Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 61303   https://doi.org/10.1007/s11467-023-1317-z
  本期目录
Single-photon source with sub-MHz linewidth for cesium-based quantum information processing
Hai He, Peng-Fei Yang, Peng-Fei Zhang, Gang Li(), Tian-Cai Zhang()
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
 全文: PDF(4436 KB)   HTML
Abstract

A single-photon source with narrow bandwidth, high purity, and large brightness can efficiently interact with material qubits strongly coupled to an optical microcavity for quantum information processing. Here, we experimentally demonstrate a degenerate doubly resonant single-photon source at 852 nm by the cavity-enhanced spontaneous parametric downconversion process with a 100% duty cycle of generation. The single photon source possesses both high purity with a second-order correlation gh(2)(0)=0.021 and narrow linewidth with Δνsp=(800±13)kHz. The single-photon source is compatible with the cesium atom D2 line and can be used for cesium-based quantum information processing.

Key wordssingle-photon source    sub-MHz linewidth    few longitudinal modes    quantum information processing
收稿日期: 2023-03-27      出版日期: 2023-11-29
Corresponding Author(s): Gang Li,Tian-Cai Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 61303.
Hai He, Peng-Fei Yang, Peng-Fei Zhang, Gang Li, Tian-Cai Zhang. Single-photon source with sub-MHz linewidth for cesium-based quantum information processing. Front. Phys. , 2023, 18(6): 61303.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1317-z
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/61303
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Knill E.Laflamme R.J. Milburn G., A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
2 Piro N. , Rohde F. , Schuck C. , Almendros M. , Huwer J. , Ghosh J. , Haase A. , Hennrich M. , Dubin F. , Eschner J. . Heralded single- photon absorption by a single atom. Nat. Phys., 2011, 7(1): 17
https://doi.org/10.1038/nphys1805
3 Jacques V. , Wu E. , Grosshans F. , Treussart F. , Grangier P. , Aspect A. , F. Roch J. . Experimental realization of Wheeler’s delayed-choice Gedanken experiment. Science, 2007, 315(5814): 966
https://doi.org/10.1126/science.1136303
4 Esposito C. , R. Barros M. , Durán Hernández A. , Carvacho G. , Di Colandrea F. , Barboza R. , Cardano F. , Spagnolo N. , Marrucci L. , Sciarrino F. . Quantum walks of two correlated photons in a 2D synthetic lattice. NPJ Quantum Inf., 2022, 8(1): 34
https://doi.org/10.1038/s41534-022-00544-0
5 B. Pittman T. , H. Shih Y. , V. Strekalov D. , V. Sergienko A. . Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 1995, 52(5): R3429
https://doi.org/10.1103/PhysRevA.52.R3429
6 F. Yan Y. , Zhou L , Zhong W , B. Sheng Y. . Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys., 2021, 16(1): 11501
https://doi.org/10.1007/s11467-020-1005-1
7 Beveratos A. , Brouri R. , Gacoin T. , Villing A. , P. Poizat J. , Grangier P. . Single photon quantum cryptography. Phys. Rev. Lett., 2002, 89(18): 187901
https://doi.org/10.1103/PhysRevLett.89.187901
8 M. Duan L. , D. Lukin M. , I. Cirac J. , Zoller P. . Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414(6862): 413
https://doi.org/10.1038/35106500
9 Yin J. , Cao Y. , H. Li Y. , K. Liao S. , Zhang L. . et al.. Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356(6343): 1140
https://doi.org/10.1126/science.aan3211
10 Brekenfeld M.Niemietz D.D. Christesen J.Rempe G., A quantum network node with crossed optical fibre cavities, Nat. Phys. 16(6), 647 (2020)
11 Reiserer A.Kalb N.Rempe G.Ritter S., A quantum gate between a flying optical photon and a single trapped atom, Nature 508(7495), 237 (2014)
12 Daiss S.Langenfeld S.Welte S.Distante E.Thomas P.Hartung L.Morin O.Rempe G., A quantum-logic gate between distant quantum-network modules, Science 371(6529), 614 (2021)
13 Langenfeld S.Morin O.Korber M.Rempe G., A network-ready random-access qubits memory, npj Quantum Inf. 6(1), 86 (2020)
14 J. Kimble H. . The quantum internet. Nature, 2008, 453(7198): 1023
https://doi.org/10.1038/nature07127
15 Ritter S. , Nolleke C. , Hahn C. , Reiserer A. , Neuzner A. , Uphoff M. , Mucke M. , Figueroa E. , Bochmann J. , Rempe G. . An elementary quantum network of single atoms in optical cavities. Nature, 2012, 484(7393): 195
https://doi.org/10.1038/nature11023
16 T. Sheng J. , X. Chao Y. , Kumar S. , Q. Fan H. , Sedlacek J. , P. Shaffer J. . Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity. Phys. Rev. A, 2017, 96(3): 033813
https://doi.org/10.1103/PhysRevA.96.033813
17 Junge C. , O’Shea D. , Volz J. , Rauschenbeutel A. . Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 2013, 110(21): 213604
https://doi.org/10.1103/PhysRevLett.110.213604
18 Kato S. , Aoki T. . Strong coupling between a trapped single atom and an all-fiber cavity. Phys. Rev. Lett., 2015, 115(9): 093603
https://doi.org/10.1103/PhysRevLett.115.093603
19 McKeever J. , Boca A. , D. Boozer A. , Miller R. , R. Buck J. , Kuzmich A. , J. Kimble H. . Deterministic generation of single photons from one atom trapped in a cavity. Science, 2004, 303(5666): 1992
https://doi.org/10.1126/science.1095232
20 Liu B. , Jin G. , He J. , M. Wang J. . Suppression of single-cesium atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source. Phys. Rev. A, 2016, 94(1): 013409
https://doi.org/10.1103/PhysRevA.94.013409
21 Darquié B. , P. A. Jones M. , Dingjan J. , Beugnon J. , Bergamini S. , Sortais Y. , Messin G. , Browaeys A. , Grangier P. . Controlled single-photon emission from a single trapped two-level atom. Science, 2005, 309(5733): 454
https://doi.org/10.1126/science.1113394
22 Stein G. , Bushmakin V. , J. Wang Y. , W. Schell A. , Gerhardt I. . Narrow-band fiber-coupled single-photon source. Phys. Rev. Appl., 2020, 13(5): 054042
https://doi.org/10.1103/PhysRevApplied.13.054042
23 Keller M. , Lange B. , Hayasaka K. , Lange W. , Walther H. . Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 2004, 431(7012): 1075
https://doi.org/10.1038/nature02961
24 Y. Lu C. , W. Pan J. . Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol., 2021, 16(12): 1294
https://doi.org/10.1038/s41565-021-01033-9
25 Togan E. , Chu Y. , S. Trifonov A. , Jiang L. , Maze J. , Childress L. , V. G. Dutt M. , S. Sorensen A. , R. Hemmer P. , S. Zibrov A. , D. Lukin M. . Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466(7307): 730
https://doi.org/10.1038/nature09256
26 B. Dideriksen K. , Schmieg R. , Zugenmaier M. , S. Polzik E. . Room-temperature single-photon source with near-millisecond built-in memory. Nat. Commun., 2021, 12(1): 3699
https://doi.org/10.1038/s41467-021-24033-8
27 I. Lvovsky A. , Hansen H. , Aichele T. , Benson O. , Mlynek J. , Schiller S. . Quantum state reconstruction of the single- photon Fock state. Phys. Rev. Lett., 2001, 87(5): 050402
https://doi.org/10.1103/PhysRevLett.87.050402
28 Prakash V. , C. Bianchet L. , T. Cuairan M. , Gomez P. , Bruno N. , W. Mitchell M. . Narrowband photon pairs with independent frequency tuning for quantum light−matter interactions. Opt. Express, 2019, 27(26): 38463
https://doi.org/10.1364/OE.382474
29 S. Tang J. , Tang L. , D. Wu H. , Wu Y. , Sun H. , Zhang H. , Li T. , Q. Lu Y. , Xiao M. , Xia K. . Towards on-demand heralded single-photon sources via photon blockade. Phys. Rev. Appl., 2021, 15(6): 064020
https://doi.org/10.1103/PhysRevApplied.15.064020
30 Wakui K. , Takahashi H. , Furusawa A. , Sasaki M. . Photon subtracted squeezed states generated with periodically poled KTiOPO4. Opt. Express, 2007, 15(6): 3568
https://doi.org/10.1364/OE.15.003568
31 Scholz M. , Koch L. , Benson O. . Statistics of narrow- band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett., 2009, 102(6): 063603
https://doi.org/10.1103/PhysRevLett.102.063603
32 Y. Zhou Z. , S. Ding D. , Li Y. , Y. Wang F. , S. Shi B. . Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration. J. Opt. Soc. Am. B, 2014, 31(1): 128
https://doi.org/10.1364/JOSAB.31.000128
33 Rambach M. , Nikolova A. , J. Weinhold T. , G. White A. . Sub-megahertz linewidth single photon source. APL Photonics, 2016, 1(9): 096101
https://doi.org/10.1063/1.4966915
34 Niizeki K. , Ikeda K. , Y. Zheng M. , P. Xie X. , Okamura K. , Takei N. , Namekata N. , Inoue S. , Kosaka H. , Horikiri T. . Ultrabright narrow-band telecom two-photon source for long-distance quantum communication. Appl. Phys. Express, 2018, 11(4): 042801
https://doi.org/10.7567/APEX.11.042801
35 Moqanaki A. , Massa F. , Walther P. . Novel single-mode narrow-band photon source of high brightness tuned to cesium D2 line. APL Photonics, 2019, 4(9): 090804
https://doi.org/10.1063/1.5095616
36 J. Tsai P. , C. Chen Y. . Ultrabright, narrow-band photon-pair source for atomic quantum memories. Quantum Sci. Technol., 2018, 3(3): 034005
https://doi.org/10.1088/2058-9565/aa86e7
37 Liu J. , Liu J. , Yu P. , Zhang G. . Sub-megahertz narrow-band photon pairs at 606 nm for solid-state quantum memories. APL Photonics, 2020, 5(6): 066105
https://doi.org/10.1063/5.0006021
38 Tian L. , J. Li S. , X. Yuan H. , Wang H. . Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line. J. Phys. Soc. Jpn., 2016, 85(12): 124403
https://doi.org/10.7566/JPSJ.85.124403
39 Wang J. , F. Huang Y. , Zhang C. , M. Cui J. , Y. Zhou Z. , H. Liu B. , Q. Zhou Z. , S. Tang J. , F. Li C. , C. Guo G. . Universal photonic quantum interface for a quantum network. Phys. Rev. Appl., 2018, 10(5): 054036
https://doi.org/10.1103/PhysRevApplied.10.054036
40 Zhang H. , M. Jin X. , Yang J. , N. Dai H. , J. Yang S. , M. Zhao T. , Rui J. , He Y. , Jiang X. , Yang F. , S. Pan G. , S. Yuan Z. , Deng Y. , B. Chen Z. , H. Bao X. , Chen S. , Zhao B. , W. Pan J. . Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat. Photonics, 2011, 5(10): 628
https://doi.org/10.1038/nphoton.2011.213
41 Fekete J. , Rieländer D. , Cristiani M. , de Riedmatten H. . Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys. Rev. Lett., 2013, 110(22): 220502
https://doi.org/10.1103/PhysRevLett.110.220502
42 W. Hansch T. , Couillaud B. . Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun., 1980, 35(3): 441
https://doi.org/10.1016/0030-4018(80)90069-3
43 H. Brown R. , Q. Twiss R. . Correlation between photons in two coherent beams of light. Nature, 1956, 177(4497): 27
https://doi.org/10.1038/177027a0
44 S. Chuu C.Y. Yin G.E. Harris S., A miniature ultrabright source of temporally long, narrowband biphotons, Appl. Phys. Lett. 101(5), 051108 (2012)
45 Scholz M. , Koch L. , Benson O. . Analytical treatment of spectral properties and signal-idler intensity correlations for a double-resonant optical parametric oscillator far below threshold. Opt. Commun., 2009, 282(17): 3518
https://doi.org/10.1016/j.optcom.2009.05.056
46 Wolfgramm F. , A. de Icaza Astiz Y. , A. Beduini F. , Cerè A. , W. Mitchell M. . Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett., 2011, 106(5): 053602
https://doi.org/10.1103/PhysRevLett.106.053602
47 J. Lu Y. , Y. Ou Z. . Optical parametric oscillator far below threshold: Experiment versus theory. Phys. Rev. A, 2000, 62(3): 033804
https://doi.org/10.1103/PhysRevA.62.033804
48 Wahl M. , Röhlicke T. , J. Rahn H. , Erdmann R. , Kell G. , Ahlrichs A. , Kernbach M. , W. Schell A. , Benson O. . Integrated multichannel photon timing instrument with very short dead time and high throughput. Rev. Sci. Instrum., 2013, 84(4): 043102
https://doi.org/10.1063/1.4795828
49 Beck M. . Comparing measurements of g(2)(0) performed with different coincidence detection techniques. J. Opt. Soc. Am. B, 2007, 24(12): 2972
https://doi.org/10.1364/JOSAB.24.002972
50 Paudel U. , J. Wong J. , Goggin M. , G. Kwiat P. , S. Bracker A. , Yakes M. , Gammon D. , G. Steel D. . Direct excitation of a single quantum dot with cavity-SPDC photons. Opt. Express, 2019, 27(11): 16308
https://doi.org/10.1364/OE.27.016308
51 H. Wu C. , Y. Wu T. , C. Yeh Y. , H. Liu P. , H. Chang C. , K. Liu C. , Cheng T. , S. Chuu C. . Bright single photons for light−matter interaction. Phys. Rev. A, 2017, 96(2): 023811
https://doi.org/10.1103/PhysRevA.96.023811
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed