xiong2, Jun-Hui Zheng1,3, Tao Yang1,3()
1. Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi’an 710127, China
2. School of Science, Wuhan University of Technology, Wuhan 430070, China
3. Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China
 全文: PDF(5121 KB)   HTML
Abstract

The combination of multi-component Bose−Einstein condensates (BECs) and phase imprinting techniques provides an ideal platform for exploring nonlinear dynamics and investigating the quantum transport properties of superfluids. In this paper, we study abundant density structures and corresponding dynamics of phase-separated binary Bose−Einstein condensates with phase-imprinted single vortex or vortex dipole. By adjusting the ratio between the interspecies and intraspecies interactions, and the locations of the phase singularities, the typical density profiles such as ball-shell structures, crescent-gibbous structures, Matryoshka-like structures, sector-sector structures and sandwich-type structures appear, and the phase diagrams are obtained. The dynamics of these structures exhibit diverse properties, including the penetration of vortex dipoles, emergence of half-vortex dipoles, co-rotation of sectors, and oscillation between sectors. The pinning effects induced by a potential defect are also discussed, which is useful for controlling and manipulating individual quantum states.

Key wordsBose−Einstein condensates    phase separation    angular momentum    energy competition
收稿日期: 2023-04-06      出版日期: 2023-07-06
Corresponding Author(s): Tao Yang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 62302.
Jianchong Xing, Wenkai Bai, Bo Xiong, Jun-Hui Zheng, Tao Yang. Structure and dynamics of binary Bose−Einstein condensates with vortex phase imprinting. Front. Phys. , 2023, 18(6): 62302.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1316-0
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/62302
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Type of phase-imprinting Position of the phase singularity in component-1 λ Total density structure Density profiles of two components Dynamics
Single vortex b=0 (Centered phase singularity) λ<1 Ball-shell Component-1: ball with vortex Component-2: shell Stable
λ>1 Component-1: shell Component-2: ball without vortex Stable
b0 (Off-center phase singularity) λ<1 Crescent-gibbous Component-1: Gibbous Component-2: Crescent Rotating with interface deform (amplitude of VG:|A|<|Ac|) Pinning (amplitude of VG:|A|=|Ac|)Oscillating (amplitude of VG:|A|>|Ac|)
λ>1 Component-1: Crescent Component-2: Gibbous
Vortex dipole Varing d and g12/g22 λ<1 Ball-shell (I) Component-1: ball with vortex dipole Component-2: shell Transition from ball-shell structure to sector?sector structure with formation of half-vortex dipole
Matryoshka-like (II) Component-1: ball with density dip Component-2: bull’s eye Transition from Matryoshka-like structure to sector?sector structure with penetration of vortex dipole
Sector-sector (III) Component-1: sector Component-2: sector Rotating with interface deform
Sandwich-type (IV) Component-1: two separated gibbous Component-2: central part Oscillating periodically
Transposed sandwich-type (V) Component-1: central part Component-2: two separated gibbous Transition from sandwich-type structure to sector?sector structure
Ball-shell (VI) Component-1: ball Component-2: shell Transition from ball-shell structure to oscillating asymmetric sandwich structure
Varing d and g12/g22 λ>1 Ball-shell (VII) Component-1: shell Component-2: ball Transition from ball-shell structure to oscillating asymmetric sandwich structure
Sandwich-type (IV) Component-1: two separated gibbous Component-2: central part Oscillating periodically
Tab.1  
1 R. Matthews M. , P. Anderson B. , C. Haljan P. , S. Hall D. , E. Wieman C. , A. Cornell E. . Vortices in a Bose–Einstein condensate. Phys. Rev. Lett., 1999, 83(13): 2498
https://doi.org/10.1103/PhysRevLett.83.2498
2 Jackson B. , F. McCann J. , S. Adams C. . Vortex line and ring dynamics in trapped Bose–Einstein condensates. Phys. Rev. A, 1999, 61(1): 013604
https://doi.org/10.1103/PhysRevA.61.013604
3 Yang T. , Xiong B. , A. Benedict K. . Dynamical excitations in the collision of two-dimensional Bose–Einstein condensates. Phys. Rev. A, 2013, 87(2): 023603
https://doi.org/10.1103/PhysRevA.87.023603
4 Denschlag J. , E. Simsarian J. , L. Feder D. , W. Clark C. , A. Collins L. , Cubizolles J. , Deng L. , W. Hagley E. , Helmerson K. , P. Reinhardt W. , L. Rolston S. , I. Schneider B. , D. Phillips W. . Generating solitons by phase engineering of a Bose–Einstein condensate. Science, 2000, 287(5450): 97
https://doi.org/10.1126/science.287.5450.97
5 L. Cheng Q. , K. Bai W. , Z. Zhang Y. , Xiong B. , Yang T. . Influence of a dark soliton on the reflection of a Bose–Einstein condensate by a square barrier. Laser Phys., 2019, 29(1): 015501
https://doi.org/10.1088/1555-6611/aaea78
6 M. Wang D. , C. Xing J. , Du R. , Xiong B. , Yang T. . Quantum reflection of a Bose–Einstein condensate with a dark soliton from a step potential. Chin. Phys. B, 2021, 30(12): 120303
https://doi.org/10.1088/1674-1056/ac051e
7 Du R. , C. Xing J. , Xiong B. , H. Zheng J. , Yang T. . Quench dynamics of Bose–Einstein condensates in boxlike traps. Chin. Phys. Lett., 2022, 39(7): 070304
https://doi.org/10.1088/0256-307X/39/7/070304
8 Proment D. , Onorato M. , F. Barenghi C. . Vortex knots in a Bose–Einstein condensate. Phys. Rev. E, 2012, 85(3): 036306
https://doi.org/10.1103/PhysRevE.85.036306
9 K. Bai W. , Yang T. , M. Liu W. . Topological transition from superfluid vortex rings to isolated knots and links. Phys. Rev. A, 2020, 102(6): 063318
https://doi.org/10.1103/PhysRevA.102.063318
10 Ruostekoski J. , R. Anglin J. . Creating vortex rings and three-dimensional skyrmions in Bose–Einstein condensates. Phys. Rev. Lett., 2001, 86(18): 3934
https://doi.org/10.1103/PhysRevLett.86.3934
11 Zhang X. , Hu X. , Wang D. , Liu X. , Liu W. . Dynamics of Bose−Einstein condensates near Feshbach resonance in external potential. Front. Phys. China, 2011, 6: 46
12 H. Lu P. , F. Zhang X. , Q. Dai C. . Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin–orbit coupled Bose–Einstein condensate. Front. Phys., 2022, 17(4): 42501
https://doi.org/10.1007/s11467-021-1134-1
13 W. Song S. , Wen L. , F. Liu C. , C. Gou S. , M. Liu W. . Ground states, solitons and spin textures in spin-1 Bose–Einstein condensates. Front. Phys., 2013, 8(3): 302
https://doi.org/10.1007/s11467-013-0350-8
14 K. Adhikari S. . Coupled Bose–Einstein condensate: Collapse for attractive interaction. Phys. Rev. A, 2001, 63(4): 043611
https://doi.org/10.1103/PhysRevA.63.043611
15 L. Ho T. , B. Shenoy V. . Binary mixtures of Bose condensates of alkali atoms. Phys. Rev. Lett., 1996, 77(16): 3276
https://doi.org/10.1103/PhysRevLett.77.3276
16 Navarro R. , Carretero-González R. , G. Kevrekidis P. . Phase separation and dynamics of two-component Bose–Einstein condensates. Phys. Rev. A, 2009, 80(2): 023613
https://doi.org/10.1103/PhysRevA.80.023613
17 Catelani G. , A. Yuzbashyan E. . Coreless vorticity in multicomponent Bose and Fermi superfluids. Phys. Rev. A, 2010, 81(3): 033629
https://doi.org/10.1103/PhysRevA.81.033629
18 J. H. Law K. , G. Kevrekidis P. , S. Tuckerman L. . Stable vortex–bright-soliton structures in two-component Bose–Einstein condensates. Phys. Rev. Lett., 2010, 105(16): 160405
https://doi.org/10.1103/PhysRevLett.105.160405
19 Pola M. , Stockhofe J. , Schmelcher P. , G. Kevrekidis P. . Vortex–bright-soliton dipoles: Bifurcations, symmetry breaking, and soliton tunneling in a vortex-induced double well. Phys. Rev. A, 2012, 86(5): 053601
https://doi.org/10.1103/PhysRevA.86.053601
20 Kuopanportti P. , A. M. Huhtamäki J. , Möttönen M. . Exotic vortex lattices in two-species Bose–Einstein condensates. Phys. Rev. A, 2012, 85(4): 043613
https://doi.org/10.1103/PhysRevA.85.043613
21 Lee C. . Universality and anomalous mean-field break-down of symmetry-breaking transitions in a coupled two-component Bose–Einstein Condensate. Phys. Rev. Lett., 2009, 102(7): 070401
https://doi.org/10.1103/PhysRevLett.102.070401
22 Sabbatini J. , H. Zurek W. , J. Davis M. . Phase separation and pattern formation in a binary Bose–Einstein condensate. Phys. Rev. Lett., 2011, 107(23): 230402
https://doi.org/10.1103/PhysRevLett.107.230402
23 Takeuchi H. , Ishino S. , Tsubota M. . Binary quantum turbulence arising from countersuperflow instability in two-component Bose–Einstein condensates. Phys. Rev. Lett., 2010, 105(20): 205301
https://doi.org/10.1103/PhysRevLett.105.205301
24 Timmermans E. . Phase separation of Bose–Einstein condensates. Phys. Rev. Lett., 1998, 81(26): 5718
https://doi.org/10.1103/PhysRevLett.81.5718
25 Wen L. , M. Liu W. , Cai Y. , M. Zhang J. , Hu J. . Controlling phase separation of a two-component Bose–Einstein condensate by confinement. Phys. Rev. A, 2012, 85(4): 043602
https://doi.org/10.1103/PhysRevA.85.043602
26 W. Pattinson R. , P. Billam T. , A. Gardiner S. , J. McCarron D. , W. Cho H. , L. Cornish S. , G. Parker N. , P. Proukakis N. . Equilibrium solutions for immiscible two-species Bose–Einstein condensates in perturbed harmonic traps. Phys. Rev. A, 2013, 87(1): 013625
https://doi.org/10.1103/PhysRevA.87.013625
27 L. Lee K. , B. Jørgensen N. , K. Liu I. , Wacker L. , J. Arlt J. , P. Proukakis N. . Phase separation and dynamics of two-component Bose–Einstein condensates. Phys. Rev. A, 2016, 94(1): 013602
https://doi.org/10.1103/PhysRevA.94.013602
28 Pyzh M. , Schmelcher P. . Phase separation of a Bose–Bose mixture: Impact of the trap and particle-number imbalance. Phys. Rev. A, 2020, 102(2): 023305
https://doi.org/10.1103/PhysRevA.102.023305
29 Sasaki K. , Suzuki N. , Akamatsu D. , Saito H. . Rayleigh–Taylor instability and mushroom-pattern formation in a two-component Bose–Einstein condensate. Phys. Rev. A, 2009, 80(6): 063611
https://doi.org/10.1103/PhysRevA.80.063611
30 Takeuchi H. , Suzuki N. , Kasamatsu K. , Saito H. , Tsubota M. . Quantum Kelvin–Helmholtz instability in phase-separated two-component Bose–Einstein condensates. Phys. Rev. B, 2010, 81(9): 094517
https://doi.org/10.1103/PhysRevB.81.094517
31 W. Madison K. , Chevy F. , Wohlleben W. , Dalibard J. . Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett., 2000, 84(5): 806
https://doi.org/10.1103/PhysRevLett.84.806
32 Chevy F. , W. Madison K. , Dalibard J. . Measurement of the angular momentum of a rotating Bose–Einstein condensate. Phys. Rev. Lett., 2000, 85(11): 2223
https://doi.org/10.1103/PhysRevLett.85.2223
33 S. Leslie L. , Hansen A. , C. Wright K. , M. Deutsch B. , P. Bigelow N. . Creation and detection of skyrmions in a Bose–Einstein condensate. Phys. Rev. Lett., 2009, 103(25): 250401
https://doi.org/10.1103/PhysRevLett.103.250401
34 Choi J. , J. Kwon W. , Shin Y. . Observation of topologically stable 2D skyrmions in an antiferromagnetic spinor Bose–Einstein condensate. Phys. Rev. Lett., 2012, 108(3): 035301
https://doi.org/10.1103/PhysRevLett.108.035301
35 E. Leanhardt A. , Görlitz A. , P. Chikkatur A. , Kielpinski D. , Shin Y. , E. Pritchard D. , Ketterle W. . Imprinting vortices in a Bose–Einstein condensate using topological phases. Phys. Rev. Lett., 2002, 89(19): 190403
https://doi.org/10.1103/PhysRevLett.89.190403
36 Yang T. , Q. Hu Z. , Zou S. , M. Liu W. . Dynamics of vortex quadrupoles in nonrotating trapped Bose–Einstein condensates. Sci. Rep., 2016, 6(1): 29066
https://doi.org/10.1038/srep29066
37 Bandyopadhyay S. , Roy A. , Angom D. . Dynamics of phase separation in two-species Bose–Einstein condensates with vortices. Phys. Rev. A, 2017, 96(4): 043603
https://doi.org/10.1103/PhysRevA.96.043603
38 Aioi T. , Kadokura T. , Saito H. . Penetration of a vortex dipole across an interface of Bose–Einstein condensates. Phys. Rev. A, 2012, 85(2): 023618
https://doi.org/10.1103/PhysRevA.85.023618
39 T. Kapale K. , P. Dowling J. . Vortex phase qubit: Generating arbitrary, counterrotating, coherent superpositions in Bose–Einstein condensates via optical angular momentum beams. Phys. Rev. Lett., 2005, 95(17): 173601
https://doi.org/10.1103/PhysRevLett.95.173601
40 Thanvanthri S. , T. Kapale K. , P. Dowling J. . Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light. Phys. Rev. A, 2008, 77(5): 053825
https://doi.org/10.1103/PhysRevA.77.053825
41 Wen L. , Qiao Y. , Xu Y. , Mao L. . Structure of two-component Bose−Einstein condensates with respective vortex−antivortex superposition states. Phys. Rev. A, 2013, 87(3): 033604
https://doi.org/10.1103/PhysRevA.87.033604
42 Ishino S. , Tsubota M. , Takeuchi H. . Counter-rotating vortices in miscible two-component Bose–Einstein condensates. Phys. Rev. A, 2013, 88(6): 063617
https://doi.org/10.1103/PhysRevA.88.063617
43 W. Neely T. , C. Samson E. , S. Bradley A. , J. Davis M. , P. Anderson B. . Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett., 2010, 104(16): 160401
https://doi.org/10.1103/PhysRevLett.104.160401
44 K. Maity D. , Mukherjee K. , I. Mistakidis S. , Das S. , G. Kevrekidis P. , Majumder S. , Schmelcher P. . Parametrically excited star-shaped patterns at the interface of binary Bose–Einstein condensates. Phys. Rev. A, 2020, 102(3): 033320
https://doi.org/10.1103/PhysRevA.102.033320
45 Pethick C.Smith H., Bose−Einstein Condensation in Dilute Gases, New York: Cambridge University Press, 2014
46 Yang G. , Zhang S. , Han W. . Oblique collisions and catching-up phenomena of vortex dipoles in a uniform Bose–Einstein condensate. Phys. Scr., 2019, 94(7): 075006
https://doi.org/10.1088/1402-4896/ab1220
47 J. Torres P. , G. Kevrekidis P. , J. Frantzeskakis D. , Carretero-González R. , Schmelcher P. , S. Hall D. . Dynamics of vortex dipoles Einstein condensates. Phys. Lett. A, 2011, 375(33): 3044
https://doi.org/10.1016/j.physleta.2011.06.061
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed