Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 61304   https://doi.org/10.1007/s11467-023-1322-2
  本期目录
Dynamical-corrected nonadiabatic geometric quantum computation
Cheng-Yun Ding1,2, Li Chen1, Li-Hua Zhang3,1(), Zheng-Yuan Xue2,4()
1. School of Mathematics and Physics, Anqing Normal University, Anqing 246133, China
2. Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), and School of Physics, South China Normal University, Guangzhou 510006, China
3. School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, China
4. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
 全文: PDF(4758 KB)   HTML
Abstract

Recently, nonadiabatic geometric quantum computation has been received great attentions, due to its fast operation and intrinsic error resilience. However, compared with the corresponding dynamical gates, the robustness of implemented nonadiabatic geometric gates based on the conventional single-loop geometric scheme still has the same order of magnitude due to the requirement of strict multi-segment geometric controls, and the inherent geometric fault-tolerance characteristic is not fully explored. Here, we present an effective geometric scheme combined with a general dynamical-corrected technique, with which the super-robust nonadiabatic geometric quantum gates can be constructed over the conventional single-loop geometric and two-loop composite-pulse geometric strategies, in terms of resisting the systematic error, i.e., σ x error. In addition, combined with the decoherence-free subspace (DFS) coding, the resulting geometric gates can also effectively suppress the σ z error caused by the collective dephasing. Notably, our protocol is a general one with simple experimental setups, which can be potentially implemented in different quantum systems, such as Rydberg atoms, trapped ions and superconducting qubits. These results indicate that our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.

Key wordsgeometric phases    dynamical-corrected gates    fault-tolerant quantum computation
收稿日期: 2023-04-08      出版日期: 2023-07-11
Corresponding Author(s): Li-Hua Zhang,Zheng-Yuan Xue   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 61304.
Cheng-Yun Ding, Li Chen, Li-Hua Zhang, Zheng-Yuan Xue. Dynamical-corrected nonadiabatic geometric quantum computation. Front. Phys. , 2023, 18(6): 61304.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1322-2
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/61304
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
  
  
  
1 W. Shor P.. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 1997, 26(5): 1484
https://doi.org/10.1137/S0097539795293172
2 K. Grover L.. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
https://doi.org/10.1103/PhysRevLett.79.325
3 G. Cory D., F. Fahmy A., F. Havel T.. Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 1997, 94(5): 1634
https://doi.org/10.1073/pnas.94.5.1634
4 A. Gershenfeld N., L. Chuang I.. Bulk spin-resonance quantum computation. Science, 1997, 275(5298): 350
https://doi.org/10.1126/science.275.5298.350
5 I. Cirac J., Zoller P.. Quantum computations with cold trapped ions. Phys. Rev. Lett., 1995, 74(20): 4091
https://doi.org/10.1103/PhysRevLett.74.4091
6 Friis N., Marty O., Maier C., Hempel C., Holzäpfel M., Jurcevic P., B. Plenio M., Huber M., Roos C., Blatt R., Lanyon B.. Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X, 2018, 8(2): 021012
https://doi.org/10.1103/PhysRevX.8.021012
7 M. Duan L., Wang B., J. Kimble H.. Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A, 2005, 72(3): 032333
https://doi.org/10.1103/PhysRevA.72.032333
8 Isenhower L., Urban E., L. Zhang X., T. Gill A., Henage T., A. Johnson T., G. Walker T., Saffman M.. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett., 2010, 104(1): 010503
https://doi.org/10.1103/PhysRevLett.104.010503
9 Knill E.Laflamme R.J. Milburn G., A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
10 L. Wang X.H. Luo Y.L. Huang H.C. Chen M.E. Su Z. Liu C.Chen C.Li W.Q. Fang Y.Jiang X. Zhang J.Li L.L. Liu N.Y. Lu C.W. Pan J., 18-qubit entanglement with six photons’ three degrees of freedom, Phys. Rev. Lett. 120(26), 260502 (2018)
11 S. Zhong H., Wang H., H. Deng Y., C. Chen M., C. Peng L., H. Luo Y., Qin J., Wu D., Ding X., Hu Y., Hu P., Y. Yang X., J. Zhang W., Li H., Li Y., Jiang X., Gan L., Yang G., You L., Wang Z., Li L., L. Liu N., Y. Lu C., W. Pan J.. Quantum computational advantage using photons. Science, 2020, 370(6523): 1460
https://doi.org/10.1126/science.abe8770
12 P. Su Q., Zhang Y., Bin L., P. Yang C.. Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys., 2022, 17(5): 53505
https://doi.org/10.1007/s11467-022-1163-4
13 Shnirman A., Schön G., Hermon Z.. Quantum manipulations of small Josephson junctions. Phys. Rev. Lett., 1997, 79(12): 2371
https://doi.org/10.1103/PhysRevLett.79.2371
14 Makhlin Y., Scöhn G., Shnirman A.. Josephson-junction qubits with controlled couplings. Nature, 1999, 398(6725): 305
https://doi.org/10.1038/18613
15 Nakamura Y., A. Pashkin Y., Tsai J.. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 1999, 398(6730): 786
https://doi.org/10.1038/19718
16 Koch J., M. Yu T., Gambetta J., A. Houck A., I. Schuster D., Majer J., Blais A., H. Devoret M., M. Girvin S., J. Schoelkopf R.. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4): 042319
https://doi.org/10.1103/PhysRevA.76.042319
17 H. Devoret M., J. Schoelkopf R.. Superconducting circuits for quantum information: an outlook. Science, 2013, 339(6124): 1169
https://doi.org/10.1126/science.1231930
18 Arute F., Arya K., Babbush R., Bacon D., C. Bardin J.. et al.. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505
https://doi.org/10.1038/s41586-019-1666-5
19 Wu Y., S. Bao W., Cao S., Chen F., C. Chen M.. et al.. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(18): 180501
https://doi.org/10.1103/PhysRevLett.127.180501
20 Ekert A., Ericsson M., Hayden P., Inamori H., A. Jones J., K. Oi D., Vedral V.. Geometric quantum computation. J. Mod. Opt., 2000, 47(14−15): 2501
https://doi.org/10.1080/09500340008232177
21 Zanardi P., Rasetti M.. Holonomic quantum computation. Phys. Lett. A, 1999, 264(2-3): 94
https://doi.org/10.1016/S0375-9601(99)00803-8
22 V. Berry M.. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 1984, 392(1802): 45
https://doi.org/10.1098/rspa.1984.0023
23 Wilczek F., Zee A.. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett., 1984, 52(24): 2111
https://doi.org/10.1103/PhysRevLett.52.2111
24 Aharonov Y., Anandan J.. Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 1987, 58(16): 1593
https://doi.org/10.1103/PhysRevLett.58.1593
25 Anandan J.. Non-adiabatic non-Abelian geometric phase. Phys. Lett. A, 1988, 133(4-5): 171
https://doi.org/10.1016/0375-9601(88)91010-9
26 De Chiara G., M. Palma G.. Berry phase for a spin 1/2 particle in a classical fluctuating field. Phys. Rev. Lett., 2003, 91(9): 090404
https://doi.org/10.1103/PhysRevLett.91.090404
27 Solinas P., Zanardi P., Zanghì N.. Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A, 2004, 70(4): 042316
https://doi.org/10.1103/PhysRevA.70.042316
28 L. Zhu S., D. Wang Z., Zanardi P.. Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett., 2005, 94(10): 100502
https://doi.org/10.1103/PhysRevLett.94.100502
29 Filipp S., Klepp J., Hasegawa Y., Plonka-Spehr C., Schmidt U., Geltenbort P., Rauch H.. Experimental demonstration of the stability of Berry’s phase for a spin-1/2 particle. Phys. Rev. Lett., 2009, 102(3): 030404
https://doi.org/10.1103/PhysRevLett.102.030404
30 T. Thomas J., Lababidi M., Tian M.. Robustness of single qubit geometric gate against systematic error. Phys. Rev. A, 2011, 84(4): 042335
https://doi.org/10.1103/PhysRevA.84.042335
31 Solinas P., Sassetti M., Truini P., Zanghì N.. On the stability of quantum holonomic gates. New J. Phys., 2012, 14(9): 093006
https://doi.org/10.1088/1367-2630/14/9/093006
32 Johansson M., Sjöqvist E., M. Andersson L., Ericsson M., Hessmo B., Singh K., M. Tong D.. Robustness of nonadiabatic holonomic gates. Phys. Rev. A, 2012, 86(6): 062322
https://doi.org/10.1103/PhysRevA.86.062322
33 Berger S., Pechal M., A. Abdumalikov A., Eichler C., Steffen L., Fedorov A., Wallraff A., Filipp S.. Exploring the effect of noise on the Berry phase. Phys. Rev. A, 2013, 87(6): 060303
https://doi.org/10.1103/PhysRevA.87.060303
34 M. Tong D., Singh K., C. Kwek L., H. Oh C.. Quantitative conditions do not guarantee the validity of the adiabatic approximation. Phys. Rev. Lett., 2005, 95(11): 110407
https://doi.org/10.1103/PhysRevLett.95.110407
35 M. Tong D.. Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett., 2010, 104(12): 120401
https://doi.org/10.1103/PhysRevLett.104.120401
36 Leibfried D., DeMarco B., Meyer V., Lucas D., Barrett M., Britton J., M. Itano W., Jelenković B., Langer C., Rosenband T., J. Wineland D.. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature, 2003, 422(6930): 412
https://doi.org/10.1038/nature01492
37 Song C., B. Zheng S., Zhang P., Xu K., Zhang L., Guo Q., Liu W., Xu D., Deng H., Huang K., Zheng D., Zhu X., Wang H.. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nat. Commun., 2017, 8(1): 1061
https://doi.org/10.1038/s41467-017-01156-5
38 Xu Y., Hua Z., Chen T., Pan X., Li X., Han J., Cai W., Ma Y., Wang H., P. Song Y., Y. Xue Z., Sun L.. Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit. Phys. Rev. Lett., 2020, 124(23): 230503
https://doi.org/10.1103/PhysRevLett.124.230503
39 Zhao P., Dong Z., Zhang Z., Guo G., Tong D., Yin Y.. Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit. Sci. China Phys. Mech. Astron., 2021, 64(5): 250362
https://doi.org/10.1007/s11433-020-1641-1
40 Sjöqvist E., M. Tong D., Mauritz Andersson L., Hessmo B., Johansson M., Singh K.. Non-adiabatic holonomic quantum computation. New J. Phys., 2012, 14(10): 103035
https://doi.org/10.1088/1367-2630/14/10/103035
41 F. Xu G., Zhang J., M. Tong D., Sjöqvist E., C. Kwek L.. Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett., 2012, 109(17): 170501
https://doi.org/10.1103/PhysRevLett.109.170501
42 Z. Zhao P., D. Cui X., F. Xu G., Sjöqvist E., M. Tong D.. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation. Phys. Rev. A, 2017, 96(5): 052316
https://doi.org/10.1103/PhysRevA.96.052316
43 Chen T., Y. Xue Z.. Nonadiabatic geometric quantum computation with parametrically tunable coupling. Phys. Rev. Appl., 2018, 10(5): 054051
https://doi.org/10.1103/PhysRevApplied.10.054051
44 Zhang C., Chen T., Li S., Wang X., Y. Xue Z.. High fidelity geometric gate for silicon-based spin qubits. Phys. Rev. A, 2020, 101(5): 052302
https://doi.org/10.1103/PhysRevA.101.052302
45 Zhou J., Li S., Z. Pan G., Zhang G., Chen T., Y. Xue Z.. Nonadiabatic geometric quantum gates that are insensitive to qubit-frequency drifts. Phys. Rev. A, 2021, 103(3): 032609
https://doi.org/10.1103/PhysRevA.103.032609
46 Chen T., Y. Xue Z.. High-fidelity and robust geometric quantum gates that outperform dynamical ones. Phys. Rev. Appl., 2020, 14(6): 064009
https://doi.org/10.1103/PhysRevApplied.14.064009
47 Z. Li K., Z. Zhao P., M. Tong D.. Approach to realizing nonadiabatic geometric gates with prescribed evolution paths. Phys. Rev. Res., 2020, 2(2): 023295
https://doi.org/10.1103/PhysRevResearch.2.023295
48 N. Ji L., Y. Ding C., Chen T., Y. Xue Z.. Noncyclic geometric quantum gates with smooth paths via invariant-based shortcuts. Adv. Quantum Technol., 2021, 4(6): 2100019
https://doi.org/10.1002/qute.202100019
49 Li S., Xue J., Chen T., Y. Xue Z.. High-fidelity geometric quantum gates with short paths on superconducting circuits. Adv. Quantum Technol., 2021, 4(5): 2000140
https://doi.org/10.1002/qute.202000140
50 Y. Ding C., Liang Y., Z. Yu K., Y. Xue Z.. Nonadiabatic geometric quantum computation with shortened path on superconducting circuits. Appl. Phys. Lett., 2021, 119(18): 184001
https://doi.org/10.1063/5.0071569
51 Y. Ding C., N. Ji L., Chen T., Y. Xue Z.. Path-optimized nonadiabatic geometric quantum computation on superconducting qubits. Quantum Sci. Technol., 2022, 7(1): 015012
https://doi.org/10.1088/2058-9565/ac3621
52 Chen T., Shen P., Y. Xue Z.. Robust and fast holonomic quantum gates with encoding on superconducting circuits. Phys. Rev. Appl., 2020, 14(3): 034038
https://doi.org/10.1103/PhysRevApplied.14.034038
53 Chen T., Y. Xue Z., Wang Z.. Error-tolerant geometric quantum control for logical qubits with minimal resources. Phys. Rev. Appl., 2022, 18(1): 014062
https://doi.org/10.1103/PhysRevApplied.18.014062
54 Liang Y., Shen P., Chen T., Y. Xue Z.. Composite short-path nonadiabatic holonomic quantum gates. Phys. Rev. Appl., 2022, 17(3): 034015
https://doi.org/10.1103/PhysRevApplied.17.034015
55 Ota Y., Kondo Y.. Composite pulses in NMR as nonadiabatic geometric quantum gates. Phys. Rev. A, 2009, 80(2): 024302
https://doi.org/10.1103/PhysRevA.80.024302
56 T. Torosov B., V. Vitanov N.. High-fidelity error-resilient composite phase gates. Phys. Rev. A, 2014, 90(1): 012341
https://doi.org/10.1103/PhysRevA.90.012341
57 S. Ivanov S., V. Vitanov N.. Composite two-qubit gates. Phys. Rev. A, 2015, 92(2): 022333
https://doi.org/10.1103/PhysRevA.92.022333
58 F. Xu G., Z. Zhao P., H. Xing T., Sjöqvist E., M. Tong D.. Composite nonadiabatic holonomic quantum computation. Phys. Rev. A, 2017, 95(3): 032311
https://doi.org/10.1103/PhysRevA.95.032311
59 B. Liu B., Q. Guo F., L. Yan L., Zhang S., Feng M., L. Su S.. Realization of Deutsch–Jozsa algorithm in rydberg atoms by composite nonadiabatic holonomic quantum computation with strong robustness against systematic errors. Adv. Quantum Technol., 2021, 4(11): 2100093
https://doi.org/10.1002/qute.202100093
60 Viola L., Knill E., Lloyd S.. Dynamical decoupling of open quantum systems. Phys. Rev. Lett., 1999, 82(12): 2417
https://doi.org/10.1103/PhysRevLett.82.2417
61 Xu G., Long G.. Protecting geometric gates by dynamical decoupling. Phys. Rev. A, 2014, 90(2): 022323
https://doi.org/10.1103/PhysRevA.90.022323
62 Wu X., Z. Zhao P.. Universal nonadiabatic geometric gates protected by dynamical decoupling. Phys. Rev. A, 2020, 102(3): 032627
https://doi.org/10.1103/PhysRevA.102.032627
63 Zhu Z., Chen T., Yang X., Bian J., Y. Xue Z., Peng X.. Single-loop and composite-loop realization of nonadiabatic holonomic quantum gates in a decoherence-free subspace. Phys. Rev. Appl., 2019, 12(2): 024024
https://doi.org/10.1103/PhysRevApplied.12.024024
64 Khodjasteh K., Viola L.. Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett., 2009, 102(8): 080501
https://doi.org/10.1103/PhysRevLett.102.080501
65 Rong X., Geng J., Shi F., Liu Y., Xu K., Ma W., Kong F., Jiang Z., Wu Y., Du J.. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat. Commun., 2015, 6(1): 8748
https://doi.org/10.1038/ncomms9748
66 Li S., Y. Xue Z.. Dynamically corrected nonadiabatic holonomic quantum gates. Phys. Rev. Appl., 2021, 16(4): 044005
https://doi.org/10.1103/PhysRevApplied.16.044005
67 A. Lidar D., L. Chuang I., B. Whaley K.. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett., 1998, 81(12): 2594
https://doi.org/10.1103/PhysRevLett.81.2594
68 G. Kwiat P., J. Berglund A., B. Altepeter J., G. White A.. Experimental verification of decoherence-free subspaces. Science, 2000, 290(5491): 498
https://doi.org/10.1126/science.290.5491.498
69 Lindblad G.. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 1976, 48(2): 119
https://doi.org/10.1007/BF01608499
70 J. Liang M., Y. Xue Z.. Robust nonadiabatic geometric quantum computation by dynamical correction. Phys. Rev. A, 2022, 106(1): 012603
https://doi.org/10.1103/PhysRevA.106.012603
71 R. Yun M., Q. Guo F., L. Yan L., Liang E., Zhang Y., L. Su S., X. Shan C., Jia Y.. Parallel-path implementation of nonadiabatic geometric quantum gates in a decoherence-free subspace with nitrogen-vacancy centers. Phys. Rev. A, 2022, 105(1): 012611
https://doi.org/10.1103/PhysRevA.105.012611
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed