Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 64602   https://doi.org/10.1007/s11467-023-1321-3
  本期目录
The factorization-assisted topological-amplitude approach and its applications
Qin Qin1(), Chao Wang2(), Di Wang3(), Si-Hong Zhou4()
1. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223001, China
3. Department of Physics, Hunan Normal University, Changsha 410081, China
4. School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
 全文: PDF(4158 KB)   HTML
Abstract

Heavy meson decays provide an important platform for studies of both QCD and electroweak dynamics, which may contain some portals to understanding of nonperturbative QCD and physics beyond the Standard Model. The factorization-assisted topological-amplitude approach was proposed to study two-body non-leptonic D meson decays, where a promising QCD inspired approach from first principles is still missing. It was also applied to B meson decays whose subleading power contributions are difficult to calculate. By factorizing topological amplitudes into short distance Wilson coefficients and long distance hadronic matrix elements either to be calculated or to be parameterized, it provides an effective framework to extract information of nonperturbative dynamics involved. With important flavor SU(3) breaking effects taken into account, the data of the decay branching ratios (and also CP asymmetries in B decays) can be fitted well. The extracted amplitudes were further applied to make predictions for other observables, such as CP asymmetries in D decays, mixing parameters in the D0D¯0 system. By this review, we will describe the formulation of the factorization-assisted topological-amplitude approach and summarize its applications in D and B meson decays and highlight some of its achievements.

Key wordsheavy meson decay    factorization-assisted topological-amplitude approach    SU(3) breaking
收稿日期: 2023-02-23      出版日期: 2023-11-29
Corresponding Author(s): Qin Qin,Chao Wang,Di Wang,Si-Hong Zhou   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 64602.
Qin Qin, Chao Wang, Di Wang, Si-Hong Zhou. The factorization-assisted topological-amplitude approach and its applications. Front. Phys. , 2023, 18(6): 64602.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1321-3
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/64602
Fig.1  
Channel FAT Data Channel FAT Data
D0KS0KS0 0.15±0.04 [33] 0.141±0.005 D0π0η 0.74±0.03 [33] 0.63±0.06
D0π0η 1.08±0.05 [33] 0.92±0.10 D0ηη 1.86±0.06 [33] 2.11±0.19
D0ηη 1.05±0.08 [33] 1.01±0.19 D0π+π? 1.44±0.02 [33] 1.454±0.024
D0K+K? 4.05±0.07 [33] 4.08±0.06 D0K?π+ 39.3±0.4 [33] 39.47±0.30
D0KS0π0 12.1±0.4 [33] 12.40±0.22 D0KS0η 4.8±0.3 [33] 5.13±0.14 [34]
D0KS0η 9.8±0.5 [33] 9.49±0.41 [34] D+π+π0 0.89 [24] 1.247±0.033
D+K+π0 0.197 [24] 0.208±0.021 D+π+η 3.39 [24] 3.77±0.09
D+K+η 0.066 [24] 0.125±0.016 D+π+η 4.58 [24] 4.97±0.19
D+K+η 0.114 [24] 0.185±0.020 D+π+KS0 16.2 [24] 15.62±0.31
D+K+KS0 2.98 [24] 3.04±0.09 Ds+π+π0 0 [24] 0.037±0.059 [35]
Ds+π0K+ 0.67 [24] 0.74±0.05 Ds+π+KS0 1.105 [24] 1.10±0.05
Ds+K+KS0 15.03 [24] 14.53±0.35 Ds+π+η 16.5 [24] 16.8±0.9
Ds+K+η 1.0 [24] 1.73±0.08 Ds+π+η 34.4 [24] 39.4±2.5
Ds+K+η 1.92 [24] 2.64±0.24
Tab.1  
Channel FAT Data Channel FAT Data
D0ηω 2.1±0.1 [33] 1.98±0.18 D0ηKˉ0 6.1±1.0 [33] 13.4?0.9+1.2
D0π0? 1.4±0.1 [33] 1.34±0.12 D0η? 0.18±0.04 [33] 0.184±0.012
D+π+? 5.65(5.65) [25] 5.70±0.14 D+K+? 0.001(0.002) [25] <0.021
D+K+ω 0.09(0.07) [25] 0.057?0.021+0.025 D+KS0K+ 5.5(5.5) [25] 2.89±0.30
Ds+ηρ+ 17(16) [25] 58±15 Ds+π+ω 3.0(2.6) [25] 1.92±0.30
Ds+K+ω 0.6(0.07) [25] 0.87±0.25
Tab.2  
Fig.2  
Fig.3  
Channel FAT Data Channel FAT Data
D0π+π? 0.58 1.3±1.4 D0π0π0 0.05 ?0±6
D0KS0KS0 1.38 ?19±10 D0K+K? ?0.42 ?0.7±1.1
D0η? 0.003 ?20±40 D+π+π0 0 4±13
D+π+η ?0.26 3±8 D+π+η 1.18 ?6±7
D+π+? ?0.0001 0.1±0.9 Ds+K+π0 0.39 20±40
Ds+K+η 0.70 18±19 Ds+K+η ?1.60 60±190
Tab.3  
Fig.4  
Channel FAT Data Channel FAT Data
D0KS,L0π0 0.113±0.001 0.108±0.035 [46] D+KS,L0π+ 0.025±0.008 0.022±0.024 [46]
D0KS,L0η 0.113±0.001 0.080±0.022 [47] D0KS,L0η 0.113±0.001 0.080±0.023 [47]
D0KS,L0ω 0.113±0.001 ?0.024±0.031 [47] D0KS,L0? 0.113±0.001 ?0.001±0.047 [47]
Tab.4  
Fig.5  
Diagram T C PC P(PP) PEW E A PA(PV) PE
FAT a1 χC()ei?C() χPC()ei?PC() a4(μ)+χPei?Prχ a9(μ) χEei?E ? ?iχPAei?PA ?
? 0.48e?1.58i 0.048e1.56i ?0.12e?0.24i ?0.009 0.057e2.71i 0.0059e?0.006i
QCDF α1 α2 α3 α4 α3EW β1 β2 β3 β4
? 0.22e?0.53i 0.011e2.23i ?0.089e0.11i ?0.009e0.04i 0.025 ?0.011 ?0.008 ?0.003
Tab.5  
Mode Aexp AFAT AFlavor diagram Sexp SFAT SFlavor diagram
π+π? 0.32±0.04 0.31±0.04 0.326±0.081 ?0.65±0.04 ?0.60±0.03 ?0.717±0.061
π0π0 0.33±0.22 0.57±0.06 0.611±0.113 0.58±0.06 0.454±0.112
π0η ?0.16±0.16 0.566±0.114 ?0.98±0.04 ?0.098±0.338
π0η 0.39±0.14 0.385±0.114 ?0.90±0.07 0.142±0.234
ηη ?0.85±0.06 ?0.405±0.129 0.33±0.12 ?0.796±0.077
ηη ?0.97±0.04 ?0.394±0.117 ?0.20±0.15 ?0.903±0.049
ηη ?0.87±0.07 ?0.122±0.136 ?0.46±0.14 ?0.964±0.037
π0Ks 0.00±0.13 ?0.14±0.03 ?0.173±0.019 0.58±0.17 0.73±0.01 0.754±0.014
ηKs ?0.30±0.10 ?0.301±0.041 0.68±0.04 0.592±0.035
ηKs 0.06±0.04 0.030±0.004 0.022±0.006 0.63±0.06 0.69±0.00 0.685±0.004
K0K0ˉ ?0.057±0.002 0.017±0.041 0.8±0.5 0.099±0.002 0
π?π0 0.03±0.04 ?0.026±0.003 0.069±0.027
π?η ?0.14±0.07 ?0.14±0.07 ?0.081±0.074
π?η 0.06±0.16 0.37±0.07 0.374±0.087
π?K0ˉ ?0.017±0.016 0.0027±0.0001 0
π0K? 0.037±0.021 0.065±0.024 0.047±0.025
ηK? ?0.37±0.08 ?0.22±0.08 ?0.426±0.043
ηK? 0.04±0.011 ?0.021±0.007 ?0.027±0.008
K?K0 ?0.21±0.14 ?0.057±0.002 0
π+K? ?0.083±0.004 ?0.081±0.005 ?0.080±0.011
Tab.6  
Mode B(10?6) fL (%) f (%) ?// (rad) ? (rad)
B?ρ?ρ0 21.7±5.1 95.5±1.5 2.22±0.64 ?0.09±0.05 ?0.09±0.05
Expt. 24.0±1.9 95±1.6
Bˉ0ρ+ρ? 29.5±6.5 92.6±1.6 3.65±0.91 ?0.27±0.08 ?0.27±0.08
Expt. 27.7±1.9 99.0?1.9+2.1
Bˉ0ρ0ρ0 0.94±0.49 81.7±10.8 9.21±5.50 ?0.04±0.44 ?0.03±0.44
Expt. 0.96±0.15 71?9+8
ACP (%) ACP0 (%) ACP (%) Δ?// (rad) Δ? (rad)
B??K? 0 0 0 0 0
Expt. ?5±5
Bˉ0?Kˉ0 ?8.10±2.94 1.30±0.54 ?16.3±8.2 ?0.41±0.05 ?0.41±0.05
Bˉs0?? 49.7±13.4 10.5±9.6 ?46.9±13.9 1.89±0.19 1.89±0.19
Tab.7  
Mode B(10?6) fL (%) f (%) ?// (rad) ? (rad)
B??K? 9.31±2.81 48.0±16.0 25.9±8.6 2.47±0.27 2.47±0.27
Expt. 10±2 50±5 20±5 2.34±0.18 2.58±0.17
Bˉ0?Kˉ0 8.64±2.61 48.0±16.0 26.0±8.6 2.47±0.27 2.47±0.27
Expt. 10.0±0.5 49.7±1.7 22.4±1.5 2.43±0.11 2.53±0.09
Bˉs0?? 26.4±7.6 39.7±16.0 31.2±8.9 2.53±0.28 2.56±0.27
Expt. 18.7±1.5 37.8±1.3 29.2±0.9 2.56±0.06 2.818±0.192
ACP (%) ACP0 (%) ACP (%) Δ?// (rad) Δ? (rad)
B??K? 1.00±0.27 1.26±0.71 ?1.16±0.30 ?0.02±0.00 ?0.02±0.00
Expt. ?1±8 17±11 22±25 0.07±0.21 0.19±0.21
Bˉ0?Kˉ0 1.00±0.27 1.26±0.71 ?1.16±0.30 ?0.02±0.00 ?0.02±0.00
Expt. 0±4 ?0.7±3.0 ?2±6 0.05±0.05 0.08±0.05
Bˉs0?? 0.83±0.28 1.55±0.85 ?1.02±0.29 ?0.01±0.00 ?0.01±0.00
Tab.8  
1 L. Workman R. , [Particle Data Group] . . et al.. Review of Particle Physics. Prog. Theor. Exp. Phys., 2022, 2022: 083C01
https://doi.org/10.1093/ptep/ptac097
2 Aaij R. , [LHCb] . . et al.. Observation of CP violation in charm decays. Phys. Rev. Lett., 2019, 122(21): 211803
https://doi.org/10.1103/PhysRevLett.122.211803
3 Beneke M.Buchalla G.Neubert M.T. Sachrajda C., QCD factorization for B → ππ decays: Strong phases and CP violation in the heavy quark limit, Phys. Rev. Lett. 83(10), 1914 (1999), arXiv: hep-ph/9905312
4 Beneke M.Neubert M., QCD factorization for BPP and BPV decays, Nucl. Phys. B 675(1–2), 333 (2003), arXiv: hep-ph/0308039
5 Beneke M.Buchalla G.Neubert M.T. Sachrajda C., QCD factorization in B→πK, ππ decays and extraction of Wolfenstein parameters, Nucl. Phys. B 606(1–2), 245 (2001), arXiv: hep-ph/0104110
6 Y. Keum Y.N. Li H.I. Sanda A., Fat penguins and imaginary penguins in perturbative QCD, Phys. Lett. B 504(1–2), 6 (2001), arXiv: hep-ph/0004004
7 Y. Keum Y.N. Li H.I. Sanda A., Penguin enhancement and BKπ decays in perturbative QCD, Phys. Rev. D 63(5), 054008 (2001), arXiv: hep-ph/0004173
8 D. Lü C.Ukai K.Z. Yang M., Branching ratio and CP violation of B → ππ decays in the perturbative QCD approach, Phys. Rev. D 63(7), 074009 (2001), arXiv: hep-ph/0004213
9 D. Lü C.Z. Yang M., B→πρ, πω decays in perturbative QCD approach, Eur. Phys. J. C 23(2), 275 (2002), arXiv: hep-ph/0011238
10 W. Bauer C.Pirjol D.W. Stewart I., Proof of factorization for BDπ, Phys. Rev. Lett. 87(20), 201806 (2001), arXiv: hep-ph/0107002
11 W. Bauer C.Pirjol D.W. Stewart I., Soft-collinear factorization in effective field theory, Phys. Rev. D 65, 054022 (2002), arXiv: hep-ph/0109045
12 Beneke M.P. Chapovsky A.Diehl M.Feldmann T., Soft-collinear effective theory and heavy-to-light currents beyond leading power, Nucl. Phys. B 643(1–3), 431 (2002), arXiv: hep-ph/0206152
13 Y. Cheng H.Oh S., Flavor SU(3) symmetry and QCD factorization in BPP and PV decays, J. High Energy Phys. 09, 024 (2011), arXiv: 1104.4144 [hep-ph]
14 Y. Cheng H.W. Chiang C., SU(3) symmetry breaking and CP violation in DPP decays, Phys. Rev. D 86(1), 014014 (2012)
15 Y. Cheng H.W. Chiang C., Direct CP violation in two-body hadronic charmed meson decays, Phys. Rev. D 85, 034036 (2012), arXiv: 1201.0785 [hep-ph] [Erratum: Phys. Rev. D 85, 079903 (2012)]
16 Y. Cheng H. , W. Chiang C. . Two-body hadronic charmed meson decays. Phys. Rev. D, 2010, 81(7): 074021
https://doi.org/10.1103/PhysRevD.81.074021
17 L. Chau L. , Y. Cheng H. . Analysis of two-body decays of charm mesons using the quark-diagram scheme. Phys. Rev. D, 1987, 36(1): 137
https://doi.org/10.1103/PhysRevD.36.137
18 L. Chau L. , Y. Cheng H. . Quark-diagram analysis of two-body charm decays. Phys. Rev. Lett., 1986, 56(16): 1655
https://doi.org/10.1103/PhysRevLett.56.1655
19 Y. Cheng H. , W. Chiang C. , L. Kuo A. . Updating BPP, VP decays in the framework of flavor symmetry. Phys. Rev. D, 2015, 91(1): 014011
https://doi.org/10.1103/PhysRevD.91.014011
20 L. Chau L.Y. Cheng H.K. Sze W.Yao H.Tseng B., Charmless nonleptonic rare decays of B mesons, Phys. Rev. D 43(7), 2176 (1991) [erratum: Phys. Rev. D 58, 019902 (1998)]
21 Y. Cheng H. , W. Chiang C. , L. Kuo A. . Global analysis of two-body DVP decays within the framework of flavor symmetry. Phys. Rev. D, 2016, 93(11): 114010
https://doi.org/10.1103/PhysRevD.93.114010
22 Huber T. , Tetlalmatzi-Xolocotzi G. . Estimating QCD-factorization amplitudes through SU(3) symmetry in BPP decays. Eur. Phys. J. C, 2022, 82(3): 210
https://doi.org/10.1140/epjc/s10052-022-10068-8
23 Müller S. , Nierste U. , Schacht S. . Topological amplitudes in D decays to two pseudoscalars: A global analysis with linear SU(3)F breaking. Phys. Rev. D, 2015, 92(1): 014004
https://doi.org/10.1103/PhysRevD.92.014004
24 Li H. , D. Lu C. , S. Yu F. . Branching ratios and direct CP asymmetries in DPP decays. Phys. Rev. D, 2012, 86(3): 036012
https://doi.org/10.1103/PhysRevD.86.036012
25 Qin Q. , Li H. , D. Lü C. , S. Yu F. . Branching ratios and direct CP asymmetries in DPV decays. Phys. Rev. D, 2014, 89(5): 054006
https://doi.org/10.1103/PhysRevD.89.054006
26 H. Zhou S. , B. Wei Y. , Qin Q. , Li Y. , S. Yu F. , D. Lu C. . Analysis of two-body charmed B meson decays in factorization-assisted topological-amplitude approach. Phys. Rev. D, 2015, 92(9): 094016
https://doi.org/10.1103/PhysRevD.92.094016
27 H. Zhou S. , A. Zhang Q. , R. Lyu W. , D. Lü C. . Analysis of charmless two-body B decays in factorization-assisted topological-amplitude approach. Eur. Phys. J. C, 2017, 77(2): 125
https://doi.org/10.1140/epjc/s10052-017-4685-0
28 Li H. . Glauber gluons in annihilation amplitudes for heavy meson decays. Chin. J. Phys., 2021, 73: 649
https://doi.org/10.1016/j.cjph.2021.07.034
29 Li H. , Mishima S. . Glauber gluons in spectator amplitudes for B → πM decays. Phys. Rev. D, 2014, 90(7): 074018
https://doi.org/10.1103/PhysRevD.90.074018
30 Beringer J. , [Particle Data Group] . . et al.. Review of particle physics. Phys. Rev. D, 2012, 86(1): 010001
https://doi.org/10.1103/PhysRevD.86.010001
31 U. E. Onyisi P. , [CLEO] . . et al.. Improved measurement of absolute hadronic branching fractions of the Ds+ meson. Phys. Rev. D, 2013, 88(3): 032009
https://doi.org/10.1103/PhysRevD.88.032009
32 Ablikim M. , [BESIII] . . et al.. Measurement of the branching fractions of Ds+→η′X and Ds+→η′ρ+ in e+e−→Ds+Ds−. Phys. Lett. B, 2015, 750: 466
https://doi.org/10.1016/j.physletb.2015.09.059
33 Y. Jiang H.S. Yu F.Qin Q.Li H.D. Lü C., D0−D¯0 mixing parameter y in the factorization-assisted topological-amplitude approach, Chin. Phys. C 42(6), 063101 (2018)
34 Ablikim M. , [BESIII] . . et al.. Measurements of absolute branching fractions for D mesons decays into two pseudoscalar mesons. Phys. Rev. D, 2018, 97(7): 072004
https://doi.org/10.1103/PhysRevD.97.072004
35 Guan Y. , [Belle] . . et al.. Measurement of branching fractions and CP asymmetries for Ds+→K+(η,π0) and Ds+→π+(η,π0) decays at Belle. Phys. Rev. D, 2021, 103(11): 112005
https://doi.org/10.1103/PhysRevD.103.112005
36 S. Amhis Y. , [HFLAV] . . et al.. Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018. Eur. Phys. J. C, 2021, 81(3): 226
https://doi.org/10.1140/epjc/s10052-020-8156-7
37 Saur M. , S. Yu F. . Charm CPV: Observation and prospects. Sci. Bull. (Beijing), 2020, 65(17): 1428
https://doi.org/10.1016/j.scib.2020.04.020
38 Aaij R. , [LHCb] . . et al.. Evidence for CP violation in time-integrated D0 → hh+ decay rates. Phys. Rev. Lett., 2012, 108(11): 111602
https://doi.org/10.1103/PhysRevLett.108.111602
39 Y. Cheng H. , W. Chiang C. . Revisiting CP violation in DPP and VP decays. Phys. Rev. D, 2019, 100(9): 093002
https://doi.org/10.1103/PhysRevD.100.093002
40 Wang D. . From topological amplitude to rescattering dynamics. J. High Energy Phys., 2022, 2022(3): 155
https://doi.org/10.1007/JHEP03(2022)155
41 Chala M.Lenz A.V. Rusov A.Scholtz J., ΔACP within the Standard Model and beyond, J. High Energy Phys. 2019(7), 161 (2019)
42 Dery A. , Nir Y. . Implications of the LHCb discovery of CP violation in charm decays. J. High Energy Phys., 2019, 2019(12): 104
https://doi.org/10.1007/JHEP12(2019)104
43 Calibbi L.Li T.Li Y.Zhu B., Simple model for large CP violation in charm decays, B-physics anomalies, muon g-2, and dark matter, J. High Energy Phys. 10, 070 (2020), arXiv: 1912.02676 [hep-ph]
44 N. Li H.D. Lü C.S. Yu F., Implications on the first observation of charm CPV at LHCb, arXiv: 1903.10638 [hep-ph] (2019)
45 Wang D.S. Yu F.N. Li H., CP asymmetries in charm decays into neutral kaons, Phys. Rev. Lett. 119(18), 181802 (2017)
46 He Q. , [CLEO] . . et al.. Comparison of D→KS0π and D→KL0π decay rates. Phys. Rev. Lett., 2008, 100(9): 091801
https://doi.org/10.1103/PhysRevLett.100.091801
47 Ablikim M. , [BESIII] . . et al.. Measurements of absolute branching fractions of D0→KL0ϕ,KL0η,KL0ω, and KL0η′. Phys. Rev. D, 2022, 105(9): 092010
https://doi.org/10.1103/PhysRevD.105.092010
48 Wang D.S. Yu F.F. Guo P.Y. Jiang H., KS0−KL0 asymmetries in D-meson decays, Phys. Rev. D 95(7), 073007 (2017)
49 Bhattacharya B. , L. Rosner J. . Charmed meson decays to two pseudoscalars. Phys. Rev. D, 2010, 81(1): 014026
https://doi.org/10.1103/PhysRevD.81.014026
50 N. Gao D. . Asymmetries from the interference between Cabibbo-favored and doubly-Cabibbo-suppressed D meson decays. Phys. Rev. D, 2015, 91(1): 014019
https://doi.org/10.1103/PhysRevD.91.014019
51 Y. Cheng H. , W. Chiang C. . Long-distance contributions to D0−D¯0 mixing parameters. Phys. Rev. D, 2010, 81(11): 114020
https://doi.org/10.1103/PhysRevD.81.114020
52 Gronau M. , L. Rosner J. . Revisiting D0−D¯0 mixing using U-spin. Phys. Rev. D, 2012, 86(11): 114029
https://doi.org/10.1103/PhysRevD.86.114029
53 N. Li H.Umeeda H.Xu F.S. Yu F., D meson mixing as an inverse problem, Phys. Lett. B 810, 135802 (2020)
54 Li H. . Dispersive analysis of neutral meson mixing. Phys. Rev. D, 2023, 107(5): 054023
https://doi.org/10.1103/PhysRevD.107.054023
55 Wang C. , H. Zhou S. , Li Y. , D. Lu C. . Global analysis of charmless B decays into two vector mesons in soft-collinear effective theory. Phys. Rev. D, 2017, 96(7): 073004
https://doi.org/10.1103/PhysRevD.96.073004
56 W. Chiang C.Senaha E., Updated analysis of two-body charmed B meson decays, Phys. Rev. D 75(7), 074021 (2007), arXiv: hep-ph/0702007
57 H. Li R.D. Lu C.Zou H., B(Bs)→D(s)P,D(s)V,D(s)∗P, and D(s)∗V decays in the perturbative QCD approach, Phys. Rev. D 78(1), 014018 (2008)
58 Zou H. , H. Li R. , X. Wang X. , D. Lu C. . The CKM suppressed B(Bs)→D¯(s)P,D¯(s)V,D¯(s)∗P,D¯(s)∗V decays in the perturbative QCD approach. J. Phys. G, 2010, 37(1): 015002
https://doi.org/10.1088/0954-3899/37/1/015002
59 Chai J. , Cheng S. , F. Wang W. . Role of Ds∗ and their contributions in BsDs hh′ decays. Phys. Rev. D, 2021, 103(9): 096016
https://doi.org/10.1103/PhysRevD.103.096016
60 Beneke M.Feldmann T., Symmetry-breaking corrections to heavy-to-light B meson form factors at large recoil, Nucl. Phys. B 592(1–2), 3 (2001), arXiv: hep-ph/0008255
61 Huber T. , Kränkl S. . Two-loop master integrals for non-leptonic heavy-to-heavy decays. J. High Energy Phys., 2015, 2015(4): 140
https://doi.org/10.1007/JHEP04(2015)140
62 Bell G. , Beneke M. , Huber T. , Q. Li X. . Two-loop current–current operator contribution to the non-leptonic QCD penguin amplitude. Phys. Lett. B, 2015, 750: 348
https://doi.org/10.1016/j.physletb.2015.09.037
63 Huber T. , Kränkl S. , Q. Li X. . Two-body non-leptonic heavy-to-heavy decays at NNLO in QCD factorization. J. High Energy Phys., 2016, 2016(9): 112
https://doi.org/10.1007/JHEP09(2016)112
64 Huber T. , Virto J. , K. Vos K. . Three-body non-leptonic heavy-to-heavy B decays at NNLO in QCD. J. High Energy Phys., 2020, 2020(11): 103
https://doi.org/10.1007/JHEP11(2020)103
65 Bell G.Beneke M.Huber T.Q. Li X., Two-loop non-leptonic penguin amplitude in QCD factorization, J. High Energy Phys. 2020, 55 (2020), arXiv: 2002.03262 [hep-ph]
66 Li H. , L. Shen Y. , M. Wang Y. . Next-to-leading-order corrections to B → π form factors in kT factorization. Phys. Rev. D, 2012, 85(7): 074004
https://doi.org/10.1103/PhysRevD.85.074004
67 Cheng S.Y. Fan Y.Yu X.D. Lü C.J. Xiao Z., NLO twist-3 contributions to B → π form factors in kT factorization, Phys. Rev. D 89(9), 094004 (2014)
68 Cheng S. , J. Xiao Z. . Time-like pion electromagnetic form factors in kT factorization with the next-to-leading-order twist-3 contribution. Phys. Lett. B, 2015, 749: 1
https://doi.org/10.1016/j.physletb.2015.07.038
69 Cheng S.Qin Q., Z → π+π−, K+K−: A touchstone of the perturbative QCD approach, Phys. Rev. D 99(1), 016019 (2019)
70 Beneke M. , M. Braun V. , Ji Y. , B. Wei Y. . Radiative leptonic decay B → γℓνℓ with subleading power corrections. J. High Energy Phys., 2018, 2018(7): 154
https://doi.org/10.1007/JHEP07(2018)154
71 M. Wang Y.L. Shen Y., Subleading power corrections to the pion−photon transition form factor in QCD, J. High Energy Phys. 2017, 37 (2017), arXiv: 1706.05680 [hep-ph]
72 M. Wang Y. , L. Shen Y. . Subleading-power corrections to the radiative leptonic B → γν decay in QCD. J. High Energy Phys., 2018, 2018(5): 184
https://doi.org/10.1007/JHEP05(2018)184
73 D. Lü C.L. Shen Y.M. Wang Y.B. Wei Y., QCD calculations of B→π, K form factors with higher-twist corrections, J. High Energy Phys. 2019, 24 (2019), arXiv: 1810.00819 [hep-ph]
74 Gao J. , D. Lü C. , L. Shen Y. , M. Wang Y. , B. Wei Y. . Precision calculations of BV form factors from soft-collinear effective theory sum rules on the light-cone. Phys. Rev. D, 2020, 101(7): 074035
https://doi.org/10.1103/PhysRevD.101.074035
75 D. Li H.D. Lü C.Wang C.M. Wang Y.B. Wei Y., QCD calculations of radiative heavy meson decays with subleading power corrections, J. High Energy Phys. 2020, 23 (2020), arXiv: 2002.03825 [hep-ph]
76 L. Shen Y. , T. Zou Z. , B. Wei Y. . Subleading power corrections to the B → γν decay in the perturbative QCD approach. Phys. Rev. D, 2019, 99(1): 016004
https://doi.org/10.1103/PhysRevD.99.016004
77 L. Shen Y. , T. Zou Z. , Li Y. . Power corrections to pion transition form factor in perturbative QCD approach. Phys. Rev. D, 2019, 100(1): 016022
https://doi.org/10.1103/PhysRevD.100.016022
78 L. Shen Y. , Gao J. , D. Lü C. , Miao Y. . Power corrections to the pion transition form factor from higher-twist distribution amplitudes of a photon. Phys. Rev. D, 2019, 99(9): 096013
https://doi.org/10.1103/PhysRevD.99.096013
79 P. Böer, J. N. Toelstede , K. K. Vos. M. Beneke, QED factorization of non-leptonic B decays, J. High Energy Phys. 2020, 81 (2020), arXiv: 2008.10615 [hep-ph]
80 P. Böer, G. Finauri , K. K. Vos. M. Beneke, QED factorization of two-body non-leptonic and semi-leptonic B to charm decays, J. High Energy Phys. 2021(10), 223 (2021)
81 Y. Cheng H. , K. Chua C. . Revisiting charmless hadronic Bu,d decays in QCD factorization. Phys. Rev. D, 2009, 80(11): 114008
https://doi.org/10.1103/PhysRevD.80.114008
82 Beneke M.Rohrer J.Yang D., Branching fractions, polarisation and asymmetries of BVV decays, Nucl. Phys. B 774, 64 (2007), arXiv: hep-ph/0612290
83 Wang C. , A. Zhang Q. , Li Y. , D. Lu C. . Charmless BsVV decays in factorization-assisted topological-amplitude approach. Eur. Phys. J. C, 2017, 77(5): 333
https://doi.org/10.1140/epjc/s10052-017-4889-3
84 G. Körner J. , R. Goldstein G. . Quark and particle helicities in hadronic charmed particle decays. Phys. Lett. B, 1979, 89(1): 105
https://doi.org/10.1016/0370-2693(79)90085-6
85 Aubert B.[BaBar] ., et al.., Rates, polarizations, and asymmetries in charmless vector−vector B decays, arXiv: hep-ex/0303020 (2003)
86 F. Chen K.[Belle] ., et al.., Measurement of branching fractions and polarization in BφK* decays, Phys. Rev. Lett. 91(20), 201801 (2003), arXiv: hep-ex/0307014
87 Qin Q.Wang C.Wang D.H. Zhou S., The factorization-assisted topological-amplitude approach and its applications, arXiv: 2111.14472 [hep-ph] (2021)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed