Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 61302   https://doi.org/10.1007/s11467-023-1319-x
  本期目录
Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices
Wei Feng1, Dexi Shao1, Guo-Qiang Zhang1, Qi-Ping Su1, Jun-Xiang Zhang2(), Chui-Ping Yang1()
1. School of Physics, Hangzhou Normal University, Hangzhou 311121, China
2. School of Physics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(7970 KB)   HTML
Abstract

Motivated by recent realizations of two-dimensional (2D) superconducting-qubit lattices, we propose a protocol to simulate Hofstadter butterfly with synthetic gauge fields in superconducting circuits. Based on the existing 2D superconducting-qubit lattices, we construct a generalized Hofstadter model on zigzag lattices, which has a fractal energy spectrum similar to the original Hofstadter butterfly. By periodically modulating the resonant frequencies of qubits, we engineer a synthetic gauge field to mimic the generalized Hofstadter Hamiltonian. A spectroscopic method is used to demonstrate the Hofstadter butterfly from the time evolutions of experimental observables. We numerically simulate the dynamics of the system with realistic parameters, and the results show a butterfly spectrum clearly. Our proposal provides a promising way to realize the Hofstadter butterfly on the latest 2D superconducting-qubit lattices and will stimulate the quantum simulation of novel properties induced by magnetic fields in superconducting circuits.

Key wordsquantum simulation    superconducting circuits    superconducting qubit    quantum computation
收稿日期: 2023-03-22      出版日期: 2023-06-30
Corresponding Author(s): Jun-Xiang Zhang,Chui-Ping Yang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 61302.
Wei Feng, Dexi Shao, Guo-Qiang Zhang, Qi-Ping Su, Jun-Xiang Zhang, Chui-Ping Yang. Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices. Front. Phys. , 2023, 18(6): 61302.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1319-x
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/61302
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 P. Feynman R., Simulating physics with computers, Int. J. Theor. Phys. 21(6−7), 467 (1982)
2 M. Georgescu I. , Ashhab S. , Nori F. . Quantum simulation. Rev. Mod. Phys., 2014, 86(1): 153
https://doi.org/10.1103/RevModPhys.86.153
3 Buluta I. , Nori F. . Quantum simulators. Science, 2009, 326(5949): 108
https://doi.org/10.1126/science.1177838
4 Somaroo S. , H. Tseng C. , F. Havel T. , Laflamme R. , G. Cory D. . Quantum simulations on a quantum computer. Phys. Rev. Lett., 1999, 82(26): 5381
https://doi.org/10.1103/PhysRevLett.82.5381
5 Simon J. , S. Bakr W. , Ma R. , E. Tai M. , M. Preiss P. , Greiner M. . Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature, 2011, 472(7343): 307
https://doi.org/10.1038/nature09994
6 Bloch I. , Dalibard J. , Nascimbene S. . Quantum simulations with ultracold quantum gases. Nat. Phys., 2012, 8(4): 267
https://doi.org/10.1038/nphys2259
7 Kim K. , S. Chang M. , Korenblit S. , Islam R. , E. Edwards E. , K. Freericks J. , D. Lin G. , M. Duan L. , Monroe C. . Quantum simulation of frustrated Ising spins with trapped ions. Nature, 2010, 465(7298): 590
https://doi.org/10.1038/nature09071
8 R. Hofstadter D. . Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 1976, 14(6): 2239
https://doi.org/10.1103/PhysRevB.14.2239
9 R. Dean C. , Wang L. , Maher P. , Forsythe C. , Ghahari F. , Gao Y. , Katoch J. , Ishigami M. , Moon P. , Koshino M. , Taniguchi T. , Watanabe K. , L. Shepard K. , Hone J. , Kim P. . Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 2013, 497(7451): 598
https://doi.org/10.1038/nature12186
10 A. Ponomarenko L. , V. Gorbachev R. , L. Yu G. , C. Elias D. , Jalil R. , A. Patel A. , Mishchenko A. , S. Mayorov A. , R. Woods C. , R. Wallbank J. , Mucha-Kruczynski M. , A. Piot B. , Potemski M. , V. Grigorieva I. , S. Novoselov K. , Guinea F. , I. Fal’ko V. , K. Geim A. . Cloning of Dirac fermions in graphene superlattices. Nature, 2013, 497(7451): 594
https://doi.org/10.1038/nature12187
11 Hunt B. , D. Sanchez-Yamagishi J. , F. Young A. , Yankowitz M. , J. LeRoy B. , Watanabe K. , Taniguchi T. , Moon P. , Koshino M. , Jarillo-Herrero P. , C. Ashoori R. . Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science, 2013, 340(6139): 1427
https://doi.org/10.1126/science.1237240
12 S. Wu Q. , Liu J. , Guan Y. , V. Yazyev O. . Landau levels as a probe for band topology in graphene moiré superlattices. Phys. Rev. Lett., 2021, 126(5): 056401
https://doi.org/10.1103/PhysRevLett.126.056401
13 V. Rozhkov A. , O. Sboychakov A. , L. Rakhmanov A. , Nori F. . Electronic properties of graphene-based bilayer systems. Phys. Rep., 2016, 648: 1
https://doi.org/10.1016/j.physrep.2016.07.003
14 Dalibard J. , Gerbier F. , Juzeliunas G. , Öhberg P. . Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 2011, 83(4): 1523
https://doi.org/10.1103/RevModPhys.83.1523
15 Galitski V. , B. Spielman I. . Spin‒orbit coupling in quantum gases. Nature, 2013, 494(7435): 49
https://doi.org/10.1038/nature11841
16 Gerbier F. , Dalibard J. . Gauge fields for ultracold atoms in optical superlattices. New J. Phys., 2010, 12(3): 033007
https://doi.org/10.1088/1367-2630/12/3/033007
17 Cho J. , G. Angelakis D. , Bose S. . Fractional quantum Hall state in coupled cavities. Phys. Rev. Lett., 2008, 101(24): 246809
https://doi.org/10.1103/PhysRevLett.101.246809
18 O. Umucalılar R. , Carusotto I. . Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A, 2011, 84(4): 043804
https://doi.org/10.1103/PhysRevA.84.043804
19 Roushan P. , Neill C. , Megrant A. , Chen Y. , Babbush R. , Barends R. , Campbell B. , Chen Z. , Chiaro B. , Dunsworth A. , Fowler A. , Jeffrey E. , Kelly J. , Lucero E. , Mutus J. , J. J. O’Malley P. , Neeley M. , Quintana C. , Sank D. , Vainsencher A. , Wenner J. , White T. , Kapit E. , Neven H. , Martinis J. . Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys., 2017, 13(2): 146
https://doi.org/10.1038/nphys3930
20 Koch J. , A. Houck A. , L. Hur K. , M. Girvin S. . Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A, 2010, 82(4): 043811
https://doi.org/10.1103/PhysRevA.82.043811
21 Nunnenkamp A. , Koch J. , M. Girvin S. . Synthetic gauge fields and homodyne transmission in Jaynes‒Cummings lattices. New J. Phys., 2011, 13(9): 095008
https://doi.org/10.1088/1367-2630/13/9/095008
22 Marcos D. , Rabl P. , Rico E. , Zoller P. . Superconducting circuits for quantum simulation of dynamical gauge fields. Phys. Rev. Lett., 2013, 111(11): 110504
https://doi.org/10.1103/PhysRevLett.111.110504
23 P. Wang Y. , L. Yang W. , Hu Y. , Y. Xue Z. , Wu Y. . Detecting topological phases of microwave photons in a circuit quantum electrodynamics lattice. npj Quantum Inf., 2016, 2(1): 16015
https://doi.org/10.1038/npjqi.2016.15
24 H. Yang Z. , P. Wang Y. , Y. Xue Z. , L. Yang W. , Hu Y. , H. Gao J. , Wu Y. . Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice. Phys. Rev. A, 2016, 93(6): 062319
https://doi.org/10.1103/PhysRevA.93.062319
25 Alaeian H. , W. S. Chang C. , V. Moghaddam M. , M. Wilson C. , Solano E. , Rico E. . Creating lattice gauge potentials in circuit QED: The bosonic Creutz ladder. Phys. Rev. A, 2019, 99(5): 053834
https://doi.org/10.1103/PhysRevA.99.053834
26 J. Zhao Y. , W. Xu X. , Wang H. , X. Liu Y. , M. Liu W. . Vortex‒Meissner phase transition induced by a two-tone-drive-engineered artificial gauge potential in the fermionic ladder constructed by superconducting qubit circuits. Phys. Rev. A, 2020, 102(5): 053722
https://doi.org/10.1103/PhysRevA.102.053722
27 Guan X. , L. Feng Y. , Y. Xue Z. , Chen G. , T. Jia S. . Synthetic gauge field and chiral physics on two-leg superconducting circuits. Phys. Rev. A, 2020, 102(3): 032610
https://doi.org/10.1103/PhysRevA.102.032610
28 Jaksch D. , Zoller P. . Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms. New J. Phys., 2003, 5: 56
https://doi.org/10.1088/1367-2630/5/1/356
29 Graß T. , Muschik C. , Celi A. , W. Chhajlany R. , Lewenstein M. . Synthetic magnetic fluxes and topological order in one-dimensional spin systems. Phys. Rev. A, 2015, 91(6): 063612
https://doi.org/10.1103/PhysRevA.91.063612
30 Banerjee R. , C. H. Liew T. , Kyriienko O. . Realization of Hofstadter’s butterfly and a one-way edge mode in a polaritonic system. Phys. Rev. B, 2018, 98(7): 075412
https://doi.org/10.1103/PhysRevB.98.075412
31 Aidelsburger M. , Atala M. , Lohse M. , T. Barreiro J. , Paredes B. , Bloch I. . Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett., 2013, 111(18): 185301
https://doi.org/10.1103/PhysRevLett.111.185301
32 Miyake H. , A. Siviloglou G. , J. Kennedy C. , C. Burton W. , Ketterle W. . Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett., 2013, 111(18): 185302
https://doi.org/10.1103/PhysRevLett.111.185302
33 Q. You J. , Nori F. . Atomic physics and quantum optics using superconducting circuits. Nature, 2011, 474(7353): 589
https://doi.org/10.1038/nature10122
34 Gu X.F. Kockum A.Miranowicz A.Liu Y.Nori F., Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
35 Clarke J. , K. Wilhelm F. . Superconducting quantum bits. Nature, 2008, 453(7198): 1031
https://doi.org/10.1038/nature07128
36 J. J. O’Malley P. , Babbush R. , D. Kivlichan I. , Romero J. , R. McClean J. . et al.. Scalable quantum simulation of molecular energies. Phys. Rev. X, 2016, 6(3): 031007
https://doi.org/10.1103/PhysRevX.6.031007
37 Xu K. , J. Chen J. , Zeng Y. , R. Zhang Y. , Song C. , Liu W. , Guo Q. , Zhang P. , Xu D. , Deng H. , Huang K. , Wang H. , Zhu X. , Zheng D. , Fan H. . Emulating many-body localization with a superconducting quantum processor. Phys. Rev. Lett., 2018, 120(5): 050507
https://doi.org/10.1103/PhysRevLett.120.050507
38 Feng W. , Q. Zhang G. , P. Su Q. , X. Zhang J. , P. Yang C. . Generation of Greenberger‒Horne‒Zeilinger states on two-dimensional superconducting-qubit lattices via parallel multiqubit-gate operations. Phys. Rev. Appl., 2022, 18(6): 064036
https://doi.org/10.1103/PhysRevApplied.18.064036
39 P. Su Q. , Zhang Y. , Bin L. , P. Yang C. . Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys., 2022, 17(5): 53505
https://doi.org/10.1007/s11467-022-1163-4
40 Liu T. , Q. Guo B. , H. Zhou Y. , L. Zhao J. , L. Fang Y. , C. Wu Q. , P. Yang C. . Transfer of quantum entangled states between superconducting qubits and microwave field qubits. Front. Phys., 2022, 17(6): 61502
https://doi.org/10.1007/s11467-022-1166-1
41 P. Su Q. , Zhang H. , P. Yang C. . Transferring quantum entangled states between multiple single-photonstate qubits and coherent-state qubits in circuit QED. Front. Phys., 2021, 16(6): 61501
https://doi.org/10.1007/s11467-021-1098-1
42 Liu T. , F. Zheng Z. , Zhang Y. , L. Fang Y. , P. Yang C. . Transferring entangled states of photonic cat-state qubits in circuit QED. Front. Phys., 2020, 15(2): 21603
https://doi.org/10.1007/s11467-019-0949-5
43 Arute F. , Arya K. , Babbush R. , Bacon D. , C. Bardin J. . et al.. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505
https://doi.org/10.1038/s41586-019-1666-5
44 Gong M. , Wang S. , Zha C. , C. Chen M. , L. Huang H. . et al.. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science, 2021, 372(6545): 948
https://doi.org/10.1126/science.abg7812
45 Wu Y. , S. Bao W. , Cao S. , Chen F. , C. Chen M. . et al.. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(18): 180501
https://doi.org/10.1103/PhysRevLett.127.180501
46 Zhang X. , Jiang W. , Deng J. , Wang K. , Chen J. , Zhang P. , Ren W. , Dong H. , Xu S. , Gao Y. , Jin F. , Zhu X. , Guo Q. , Li H. , Song C. , V. Gorshkov A. , Iadecola T. , Liu F. , X. Gong Z. , Wang Z. , L. Deng D. , Wang H. . Digital quantum simulation of Floquet symmetry protected topological phases. Nature, 2022, 607(7919): 468
https://doi.org/10.1038/s41586-022-04854-3
47 Ren W. , Li W. , Xu S. , Wang K. , Jiang W. , Jin F. , Zhu X. , Chen J. , Song Z. , Zhang P. , Dong H. , Zhang X. , Deng J. , Gao Y. , Zhang C. , Wu Y. , Zhang B. , Guo Q. , Li H. , Wang Z. , Biamonte J. , Song C. , L. Deng D. , Wang H. . Experimental quantum adversarial learning with programmable superconducting qubits. Nat. Comput. Sci., 2022, 2(11): 711
https://doi.org/10.1038/s43588-022-00351-9
48 Liu W. , Feng W. , Ren W. , W. Wang D. , Wang H. . Synthesizing three-body interaction of spin chirality with superconducting qubits. Appl. Phys. Lett., 2020, 116(11): 114001
https://doi.org/10.1063/1.5140884
49 Ren W. , Liu W. , Song C. , Li H. , Guo Q. , Wang Z. , Zheng D. , S. Agarwal G. , O. Scully M. , Y. Zhu S. , Wang H. , W. Wang D. . Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit. Phys. Rev. Lett., 2020, 125(13): 133601
https://doi.org/10.1103/PhysRevLett.125.133601
50 Guo Q. , Cheng C. , Li H. , Xu S. , Zhang P. , Wang Z. , Song C. , Liu W. , Ren W. , Dong H. , Mondaini R. , Wang H. . Stark many-body localization on a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(24): 240502
https://doi.org/10.1103/PhysRevLett.127.240502
51 Ye Y. , Y. Ge Z. , Wu Y. , Wang S. , Gong M. , R. Zhang Y. , Zhu Q. , Yang R. , Li S. , Liang F. , Lin J. , Xu Y. , Guo C. , Sun L. , Cheng C. , Ma N. , Y. Meng Z. , Deng H. , Rong H. , Y. Lu C. , Z. Peng C. , Fan H. , Zhu X. , W. Pan J. . Propagation and localization of collective excitations on a 24-qubit superconducting processor. Phys. Rev. Lett., 2019, 123(5): 050502
https://doi.org/10.1103/PhysRevLett.123.050502
52 J. Kollár A. , Fitzpatrick M. , A. Houck A. . Hyperbolic lattices in circuit quantum electrodynamics. Nature, 2019, 571(7763): 45
https://doi.org/10.1038/s41586-019-1348-3
53 G. Harper P. . Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A, 1955, 68(10): 874
https://doi.org/10.1088/0370-1298/68/10/304
54 K. Das K. , Christ J. . Realizing the Harper model with ultracold atoms in a ring lattice. Phys. Rev. A, 2019, 99(1): 013604
https://doi.org/10.1103/PhysRevA.99.013604
55 Roushan P. , Neill C. , Tangpanitanon J. , M. Bastidas V. , Megrant A. , Barends R. , Chen Y. , Chen Z. , Chiaro B. , Dunsworth A. , Fowler A. , Foxen B. , Giustina M. , Jeffrey E. , Kelly J. , Lucero E. , Mutus J. , Neeley M. , Quintana C. , Sank D. , Vainsencher A. , Wenner J. , White T. , Neven H. , G. Angelakis D. , Martinis J. . Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science, 2017, 358(6367): 1175
https://doi.org/10.1126/science.aao1401
56 Beaudoin F. , P. da Silva M. , Dutton Z. , Blais A. . First-order sidebands in circuit QED using qubit frequency modulation. Phys. Rev. A, 2012, 86(2): 022305
https://doi.org/10.1103/PhysRevA.86.022305
57 D. Strand J.Ware M.Beaudoin F.A. Ohki T.R. Johnson B.Blais A.L. T. Plourde B., First-order sideband transitions with flux-driven asymmetric transmon qubits, Phys. Rev. B 87, 220505(R) (2013)
58 Li X. , Ma Y. , Han J. , Chen T. , Xu Y. , Cai W. , Wang H. , P. Song Y. , Y. Xue Z. , Q. Yin Z. , Sun L. . Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. Phys. Rev. Appl., 2018, 10(5): 054009
https://doi.org/10.1103/PhysRevApplied.10.054009
59 Senko C. , Smith J. , Richerme P. , Lee A. , C. Campbell W. , Monroe C. . Coherent imaging spectroscopy of a quantum many-body spin system. Science, 2014, 345(6195): 430
https://doi.org/10.1126/science.1251422
60 Jurcevic P. , Hauke P. , Maier C. , Hempel C. , P. Lanyon B. , Blatt R. , F. Roos C. . Spectroscopy of interacting quasiparticles in trapped ions. Phys. Rev. Lett., 2015, 115(10): 100501
https://doi.org/10.1103/PhysRevLett.115.100501
61 R. Johansson J. , D. Nation P. , Nori F. . QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
https://doi.org/10.1016/j.cpc.2012.02.021
62 R. Johansson J. , D. Nation P. , Nori F. . QuTiP2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2013, 184(4): 1234
https://doi.org/10.1016/j.cpc.2012.11.019
63 W. Wang D. , Song C. , Feng W. , Cai H. , Xu D. , Deng H. , Li H. , Zheng D. , Zhu X. , Wang H. , Y. Zhu S. , O. Scully M. . Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits. Nat. Phys., 2019, 15(4): 382
https://doi.org/10.1038/s41567-018-0400-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed