M. Achasov3, X. C. Ai82, L. P. An54, R. Aliberti38, Q. An63,72, X. Z. Bai63,72, Y. Bai62, O. Bakina39, A. Barnyakov3,50, V. Blinov3,50,51, V. Bobrovnikov3,51, D. Bodrov23,60, A. Bogomyagkov3, A. Bondar3, I. Boyko39, Z. H. Bu73, F. M. Cai20, H. Cai77, J. J. Cao20, Q. H. Cao54, X. Cao33, Z. Cao63,72, Q. Chang20, K. T. Chao54, D. Y. Chen62, H. Chen81, H. X. Chen62, J. F. Chen58, K. Chen6, L. L. Chen20, P. Chen78, S. L. Chen6, S. M. Chen66, S. Chen69, S. P. Chen69, W. Chen64, X. Chen74, X. F. Chen58, X. R. Chen33, Y. Chen32, Y. Q. Chen36, H. Y. Cheng34, J. Cheng48, S. Cheng28, T. G. Cheng2, J. P. Dai80, L. Y. Dai28, X. C. Dai54, D. Dedovich39, A. Denig19,38, I. Denisenko39, J. M. Dias4, D. Z. Ding58, L. Y. Dong32, W. H. Dong63,72, V. Druzhinin3, D. S. Du63,72, Y. J. Du77, Z. G. Du41, L. M. Duan33, D. Epifanov3, Y. L. Fan77, S. S. Fang32, Z. J. Fang63,72, G. Fedotovich3, C. Q. Feng63,72, X. Feng54, Y. T. Feng63,72, J. L. Fu69, J. Gao59, Y. N. Gao54, P. S. Ge73, C. Q. Geng15, L. S. Geng2, A. Gilman71, L. Gong43, T. Gong21, B. Gou33, W. Gradl38, J. L. Gu63,72, A. Guevara4, L. C. Gui26, A. Q. Guo33, F. K. Guo4,69,2, J. C. Guo63,72, J. Guo59, Y. P. Guo11, Z. H. Guo16, A. Guskov39, K. L. Han69, L. Han63,72, M. Han63,72, X. Q. Hao20, J. B. He69, S. Q. He63,72, X. G. He59, Y. L. He20, Z. B. He33, Z. X. Heng20, B. L. Hou63,72, T. J. Hou74, Y. R. Hou69, C. Y. Hu74, H. M. Hu32, K. Hu57, R. J. Hu33, W. H. Hu54, X. H. Hu9, Y. C. Hu49, J. Hua61, G. S. Huang63,72, J. S. Huang47, M. Huang69, Q. Y. Huang69, W. Q. Huang69, X. T. Huang57, X. J. Huang33, Y. B. Huang14, Y. S. Huang64, N. Hüsken38, V. Ivanov3, Q. P. Ji20, J. J. Jia77, S. Jia62, Z. K. Jia63,72, H. B. Jiang77, J. Jiang57, S. Z. Jiang14, J. B. Jiao57, Z. Jiao24, H. J. Jing69, X. L. Kang8, X. S. Kang43, B. C. Ke82, M. Kenzie5, A. Khoukaz76, I. Koop3,50,51, E. Kravchenko3,51, A. Kuzmin3, Y. Lei60, E. Levichev3, C. H. Li42, C. Li55, D. Y. Li33, F. Li63,72, G. Li55, G. Li15, H. B. Li32,69, H. Li63,72, H. N. Li61, H. J. Li20, H. L. Li27, J. M. Li63,72, J. Li32, L. Li56, L. Li59, L. Y. Li63,72, N. Li64, P. R. Li41, R. H. Li30, S. Li59, T. Li57, W. J. Li20, X. Li33, X. H. Li74, X. Q. Li6, X. H. Li63,72, Y. Li79, Y. Y. Li72, Z. J. Li33, H. Liang63,72, J. H. Liang61, Y. T. Liang33, G. R. Liao13, L. Z. Liao25, Y. Liao61, C. X. Lin69, D. X. Lin33, X. S. Lin63,72, B. J. Liu32, C. W. Liu15, D. Liu63,72, F. Liu6, G. M. Liu61, H. B. Liu14, J. Liu54, J. J. Liu74, J. B. Liu63,72, K. Liu41, K. Y. Liu43, K. Liu59, L. Liu63,72, Q. Liu69, S. B. Liu63,72, T. Liu11, X. Liu41, Y. W. Liu63,72, Y. Liu82, Y. L. Liu63,72, Z. Q. Liu57, Z. Y. Liu41, Z. W. Liu45, I. Logashenko3, Y. Long63,72, C. G. Lu33, J. X. Lu2, N. Lu63,72, Q. F. Lü26, Y. Lu7, Y. Lu69, Z. Lu62, P. Lukin3, F. J. Luo74, T. Luo11, X. F. Luo6, Y. H. Luo54, H. J. Lyu24, X. R. Lyu69, J. P. Ma35, P. Ma33, Y. Ma15, Y. M. Ma33, F. Maas19,38, S. Malde71, D. Matvienko3, Z. X. Meng70, R. Mitchell29, A. Nefediev40, Y. Nefedov39, S. L. Olsen22,53, Q. Ouyang32,63, P. Pakhlov23, G. Pakhlova23,52, X. Pan60, Y. Pan62, E. Passemar29,65,67, Y. P. Pei63,72, H. P. Peng63,72, L. Peng27, X. Y. Peng8, X. J. Peng41, K. Peters12, S. Pivovarov3, E. Pyata3, B. B. Qi63,72, Y. Q. Qi63,72, W. B. Qian69, Y. Qian33, C. F. Qiao69, J. J. Qin74, J. J. Qin63,72, L. Q. Qin13, X. S. Qin57, T. L. Qiu33, J. Rademacker68, C. F. Redmer38, H. Y. Sang63,72, M. Saur54, W. Shan26, X. Y. Shan63,72, L. L. Shang20, M. Shao63,72, L. Shekhtman3, C. P. Shen11, J. M. Shen28, Z. T. Shen63,72, H. C. Shi63,72, X. D. Shi63,72, B. Shwartz3, A. Sokolov3, J. J. Song20, W. M. Song36, Y. Song63,72, Y. X. Song10, A. Sukharev3,51, J. F. Sun20, L. Sun77, X. M. Sun6, Y. J. Sun63,72, Z. P. Sun33, J. Tang64, S. S. Tang63,72, Z. B. Tang63,72, C. H. Tian63,72, J. S. Tian78, Y. Tian33, Y. Tikhonov3, K. Todyshev3,51, T. Uglov52, V. Vorobyev3, B. D. Wan15, B. L. Wang69, B. Wang63,72, D. Y. Wang54, G. Y. Wang21, G. L. Wang17, H. L. Wang61, J. Wang49, J. H. Wang63,72, J. C. Wang63,72, M. L. Wang32, R. Wang63,72, R. Wang33, S. B. Wang59, W. Wang59, W. P. Wang63,72, X. C. Wang20, X. D. Wang74, X. L. Wang63,72, X. L. Wang20, X. P. Wang2, X. F. Wang41, Y. D. Wang48, Y. P. Wang6, Y. Q. Wang17, Y. L. Wang20, Y. G. Wang63,72, Z. Y. Wang63,72, Z. Y. Wang73, Z. L. Wang69, Z. G. Wang48, D. H. Wei13, X. L. Wei33, X. M. Wei49, Q. G. Wen1, X. J. Wen33, G. Wilkinson71, B. Wu63,72, J. J. Wu69, L. Wu44, P. Wu62, T. W. Wu15, Y. S. Wu63,72, L. Xia63,72, T. Xiang54, C. W. Xiao7,13, D. Xiao41, M. Xiao74, K. P. Xie2, Y. H. Xie6, Y. Xing9, Z. Z. Xing32, X. N. Xiong7, F. R. Xu37, J. Xu82, L. L. Xu63,72, Q. N. Xu30, X. C. Xu63,72, X. P. Xu60, Y. C. Xu79, Y. P. Xu48, Y. Xu43, Z. Z. Xu63,72, D. W. Xuan63,72, F. F. Xue49, L. Yan11, M. J. Yan4, W. B. Yan63,72, W. C. Yan82, X. S. Yan20, B. F. Yang20, C. Yang57, H. J. Yang59, H. R. Yang33, H. T. Yang63,72, J. F. Yang63,72, S. L. Yang69, Y. D. Yang20, Y. H. Yang69, Y. S. Yang33, Y. L. Yang20, Z. W. Yang54, Z. Y. Yang63,72, D. L. Yao28, H. Yin6, X. H. Yin33, N. Yokozaki81, S. Y. You41, Z. Y. You64, C. X. Yu46, F. S. Yu41, G. L. Yu48, H. L. Yu63,72, J. S. Yu28, J. Q. Yu28, L. Yuan2, X. B. Yuan6, Z. Y. Yuan54, Y. F. Yue20, M. Zeng66, S. Zeng74, A. L. Zhang63,72, B. W. Zhang6, G. Y. Zhang20, G. Q. Zhang31, H. J. Zhang63,72, H. B. Zhang69, J. Y. Zhang69, J. L. Zhang21, J. Zhang64, L. Zhang57, L. M. Zhang66, Q. A. Zhang2, R. Zhang75, S. L. Zhang28, T. Zhang59, X. Zhang4, Y. Zhang63,72, Y. J. Zhang2, Y. X. Zhang54, Y. T. Zhang82, Y. F. Zhang63,72, Y. C. Zhang62, Y. Zhang18, Y. Zhang74, Y. M. Zhang64, Y. L. Zhang63,72, Z. H. Zhang74, Z. Y. Zhang77, Z. Y. Zhang63,72, H. Y. Zhao33, J. Zhao21, L. Zhao63,72, M. G. Zhao46, Q. Zhao32, R. G. Zhao49, R. P. Zhao69, Y. X. Zhao33, Z. G. Zhao63,72, Z. X. Zhao30, A. Zhemchugov39, B. Zheng74, L. Zheng8, Q. B. Zheng73, R. Zheng49, Y. H. Zheng69, X. H. Zhong26, H. J. Zhou20, H. Q. Zhou62, H. Zhou63,72, S. H. Zhou30, X. Zhou77, X. K. Zhou6, X. P. Zhou2, X. R. Zhou63,72, Y. L. Zhou15, Y. Zhou63,72, Y. X. Zhou69, Z. Y. Zhou62, J. Y. Zhu21, K. Zhu32, R. D. Zhu60, R. L. Zhu44, S. H. Zhu54, Y. C. Zhu63,72, Z. A. Zhu63,72, V. Zhukova40, V. Zhulanov3, B. S. Zou4,69,33, Y. B. Zuo42
1. Anhui University, Hefei 230039, China 2. Beihang University, Beijing 100191, China 3. Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia 4. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 5. Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom 6. Central China Normal University, Wuhan 430079, China 7. Central South University, Changsha 410083, China 8. China University of Geosciences, Wuhan 430074, China 9. China University of Mining and Technology, Xuzhou 221116, China 10. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 11. Fudan University, Shanghai 200433, China 12. Goethe University Frankfurt, D-60325 Frankfurt am Main, Germany 13. Guangxi Normal University, Guilin 541004, China 14. Guangxi Uninversity, Nanning 530004, China 15. Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China 16. Hebei Normal University, Shijiazhuang 050024, China 17. Hebei University, Baoding 071002, China 18. Hefei University of Technology, Hefei 230601, China 19. Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany 20. Henan Normal University, Xinxiang 453007, China 21. Henan University, Kaifeng 475004, China 22. High Energy Physics Center, Chung-Ang University, Seoul 06974, Korea 23. Higher School of Economy 11 Pokrovsky Bulvar, Moscow 109028, Russia 24. Huangshan University, Huangshan 245000, China 25. Hubei University of Automotive Technology, Shiyan 442002, China 26. Hunan Normal University, Changsha 410081, China 27. Hunan University of Science and Technology, Xiangtan 411201, China 28. Hunan University, Changsha 410082, China 29. Indiana University, Bloomington, Indiana 47405, USA 30. Inner Mongolia University, Hohhot 010021, China 31. Institute of Advanced Science Facilities, Shenzhen 518107, China 32. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 33. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 34. Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, China 35. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 36. Jilin University, Changchun 130012, China 37. Jinan University, Guangzhou 510632, China 38. Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany 39. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia 40. Josef Stefan Institute, 1000 Ljubljana, Slovenia 41. Lanzhou University, Lanzhou 730000, China 42. Liaoning Normal University, Dalian 116029, China 43. Liaoning University, Shenyang 110036, China 44. Nanjing Normal University, Nanjing 210023, China 45. Nanjing University, Nanjing 210023, China 46. Nankai University, Tianjin 300071, China 47. Nanyang Normal University, Nanyang 473061, China 48. North China Electric Power University, Beijing 102206, China 49. Northwestern Polytechnical University, Xi'an 710072, China 50. Novosibirsk State Technical University, Novosibirsk 630073, Russia 51. Novosibirsk State University, Novosibirsk 630090, Russia 52. P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia 53. Particle and Nuclear Physics Institute, Institute for Basic Science, Daejeon 34126, Korea 54. Peking University, Beijing 100871, China 55. Qufu Normal University, Qufu 273165, China 56. Renmin University of China, Beijing 100872, China 57. Shandong University, Jinan 250100, China 58. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China 59. Shanghai Jiao Tong University, Shanghai 200240, China 60. Soochow University, Suzhou 215006, China 61. South China Normal University, Guangzhou 510006, China 62. Southeast University, Nanjing 211189, China 63. State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, China 64. Sun Yat-Sen University, Guangzhou 510275, China 65. Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA 66. Tsinghua University, Beijing 100084, China 67. Universitat de València, E-46071 València, Spain 68. University of Bristol, Bristol BS8 1TL, United Kingdom 69. University of Chinese Academy of Sciences, Beijing 100049, China 70. University of Jinan, Jinan 250022, China 71. University of Oxford, Keble Road, Oxford OX13RH, United Kingdom 72. University of Science and Technology of China, Hefei 230026, China 73. University of Shanghai for Science and Technology, Shanghai 200093, China 74. University of South China, Hengyang 421001, China 75. University of Wisconsin-Madison, Wisconsin-Madison 53706, USA 76. University Münster, Wilhelm-Klemm-Str.9, 48149 Münster, Germany 77. Wuhan University, Wuhan 430072, China 78. Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China 79. Yantai University, Yantai 264005, China 80. Yunnan University, Kunming 650500, China 81. Zhejiang University, Hangzhou 310027, China 82. Zhengzhou University, Zhengzhou 450001, China
The super τ-charm facility (STCF) is an electron−positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.
. [J]. Frontiers of Physics, 2024, 19(1): 14701.
M. Achasov, X. C. Ai, L. P. An, R. Aliberti, Q. An, X. Z. Bai, Y. Bai, O. Bakina, A. Barnyakov, V. Blinov, V. Bobrovnikov, D. Bodrov, A. Bogomyagkov, A. Bondar, I. Boyko, Z. H. Bu, F. M. Cai, H. Cai, J. J. Cao, Q. H. Cao, X. Cao, Z. Cao, Q. Chang, K. T. Chao, D. Y. Chen, H. Chen, H. X. Chen, J. F. Chen, K. Chen, L. L. Chen, P. Chen, S. L. Chen, S. M. Chen, S. Chen, S. P. Chen, W. Chen, X. Chen, X. F. Chen, X. R. Chen, Y. Chen, Y. Q. Chen, H. Y. Cheng, J. Cheng, S. Cheng, T. G. Cheng, J. P. Dai, L. Y. Dai, X. C. Dai, D. Dedovich, A. Denig, I. Denisenko, J. M. Dias, D. Z. Ding, L. Y. Dong, W. H. Dong, V. Druzhinin, D. S. Du, Y. J. Du, Z. G. Du, L. M. Duan, D. Epifanov, Y. L. Fan, S. S. Fang, Z. J. Fang, G. Fedotovich, C. Q. Feng, X. Feng, Y. T. Feng, J. L. Fu, J. Gao, Y. N. Gao, P. S. Ge, C. Q. Geng, L. S. Geng, A. Gilman, L. Gong, T. Gong, B. Gou, W. Gradl, J. L. Gu, A. Guevara, L. C. Gui, A. Q. Guo, F. K. Guo, J. C. Guo, J. Guo, Y. P. Guo, Z. H. Guo, A. Guskov, K. L. Han, L. Han, M. Han, X. Q. Hao, J. B. He, S. Q. He, X. G. He, Y. L. He, Z. B. He, Z. X. Heng, B. L. Hou, T. J. Hou, Y. R. Hou, C. Y. Hu, H. M. Hu, K. Hu, R. J. Hu, W. H. Hu, X. H. Hu, Y. C. Hu, J. Hua, G. S. Huang, J. S. Huang, M. Huang, Q. Y. Huang, W. Q. Huang, X. T. Huang, X. J. Huang, Y. B. Huang, Y. S. Huang, N. Hüsken, V. Ivanov, Q. P. Ji, J. J. Jia, S. Jia, Z. K. Jia, H. B. Jiang, J. Jiang, S. Z. Jiang, J. B. Jiao, Z. Jiao, H. J. Jing, X. L. Kang, X. S. Kang, B. C. Ke, M. Kenzie, A. Khoukaz, I. Koop, E. Kravchenko, A. Kuzmin, Y. Lei, E. Levichev, C. H. Li, C. Li, D. Y. Li, F. Li, G. Li, G. Li, H. B. Li, H. Li, H. N. Li, H. J. Li, H. L. Li, J. M. Li, J. Li, L. Li, L. Li, L. Y. Li, N. Li, P. R. Li, R. H. Li, S. Li, T. Li, W. J. Li, X. Li, X. H. Li, X. Q. Li, X. H. Li, Y. Li, Y. Y. Li, Z. J. Li, H. Liang, J. H. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, Y. Liao, C. X. Lin, D. X. Lin, X. S. Lin, B. J. Liu, C. W. Liu, D. Liu, F. Liu, G. M. Liu, H. B. Liu, J. Liu, J. J. Liu, J. B. Liu, K. Liu, K. Y. Liu, K. Liu, L. Liu, Q. Liu, S. B. Liu, T. Liu, X. Liu, Y. W. Liu, Y. Liu, Y. L. Liu, Z. Q. Liu, Z. Y. Liu, Z. W. Liu, I. Logashenko, Y. Long, C. G. Lu, J. X. Lu, N. Lu, Q. F. Lü, Y. Lu, Y. Lu, Z. Lu, P. Lukin, F. J. Luo, T. Luo, X. F. Luo, Y. H. Luo, H. J. Lyu, X. R. Lyu, J. P. Ma, P. Ma, Y. Ma, Y. M. Ma, F. Maas, S. Malde, D. Matvienko, Z. X. Meng, R. Mitchell, A. Nefediev, Y. Nefedov, S. L. Olsen, Q. Ouyang, P. Pakhlov, G. Pakhlova, X. Pan, Y. Pan, E. Passemar, Y. P. Pei, H. P. Peng, L. Peng, X. Y. Peng, X. J. Peng, K. Peters, S. Pivovarov, E. Pyata, B. B. Qi, Y. Q. Qi, W. B. Qian, Y. Qian, C. F. Qiao, J. J. Qin, J. J. Qin, L. Q. Qin, X. S. Qin, T. L. Qiu, J. Rademacker, C. F. Redmer, H. Y. Sang, M. Saur, W. Shan, X. Y. Shan, L. L. Shang, M. Shao, L. Shekhtman, C. P. Shen, J. M. Shen, Z. T. Shen, H. C. Shi, X. D. Shi, B. Shwartz, A. Sokolov, J. J. Song, W. M. Song, Y. Song, Y. X. Song, A. Sukharev, J. F. Sun, L. Sun, X. M. Sun, Y. J. Sun, Z. P. Sun, J. Tang, S. S. Tang, Z. B. Tang, C. H. Tian, J. S. Tian, Y. Tian, Y. Tikhonov, K. Todyshev, T. Uglov, V. Vorobyev, B. D. Wan, B. L. Wang, B. Wang, D. Y. Wang, G. Y. Wang, G. L. Wang, H. L. Wang, J. Wang, J. H. Wang, J. C. Wang, M. L. Wang, R. Wang, R. Wang, S. B. Wang, W. Wang, W. P. Wang, X. C. Wang, X. D. Wang, X. L. Wang, X. L. Wang, X. P. Wang, X. F. Wang, Y. D. Wang, Y. P. Wang, Y. Q. Wang, Y. L. Wang, Y. G. Wang, Z. Y. Wang, Z. Y. Wang, Z. L. Wang, Z. G. Wang, D. H. Wei, X. L. Wei, X. M. Wei, Q. G. Wen, X. J. Wen, G. Wilkinson, B. Wu, J. J. Wu, L. Wu, P. Wu, T. W. Wu, Y. S. Wu, L. Xia, T. Xiang, C. W. Xiao, D. Xiao, M. Xiao, K. P. Xie, Y. H. Xie, Y. Xing, Z. Z. Xing, X. N. Xiong, F. R. Xu, J. Xu, L. L. Xu, Q. N. Xu, X. C. Xu, X. P. Xu, Y. C. Xu, Y. P. Xu, Y. Xu, Z. Z. Xu, D. W. Xuan, F. F. Xue, L. Yan, M. J. Yan, W. B. Yan, W. C. Yan, X. S. Yan, B. F. Yang, C. Yang, H. J. Yang, H. R. Yang, H. T. Yang, J. F. Yang, S. L. Yang, Y. D. Yang, Y. H. Yang, Y. S. Yang, Y. L. Yang, Z. W. Yang, Z. Y. Yang, D. L. Yao, H. Yin, X. H. Yin, N. Yokozaki, S. Y. You, Z. Y. You, C. X. Yu, F. S. Yu, G. L. Yu, H. L. Yu, J. S. Yu, J. Q. Yu, L. Yuan, X. B. Yuan, Z. Y. Yuan, Y. F. Yue, M. Zeng, S. Zeng, A. L. Zhang, B. W. Zhang, G. Y. Zhang, G. Q. Zhang, H. J. Zhang, H. B. Zhang, J. Y. Zhang, J. L. Zhang, J. Zhang, L. Zhang, L. M. Zhang, Q. A. Zhang, R. Zhang, S. L. Zhang, T. Zhang, X. Zhang, Y. Zhang, Y. J. Zhang, Y. X. Zhang, Y. T. Zhang, Y. F. Zhang, Y. C. Zhang, Y. Zhang, Y. Zhang, Y. M. Zhang, Y. L. Zhang, Z. H. Zhang, Z. Y. Zhang, Z. Y. Zhang, H. Y. Zhao, J. Zhao, L. Zhao, M. G. Zhao, Q. Zhao, R. G. Zhao, R. P. Zhao, Y. X. Zhao, Z. G. Zhao, Z. X. Zhao, A. Zhemchugov, B. Zheng, L. Zheng, Q. B. Zheng, R. Zheng, Y. H. Zheng, X. H. Zhong, H. J. Zhou, H. Q. Zhou, H. Zhou, S. H. Zhou, X. Zhou, X. K. Zhou, X. P. Zhou, X. R. Zhou, Y. L. Zhou, Y. Zhou, Y. X. Zhou, Z. Y. Zhou, J. Y. Zhu, K. Zhu, R. D. Zhu, R. L. Zhu, S. H. Zhu, Y. C. Zhu, Z. A. Zhu, V. Zhukova, V. Zhulanov, B. S. Zou, Y. B. Zuo. STCF conceptual design report (Volume 1): Physics & detector. Front. Phys. , 2024, 19(1): 14701.
Highest NIEL damage per pixel (1 MeV neutron·cm−2·y−1)
Highest count rate per channel (Hz/channel)
Silicon-inner-1
3490
Silicon-inner-2
320
Silicon-inner-3
150
RWELL-inner-1
118
RWELL-inner-2
61.8
RWELL-inner-3
38.6
MDC
60.5
PID-Barrel (RICH)
4.25
PID-Endcap (DTOF)
44.3
EMC-Barrel
21.1
EMC-Endcap
45.1
MUD-Barrel-RPC
0.093
MUD-Barrel-Scintillator
0.047
MUD-Endcap-RPC
0.37
MUD-Endcap-Scintillator
0.24
Tab.18
Electronic component
TID value (Gy/y)
NIEL damage (1 MeV neutron·cm−2·y−1)
Highest TID value per pixel (Gy/y)
Highest NIEL damage per pixel (1 MeV neutron·cm−2·y−1)
Inner-1-electronic
1420
1460
Inner-2-electronic
238
250
Inner-3-electronic
95.9
97.2
MDC-electronic
5.2
7.4
PID-Barrel-electronic
2.45
2.95
PID-Endcap-electronic
1.02
6.81
EMC-Barrel-electronic
0.046
1.03
EMC-Endcap-electronic
0.67
60.5
MUD-Barrel-electronic
0.020
0.065
MUD-Endcap-electronic
0.28
3.56
Tab.19
Fig.21
Fig.22
Fig.23
Fig.24
Structure
Material
Thickness (cm)
Material budget (X)
Inner cylinder
Aluminum ( = 8.897 cm)
0.001
0.011%
Polyimide ( = 28.57 cm)
0.01
0.035%
Aramid honeycomb/Rohacell ( 267 cm)
0.2
0.075%
Gas volume
Argon-based gas mixture ( = 11760 cm)
0.5
0.00425%
Outer cylinder (RWELL foil)
Alumium ( = 8.897 cm)
0.0015
0.017%
Polyimide ( = 28.57 cm)
0.03
0.106%
DLC ( = 12.13 cm)
0.0001
0.00082%
Total
0.249%
Tab.20
Fig.25
Fig.26
Fig.27
Fig.28
Fig.29
Fig.30
Fig.31
Fig.32
Inner PI film
Inner adhesive
Structure support material
Outer adhesive
Outer PI film
Total
Honeycomb-based
0.028%
0.009%
0.033%
0.009%
0.030%
0.105%
Rohacell-based
0.028%
0.009%
0.010%
0.008%
0.029%
0.084%
Tab.21
Fig.33
Fig.34
Fig.35
Fig.36
Superlayer
Radius (mm)
Num. of layers
Stereo angle (mrad)
Num. of cells
Cell size (mm)
A
200.0
6
0
128
9.8 to 12.5
U
271.6
6
39.3 to 47.6
160
10.7 to 12.9
V
342.2
6
−41.2 to −48.4
192
11.2 to 13.2
A
419.2
6
0
224
11.7 to 13.5
U
499.8
6
50.0 to 56.4
256
12.3 to 13.8
V
578.1
6
−51.3 to −57.2
288
12.6 to 14.0
A
662.0
6
0
320
13.0 to 14.3
A
744.0
6
0
352
13.3 to 14.5
Total
200 to 827.3
48
11520
Tab.22
Fig.37
Fig.38
Fig.39
Fig.40
Fig.41
Gas Mixture
Ar/CO/CH (89/10/1)
He/CH (60/40)
He/CH (50/50)
He/CH (60/40)
He/iCH (80/20)
Drift velocity of an electron
5.0
3.7
4.0
3.8
3.4
(cm/μs)
Transverse diffusion coefficient
233
191
170
154
159
(μm/) @ E=760 V/cm
Lorentz angle
41
28
29
24
21
(degree) @ E=760 V/cm
Primary ionizing power (i.p./cm)
30
10
23
30
21
Radiation length (m)
124
808
640
550
807
Tab.23
Fig.42
Fig.43
Fig.44
Fig.45
Fig.46
Fig.47
Fig.48
Fig.49
Fig.50
Fig.51
Fig.52
Thickness [mm]
Top ceramic plate
3
0.03
Quartz window
3
0.03
Radiator CF
10
0.05
THGEM+Micromegas
0.4
0.01
Anode+FEE
8
0.02
Aluminum plate
5
0.05
FEE cooling
5
0.05
Total
0.24
Tab.24
Fig.53
Source
Error (mrad)
Simulation (mrad)
Chromatic
6.0
5.0
Geometric
2.6
3.1
Localization
1.6
1.8
Multiple scattering
1.1
1.1
Total
6.8
6.2
Tab.25
Fig.54
Fig.55
Fig.56
Fig.57
Fig.58
Generation rate (Hz)
RICH rate (Hz)
Counting rate (Hz/mm2)
RBB e±
5.98
1.25
50.7
RBB
1.07
3.71
1.47
Two photon
1.03
2.44
9.65
Touschek
1.12
5.04
1.99
Coulomb
2.09
2.90
115
Brems
2.10
2.10
negligible
Tab.26
Fig.59
Fig.60
Fig.61
Fig.62
Fig.63
Fig.64
Fig.65
Fig.66
Fig.67
Fig.68
Fig.69
Fig.70
Fig.71
Fig.72
Configuration/Geometry ID
0
1
2
3
4
5
6
Radiator shapes (sector number)
4
12
24
4
4
4
4
Radiator thickness (mm)
15
15
15
10
20
15
15
Outer side surface
A
A
A
A
A
R
45° R
Inner side surface
A
A
A
A
A
A
A
Lateral side surface
R
R
R
R
R
R
R
Tab.27
Fig.73
Configuration/Geometry ID
0
1
2
3
4
5
6
for pions
21.8
21.9
17.0
15.5
25.7
33.2
38.7
Accumulated charge density on
10.8
10.5
9.6
8.8
11.8
17.0
25.6
MCP-PMT anode ()
/K separation power
Tab.28
Fig.74
Fig.75
Fig.76
Fig.77
Fig.78
Fig.79
Fig.80
Fig.81
Fig.82
Fig.83
Fig.84
Condition
Intri
Carbon fiber (200 μm)
Uni (5%)
APD
Noise (1 MeV)
EneRes @ 1 GeV (%)
1.52
1.96
2.06
2.11
2.15
Tab.29
Fig.85
Fig.86
Fig.87
Fig.88
Fig.89
Fig.90
Fig.91
Fig.92
Fig.93
Fig.94
Fig.95
Fig.96
Fig.97
Fig.98
Fig.99
Fig.100
Fig.101
Channel
Low limit (MeV)
High limit (MeV)
High gain
3
150
Low gain
10
3000
Tab.30
Fig.102
Fig.103
Parameter
Baseline design
[cm]
185
[cm]
291
[cm]
85
[cm]
480
[cm]
107
Segmentation in
8
Number of detector layers
10
Iron yoke thickness [cm]
4/4/4.5/4.5/6/6/6/8/8 cm
(=16.77 cm)
Total: 51 cm, 3.04
Solid angle
79.2% × 4 in barrel
14.8% × 4 in endcap
94% × 4 in total
Total area [m2]
Barrel ~717
Endcap ~520
Total ~1237
Tab.31
Fig.104
Fig.105
Fig.106
Fig.107
Fig.108
Fig.109
Neutron
Average cluster size in scintillators
Probability of cluster size 2
Average cluster size in scintillators
Probability of cluster size 2
200 MeV/c
2.42
5%
4.42
32%
400 MeV/c
4.07
31%
6.48
50%
600 MeV/c
5.57
49%
7.88
68%
800 MeV/c
7.23
66%
9.20
74%
1000 MeV/c
8.31
74%
8.96
76%
1200 MeV/c
9.03
79%
11.18
84%
Tab.32
Fig.110
Detector type
Bakelite-RPC
Plastic scintillator
Detector layer
1
2
3
4
5
6
7
8
9
10
Simulated background count rate in the barrel (Hz/cm2)
9.2
3.54
1.42
4.25
6.50
2.80
1.77
0.76
0.39
0.36
Tab.33
Detector layer
Half-length in X (cm)
Barrel half-length in Z (cm)
MUD channel number in X
Channel number in Z
Inner radius (cm)
Endcap outer radius (cm)
MUD channel number in X
Channel number in Z
Bakelite-RPC
1
76.6
240
1535
1920
94
290
960
784
2
79.9
240
1600
1920
94
290
960
784
3
83.3
240
1670
1920
98
290
960
768
Plastic scintillator
4
86.8
240
0
1920
98
290
960
768
5
90.3
240
0
1920
102
290
960
752
6
94.4
240
0
1920
102
290
960
752
7
98.6
240
0
1920
106
290
960
736
8
102.7
240
0
1920
110
290
960
720
9
107.7
240
0
1920
114
290
960
704
10
112.7
240
0
1920
118
290
960
688
Tab.34
Cryostat
Inner radius
1.450 m
Outer radius
1.850 m
Length
4.760 m
Coil
Mean radius
1.565 m
Length
4.000 m
Conductor dimension
4.67 × 15.0 mm2
Electrical parameters
Central field
1.0 T
Nominal current
3820 A
Inductance
1.68 H
Stored energy
12.3 MJ
Cold mass
4.6 ton
Radiation thickness
1.9
Cool down time from room temperature
7 days
Quench recovery time
7 hours
Tab.35
Fig.111
Fig.112
Fig.113
Fig.114
Fig.115
Rated current
3820 A
Critical current at 4.2 K & 2 T
15000 A
Conductor length
9.15 km
Cable dimension
4.67 mm × 15 mm
Rutherford cable parameters
Number of strands
16
Cable transposition pitch
100 ± 5 mm
Cu:NbTi
1:1
NbTi filament diameter
30 ± 5 μm
Number of filaments
600
N value@2T
35
Aluminum stabilizer parameters
RRR@0T, 4.2K
500
Yield strength@4.2K
60 MPa
Impurity content
1000 ppm
Cross-section ratio of aluminum
80%
Tab.36
Fig.116
Fig.117
Fig.118
Heat load components
77 K
4.5 K
Caused by the support rods in cryostat
27 W
1.0 W
Caused by the radiation in cryostat
74 W
3.2 W
Caused by the current leads
−
7.9 W + 0.4 g/s
Caused by the radiation in chimney & SP
10 W
0.4 W
Caused by the support rods in chimney & SP
4 W
0.1 W
Caused by the bayonet and valves in SP
46 W
13 W
Caused by the measuring wires
5 W
0.8 W
Total
166 W 26.4 W + 0.4 g/s
Adopted heat load ()
249 W
39.6 W + 0.6 g/s
Tab.37
Fig.119
Fig.120
Physics process
Cross-section (nb)
Rate (Hz)
GeV, , MeV
4500
337500
270
20000
270
20000
Bhabha
734
55000
36
2700
11.4
900
Hadronic from continuum
25.6
2000
process GeV
~23.3
1740
Total
~5300
~400000
GeV,
9
900
Bhabha
517
51700
24.5
2450
7.9
790
Hadronic from continuum
18
1800
process GeV
~25
2500
Total
~601
~60100
Tab.38
Fig.121
Fig.122
Fig.123
Component
Num. of channels
Readout time window
Event size (B)
Total (B/s)
ITK (Silicon)
50M
500 ns
14300
5.72G
ITK (RWELL)
10552
500 ns
17232
6.89G
MDC
11520
1 μs
20400
8.16G
PID (RICH)
518400
500 ns
15600
6.24G
PID (DTOF)
6912
500 ns
7380
2.95G
EMC
8670
500 ns
15000
6.00G
MUD
41280
500 ns
262
105M
Total(Silicon)
50.6M
–
72.9k
29.2G
Total(RWELL)
5.94 × 105
–
75.9k
30.4G
Tab.39
Fig.124
Fig.125
Fig.126
Fig.127
Fig.128
Fig.129
Fig.130
Fig.131
Fig.132
Fig.133
Fig.134
Fig.135
Observable
BESIII (2020)
Belle II (50 ab−1)
STCF (1 ab−1)
Charmonium(like) spectroscopy:
Luminosity between 4−5 GeV
20 fb−1
0.23 ab−1
1 ab−1
Collins fragmentation functions:
Asymmetry in
0.3 [470]
−
[471]
CP violations:
in hyperon
0.014 [26]
−
in
−
[251]
0.0009 [250]
Leptonic decays of:
0.03 [472]
−
0.0015
0.03
−
0.0015
0.2
−
0.005
0.02 [473]
0.005
0.0015
0.02
0.005
0.0015
0.0038
D mixing parameter:
−
0.03
0.05 [474]
−
0.02
0.05
properties:
(MeV/c−2)
0.12 [475]
−
0.012
(e cm)
−
cLFV decays of(U.L at 90% C.L.):
−
−
−
Tab.40
Fig.136
Fig.137
Fig.138
Fig.139
Fig.140
Fig.141
Fig.142
1
H. Hoddeson L.Brown L.Riordan M. Dresden (Eds.) M., The Rise of the standard model: Particle physics in the 1960s and 1970s, Proceedings, Conference, Stanford, USA, June 24–27, 1992 (1997)
Ablikim M.(BESIII) ., et al.., Precision measurement of the mass of the τ lepton, Phys. Rev. D 90, 012001 (2014), arXiv: 1405.1076
9
Z. Bai J.(BES) ., et al.., Measurements of the cross section for e+e− → Hadrons at center-of-mass energies from 2 to 5 GeV, Phys. Rev. Lett. 88, 101802 (2002), arXiv: hep-ex/0102003
Z. Bai J.(BES) ., et al.., Observation of a near-threshold enhancement in the p p ¯ mass spectrum from radiative J/ψ → γ pp ¯ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006
12
Ablikim M.(BES) ., et al.., Observation of a resonance X(1835) in J/ψ → γπ+π−η', Phys. Rev. Lett. 95, 262001 (2005), arXiv: hep-ex/0508025
13
Ablikim M.(BESIII) ., et al.., Spin-parity analysis of pp ¯ mass threshold structure in J/ψ and ψ(3686) radiative decays, Phys. Rev. Lett. 108, 112003 (2012), arXiv: 1112.0942
14
Ablikim M.(BESIII) ., et al.., Observation of an anomalous line shape of the η'π+π− mass spectrum near the p p ¯ mass threshold in J/ψ → γη'π+π−, Phys. Rev. Lett. 117, 042002 (2016), arXiv: 1603.09653
15
Ablikim M.(BES) ., et al.., The sigma pole in J/ψ → ωπ+π−, Phys. Lett. B 598, 149 (2004), arXiv: hep-ex/0406038
16
Ablikim M.(BES) ., et al.., Observation of charged κ in J/ψ → K*(892)∓ Ksπ±, K*(892)∓ → Ksπ∓ at BESII, Phys. Lett. B 698, 183 (2011), arXiv: 1008.4489
17
Zhang C.-A., in: 32nd International Conference on High Energy Physics (2004), pp 993–997
18
Ablikim M.(BESIII) ., et al.., Design and construction of the BESIII detector, Nucl. Instrum. Meth. A 614, 345 (2010), arXiv: 0911.4960
19
Ablikim M.(BESIII) ., et al.., Observation of an isoscalar resonance with exotic JPC = 1−+ quantum numbers in J/ψ→γηη', Phys. Rev. Lett. 129, 192002 (2022), arXiv: 2202.00621 [hep-ex]
20
Ablikim M.(BESIII) ., et al.., Partial wave analysis of J/ψ→γηη', Phys. Rev. D 106, 072012 (2022), arXiv: 2202.00623 [hep-ex]
Ablikim M.(BESIII Collaboration) ., et al.., Observation of a state X(2600) in the π+π−η' system in the process J/ψ → γπ+π−η', Phys. Rev. Lett. 129, 042001 (2022), arXiv: 2201.10796 [hep-ex]
23
Ablikim M.(BESIII) ., et al.., First observation of η(1405) decays into f0(980)π0, Phys. Rev. Lett. 108, 182001 (2012), arXiv: 1201.2737
24
Ablikim M.(BESIII) ., et al.., Observation of a00(980)-f0(980) mixing, Phys. Rev. Lett. 121, 022001 (2018), arXiv: 1802.00583
Ablikim M.(BESIII) ., et al.., Polarization and entanglement in baryon−antibaryon pair production in electron-positron annihilation, Nature Phys. 15, 631 (2019), arXiv: 1808.08917 [hep-ex]
27
Ablikim M.(BESIII) ., et al.., Precise measurements of decay parameters and CP asymmetry with entangled Λ−Λ ¯ pairs, Phys. Rev. Lett. 129, 131801 (2022), arXiv: 2204.11058 [hep-ex]
28
Ablikim M.(BESIII) ., et al.., Probing CP symmetry and weak phases with entangled double- strange baryons, Nature 606, 64 (2022), arXiv: 2105.11155[hep-ex]
29
Ablikim M.(BESIII) ., et al.., Analysis of D+ → K ¯0 e+νe and D+ → π0e+νe semileptonic decays, Phys. Rev. D 96, 012002 (2017), arXiv: 1703.09084
30
Ablikim M.(BESIII) ., et al.., Study of dynamics of D0 → K−e+νe and D0 → π−e+νe decays, Phys. Rev. D 92, 072012 (2015), arXiv: 1508.07560
31
Ablikim M.(BESIII) ., et al.., Determination of the pseudoscalar decay constant fDs+ via Ds+ → µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890
32
Ablikim M.(BESIII) ., et al.., Measurement of the Ds+ → ℓ+νℓ branching fractions and the decay constant fD+, Phys. Rev. D 94, 072004 (2016), arXiv: 1608.06732
33
Ablikim M.(BESIII) ., et al.., Measurements of absolute hadronic branching fractions of the Λ+ baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380
Ablikim M.(BESIII) ., et al.., Measurement of the D → K−π+ strong phase difference in ψ(3770) → D 0 D ¯ 0, Phys. Lett. B 734, 227 (2014), arXiv: 1404.4691
36
Ablikim M.(BESIII) ., et al.., Model-independent determination of the relative strong-phase difference between D 0 and D ¯0 → KS,L0π+π− and its impact on the measurement of the ckm angle γ/ϕ3, Phys. Rev. D 101, 112002 (2020), arXiv: 2003.00091
37
Ablikim M.(BESIII) ., et al.., Improved model-independent determination of the strong-phase difference between D 0 and D ¯0 → KS,L0K+K− decays, Phys. Rev. D 102, 052008 (2020), arXiv: 2007.07959
38
Ablikim M.(BESIII) ., et al.., Measurement of the Cross Section for e+e− →Hadrons at energies from 2.2324 to 3.6710 GeV, Phys. Rev. Lett. 128, 062004 (2022), arXiv: 2112.11728 [hep-ex]
39
Davier M.Hoecker A.Malaescu B.Zhang Z., Reevaluation of the hadronic vacuum polarisation contributions to the standard model predictions of the muon g-2 and α(mz2) using newest hadronic cross-section data, Eur. Phys. J. C 77, 827 (2017), arXiv: 1706.09436
40
Ablikim M.(BESIII) ., et al.., Measurement of the ππ cross section between 600 and 900 mev using initial state radiation, Phys. Lett. B 753, 629 (2016) [Erratum: Phys. Lett. B 812, 135982 (2021)], arXiv: 1507.08188
Abi B.(Muon g-2) ., et al.., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281[hep-ex]
Ablikim M.(BESIII) ., et al.., Measurement of proton electromagnetic form factors in e+e− → pp ¯ in the energy region 2.00–3.08 GeV, Phys. Rev. Lett. 124, 042001 (2020), arXiv: 1905.09001
45
Ablikim M.(BESIII) ., et al.., Oscillating features in the electromagnetic structure of the neutron, Nature Phys. 17, 1200 (2021), arXiv: 2103.12486 [hep-ex]
46
Ablikim M.(BESIII) ., et al.., Observation of a cross-section enhancement near mass threshold in e+e− → ΛΛ ¯, Phys. Rev. D 97, 032013 (2018), arXiv: 1709.10236
47
Ablikim M.(BESIII) ., et al.., Complete measurement of the Λ electromagnetic form factors, Phys. Rev. Lett. 123, 122003 (2019), arXiv: 1903.09421
48
Ablikim M.(BESIII) ., et al.., Measurements of Σ+ and Σ− time-like electromagnetic form factors for center-of-mass energies from 2.3864 to 3.0200 GeV, Phys. Lett. B 814, 136110 (2021), arXiv: 2009.01404
49
Ablikim M.(BESIII) ., et al.., Measurement of cross section for e+e− → Ξ− Ξ ¯+ near threshold at BESIII, Phys. Rev. D 103, 012005 (2021), arXiv: 2010.08320
50
Ablikim M.(BESIII) ., et al.., Observation of a resonant structure in e+e− → K+ K−π0π0, Phys. Rev. Lett. 124, 112001 (2020), arXiv: 2001.04131
51
Ablikim M.(BESIII) ., et al.., Observation of a structure in e+e− → ϕη' at s from 2.05 to 3.08 GeV, Phys. Rev. D 102, 012008 (2020), arXiv: 2003.13064
52
Ablikim M.(BESIII) ., et al.., Measurement of e+e− → K+K− cross section at s = 2.00 ~ −3.08 GeV, Phys. Rev. D 99, 032001 (2019), arXiv: 1811.08742
53
Ablikim M.(BESIII) ., et al.., Cross section measurements of e+e− → K+K−K+K− and ϕK+K− at center-of-mass energies from 2.10 to 3.08 GeV, Phys. Rev. D 100, 032009 (2019), arXiv: 1907.06015
54
Ablikim M.(BESIII) ., et al.., Observation of a charged charmoniumlike structure in e+e− → π+π− J/ψ at s = 4.26 GeV, Phys. Rev. Lett. 110, 252001 (2013), arXiv: 1303.5949
55
Ablikim M.(BESIII) ., et al.., Observation of a charged charmoniumlike structure Zc(4020) and search for the Zc(3900) in e+e− → π+π−hc, Phys. Rev. Lett. 111, 242001 (2013), arXiv: 1309.1896
56
Ablikim M.(BESIII) ., et al.., Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e− → K+(Ds−D*0 + Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855
57
Ablikim M.(BESIII) ., et al.., Precise measurement of the e+e− → π+π− J/ψ cross section at center- of-mass energies from 3.77 to 4.60 GeV, Phys. Rev. Lett. 118, 092001 (2017), arXiv: 1611.01317
58
Ablikim M.(BESIII) ., et al.., Observation of e+e− → γX(3872) at BESIII, Phys. Rev. Lett. 112, 092001 (2014), arXiv: 1310.4101
Aaij R.(LHCb) ., et al.., Observation of the doubly charmed baryon Ξ cc ++, Phys. Rev. Lett. 119, 112001 (2017), arXiv: 1707.01621
61
P. Peng H., et al.. Physics Potential of a Super tau-Charm Facility, Snowmass2021-Letter of Interest (2021)
62
Luo Q., in: 8th International Particle Accelerator Conference (2017)
63
Biagini M., Super τ/charm project in Italy (2014)
64
Adachi I., E. Browder T., Križan P., Tanaka S., Ushiroda (Belle-II) Y.. Detectors for extreme luminosity: Belle II. Nucl. Instrum. Meth. A, 2018, 907 : 46 https://doi.org/10.1016/j.nima.2018.03.068
Altmannshofer W.(Belle II) ., et al.., The Belle II Physics Book, PTEP 2019, 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)], arXiv: 1808.10567 [hep-ex]
67
Aaij R.(LHCb) ., et al.., Physics case for an LHCB upgrade II − opportunities in flavour physics, and beyond, in the HL-LHC era, LHCB-PUB-2018-009, CERN-LHCC-2018–027 (2018), arXiv: 1808.08865 [hep-ex]
68
Aad G.(ATLAS) ., et al.., Observation of a new particle in the search for the standard model Higgs boson with the atlas detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214
69
Chatrchyan S.(CMS) ., et al.., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235
70
M. Asner D., et al.., Physics at BES-III, Int. J. Mod. Phys. A 24, S1 (2009), arXiv: 0809.1869 [hep-ex]
71
Ablikim M.(BESIII) ., et al.., Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983
72
Grossman Y.Passemar E.Schacht S., On the statistical treatment of the Cabibbo angle anomaly, JHEP 07, 068 (2020), arXiv: 1911.07821 [hep-ph]
73
P. Lees J.(BaBar) ., et al.., Search for CP violation in the decay τ− → π−Ks0(≥0π0)ντ, Phys. Rev. D 85, 031102 (2012) [Erratum: Phys. Rev. D 85, 099904 (2012)], arXiv: 1109.1527 [hep-ex]
74
S. Tsai Y.. Production of polarized τ pairs and tests of CP violation using polarized e± colliders near threshold. Phys. Rev. D, 1995, 51 : 3172 https://doi.org/10.1103/PhysRevD.51.3172
75
Adlarson P.Kupsc A., CP symmetry tests in the cascade−anticascade decay of charmonium, Phys. Rev. D 100, 114005 (2019), arXiv: 1908.03102 [hep-ph]
76
S. Swanson E., The new heavy mesons: A status report, Phys. Rept. 429, 243 (2006), arXiv: hep-ph/0601110
77
B. Voloshin M., Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008), arXiv: 0711.4556 [hep-ph]
78
Chen H.-X.Chen W.Liu X.Zhu S.-L., The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092 [hep-ph]
79
Hosaka A.Iijima T.Miyabayashi K.Sakai Y.Yasui S., Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016, 062C01 (2016), arXiv: 1603.09229 [hep-ph]
80
F. Lebed R.E. Mitchell R.S. Swanson E., Heavy-quark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017), arXiv: 1610.04528 [hep-ph]
81
Esposito A.Pilloni A.D. Polosa A., Multiquark Resonances, Phys. Rep. 668, 1 (2017), arXiv: 1611.07920 [hep-ph]
Yuan C.-Z., The XYZ states revisited, Int. J. Mod. Phys. A 33, 1830018 (2018), arXiv: 1808.01570 [hep-ex]
87
Cerri A., et al.., Report from Working Group 4: Opportunities in flavour physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7, 867 (2019), arXiv: 1812.07638 [hep-ph]
88
Liu Y.-R.Chen H.-X.Chen W.Liu X.Zhu S.-L., Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976 [hep-ph]
89
Brambilla N.Eidelman S.Hanhart C.Nefediev A.Shen C.-P. E. Thomas C.Vairo A.Yuan C.-Z., The XYZ states: Experimental and theoretical status and perspectives, Phys. Rept. 873, 1 (2020), arXiv: 1907.07583 [hep-ex]
Ablikim M.(BESIII) ., et al.., Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e- → K+(Ds−D*0 + Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855 [hep-ex]
94
Aaij R.(LHCb) ., et al.., Observation of new resonances decaying to J/ψK+ and J/ψϕ, Phys. Rev. Lett. 127, 082001 (2021), arXiv: 2103.01803 [hep-ex]
95
Cleven M.Guo F.-K.Hanhart C.Wang Q.Zhao Q., Employing spin symmetry to disentangle different models for the XYZ states, Phys. Rev. D 92, 014005 (2015), arXiv: 1505.01771 [hep-ph]
96
Wang Q.Hanhart C.Zhao Q., Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett. 111, 132003 (2013), arXiv: 1303.6355 [hep-ph]
97
Pilloni A.Fernandez-Ramirez C.Jackura A. Mathieu V.Mikhasenko M.Nys J.P. Szczepaniak (JPAC) A., Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B 772, 200 (2017), arXiv: 1612.06490 [hep-ph]
98
Yang Z.Cao X.Guo F.-K.Nieves J.P. Valderrama M., Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725 [hep-ph]
99
E. Bondar A.Garmash A.I. Milstein A.Mizuk R.B. Voloshin M., Heavy quark spin structure in Zb resonances, Phys. Rev. D 84, 054010 (2011), arXiv: 1105.4473 [hep-ph]
100
Cao Q.-F.Qi H.-R.Wang Y.-F.Zheng H.-Q., Discussions on the line-shape of the X(4660) resonance, Phys. Rev. D 100, 054040 (2019), arXiv: 1906.00356 [hep-ph]
101
Dong X.-K.Guo F.-K.Zou B.-S., A survey of heavy−antiheavy hadronic molecules, Prog. Phys. 41, 65 (2021), arXiv: 2101.01021 [hep-ph]
102
Chao K.-T.Guo F.-K.Zhang Y.-J., Production of J/ψpp ¯ in electron−positron collisions (2023) (in preparation)
103
Ma Y.-Q.Zhang Y.-J.Chao K.-T., QCD Corrections to e+e− → J/ψ + gg at B factories, Phys. Rev. Lett. 102, 162002 (2009), arXiv: 0812.5106 [hep-ph]
104
Shen C.-W.Guo F.-K.Xie J.-J.Zou B.-S., Disentangling the hadronic molecule nature of the Pc(4380) pentaquark-like structure, Nucl. Phys. A 954, 393 (2016), arXiv: 1603.04672 [hep-ph]
105
Zhang Y.-J.Gao Y.-j.Chao K.-T., Next-to-leading-order QCD correction to e+e− → J/ψ + ηc at s = 10.6 GeV, Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076
106
Zhang Y.-J.Chao K.-T., Double-charm production e+e− → J/ψ + c c ¯ at B factories with next-to-leading-order QCD corrections, Phys. Rev. Lett. 98, 092003 (2007), arXiv: hep-ph/0611086
107
Chao K.-T.. The (cc)−(c ¯c) (diquark−anti-diquark) states in e+e− annihilation. Z. Phys. C, 1981, 7 : 317 https://doi.org/10.1007/BF01431564
R. Debastiani V.Aceti F.Liang W.-H. Oset E., Revising the f1(1420) resonance, Phys. Rev. D 95, 034015 (2017), arXiv: 1611.05383 [hep-ph]
110
Wang G.-J.Meng L.Zhu S.-L., Spectrum of the fully-heavy tetraquark state QQQ′ ¯Q′ ¯, Phys. Rev. D 100, 096013 (2019), arXiv: 1907.05177 [hep-ph]
111
N. Anwar M.Ferretti J.Guo F.-K.Santopinto E.Zou B.-S., Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018), arXiv: 1710.02540 [hep-ph]
112
Aaij R.(LHCb) ., et al.., Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65, 1983 (2020), arXiv: 2006.16957 [hep-ex]
113
Liu L.Moir G.Peardon M.M. Ryan S.E. Thomas C.Vilaseca P.J. Dudek J.G. Edwards R.Joo B.G. Richards (Hadron Spectrum) D., Excited and exotic charmonium spectroscopy from lattice QCD, JHEP 07, 126 (2012), arXiv: 1204.5425 [hep-ph]
114
Zhu S.-L., The Possible interpretations of Y(4260), Phys. Lett. B 625, 212 (2005), arXiv: hep-ph/0507025
115
Bhardwaj V.(Belle) ., et al.., Evidence of a new narrow resonance decaying to χc1γ in B → χc1γK, Phys. Rev. Lett. 111, 032001 (2013), arXiv: 1304.3975 [hep-ex]
116
Ablikim M.(BESIII) ., et al.., Observation of the ψ(13 D2) state in e+e− → π+π−γχc1 at BESIII, Phys. Rev. Lett. 115, 011803 (2015), arXiv: 1503.08203 [hep-ex]
117
Yang Y.-B.Chen Y.Gui L.-C.Liu C.Liu Y.-B. Liu Z.Ma J.-P.Zhang (CLQCD) J.-B., Lattice study on ηc2 and X(3872), Phys. Rev. D 87, 014501 (2013), arXiv: 1206.2086 [hep-lat]
118
Li H.-B.Lyu X.-R., Study of the standard model with weak decays of charmed hadrons at BESIII, Natl. Sci. Rev. 8, nwab181 (2021), arXiv: 2103.00908 [hep-ex]
119
Bazavov A., et al.., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D 98, 074512 (2018), arXiv: 1712.09262 [hep-lat]
120
Ablikim M.(BESIII) ., et al.., Precision measurements of B(D+ → µ+νµ), the pseudoscalar decay constant fD+, and the quark mixing matrix element |Vcd|, Phys. Rev. D 89, 051104 (2014), arXiv: 1312.0374 [hep-ex]
121
Ablikim M.(BESIII) ., et al.., Observation of the leptonic decay D+ → τ+ντ, Phys. Rev. Lett. 123, 211802 (2019), arXiv: 1908.08877 [hep-ex]
122
Ablikim M.(BESIII Collaboration) ., et al.., Measurement of the absolute branching fractions for purely leptonic Ds+ decays, Phys. Rev. D 104, 052009 (2021), arXiv: 2102.11734 [hep-ex]
123
S. Amhis Y.(Heavy Flavor Averaging Group .HFLAV), et al.., Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021, Phys. Rev. D 107, 052008 (2023), arXiv: 2206.07501 [hep-ex]
124
Ablikim M.(BESIII) ., et al.., Measurement of the absolute branching fraction of Ds+ → τ+ντ via τ+ → e+νeν ¯τ, Phys. Rev. Lett. 127, 171801 (2021), arXiv: 2106.02218 [hep-ex]
125
Ablikim M.(BESIII) ., et al.., Determination of the pseudoscalar decay constant f Ds+ via Ds+ → µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890 [hep-ex]
126
Liu J.Shi X.Li H.Zhou X.Zheng B., Prospects of CKM elements |Vcs| and decay constant f Ds + in D s+ → µ+νµ decay at STCF, Eur. Phys. J. C 82, 337 (2022), arXiv: 2109.14969 [hep-ex]
127
Li H.Luo T. Shi X.Zhou X., Feasibility study of D s+ → τ+ντ decay and test of lepton flavor universality with leptonic Ds+ decays at STCF, Eur. Phys. J. C 82, 310 (2022), arXiv: 2110.08864 [hep-ex]
128
Charles J.Hocker A.Lacker H.Laplace S.R. Le Diberder F.Malcles J.Ocariz J.Pivk M. Roos (CKMfitter Group) L., CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41, 1 (2005), arXiv: hep-ph/0406184
129
CKMfitter Group, URL: ckmfitter.in2p3.fr/ (2022)
130
Bona M.(UTfit) ., et al.., The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP 07, 028 (2005), arXiv: hep-ph/0501199
Grossman Y., Beyond the standard model with B and K physics, Int. J. Mod. Phys. A 19, 907 (2004), arXiv: hep-ph/0310229
134
Wang W.Yu F.-S.Zhao Z.-X., Novel method to reliably determine the photon helicity in B → K1γ, Phys. Rev. Lett. 125, 051802 (2020), arXiv: 1909.13083 [hep-ph]
135
Fajfer S.Nisandzic I.Rojec U., Discerning new physics in charm meson leptonic and semileptonic decays, Phys. Rev. D 91, 094009 (2015), arXiv: 1502.07488 [hep-ph]
136
Ablikim M.(BESIII) ., et al.., Measurement of the branching fraction for the semileptonic decay D0(+) → π−(0)µ+νµ and test of lepton flavor universality, Phys. Rev. Lett. 121, 171803 (2018), arXiv: 1802.05492 [hep-ex]
137
Ablikim M.(BESIII) ., et al.., Study of the D0 → K−µ+νµ dynamics and test of lepton flavor universality with D0 → K−ℓ+νℓ decays, Phys. Rev. Lett. 122, 011804 (2019), arXiv: 1810.03127 [hep-ex]
138
F. Falk A.Grossman Y.Ligeti Z.Nir Y.A. Petrov A., D0−D0 mass difference from a dispersion relation, Phys. Rev. D 69, 114021 (2004), arXiv: hep-ph/0402204
139
T. D’Agnolo R.Grosso G.Pierini M. Wulzer A.Zanetti M., Learning multivariate new physics, Eur. Phys. J. C 81, 89 (2021), arXiv: 1912.12155 [hep-ph]
Xing Z.-Z., D 0−D ¯0 mixing and CP violation in neutral D-meson decays, Phys. Rev. D 55, 196 (1997), arXiv: hep-ph/9606422
144
Xing Z.-Z., Effect of K0−anti-K0 mixing on CP asymmetries in weak decays of D and B mesons, Phys. Lett. B 353, 313 (1995), [Erratum: Phys. Lett. B 363, 266 (1995)], arXiv: hep-ph/9505272
145
Yu F.-S.Wang D.Li H.-N., CP asymmetries in charm decays into neutral kaons, Phys. Rev. Lett. 119, 181802 (2017), arXiv: 1707.09297 [hep-ph]
146
Aaij R.(LHCb) ., et al.., Observation of CP violation in charm decays, Phys. Rev. Lett. 122, 211803 (2019), arXiv: 1903.08726 [hep-ex]
Cheng H.-Y.Chiang C.-W., Direct CP violation in two-body hadronic charmed meson decays, Phys. Rev. D 85, 034036 (2012) [Erratum: Phys. Rev. D 85, 079903 (2012)], arXiv: 1201.0785 [hep-ph]
149
Li H.-N.Lu C.-D.Yu F.-S., Branching ratios and direct CP asymmetries in D → PP decays, Phys. Rev. D 86, 036012 (2012), arXiv: 1203.3120 [hep-ph]
150
Pirtskhalava D.Uttayarat P., CP violation and flavor SU(3) breaking in D-meson decays, Phys. Lett. B 712, 81 (2012), arXiv: 1112.5451 [hep-ph]
151
Gronau M., High order U-spin breaking: A precise amplitude relation in D0 decays, Phys. Lett. B 730, 221 (2014) [Addendum: Phys. Lett. B 735, 282 (2014)], arXiv: 1311.1434 [hep-ph]
152
Buccella F.Lusignoli M.Pugliese A.Santorelli P., CP violation in D meson decays: Would it be a sign of new physics? Phys. Rev. D 88, 074011 (2013), arXiv: 1305.7343[hep-ph]
153
Buccella F.Paul A.Santorelli P., SU(3)F breaking through final state interactions and CP asymmetries in D → PP decays, Phys. Rev. D 99, 113001 (2019), arXiv: 1902.05564 [hep-ph]
154
Li H.-N.Lü C.-D.Yu F.-S., Implications on the first observation of charm CPV at LHCb, arXiv: 1903.10638 (2019)
155
Grossman Y.Schacht S., The emergence of the ΔU = 0 rule in charm physics, JHEP 07, 020 (2019), arXiv: 1903.10952 [hep-ph]
156
I. Bigi I.Paul A., On CP asymmetries in two-, three- and four-body D decays, JHEP 03, 021 (2012), arXiv: 1110.2862 [hep-ph]
157
E. Morrissey D.J. Ramsey-Musolf M. Electroweak baryogenesis, New J. Phys. 14, 125003 (2012), arXiv: 1206.2942 [hep-ph]
158
Bondar A.Poluektov A.Vorobiev V., Charm mixing in a model-independent analysis of correlated D 0 D ¯ 0 decays, Phys. Rev. D 82, 034033 (2010), arXiv: 1004.2350 [hep-ph]
159
Atwood D.A. Petrov A., Lifetime differences in heavy mesons with time independent measurements, Phys. Rev. D 71, 054032 (2005), arXiv: hep-ph/0207165
160
Shi Y.Yang J., Time reversal symmetry violation in entangled pseudoscalar neutral charmed mesons, Phys. Rev. D 98, 075019 (2018), arXiv: 1612.07628 [hep-ph]
161
A. Kostelecky V., Formalism for CPT, T, and Lorentz violation in neutral meson oscillations, Phys. Rev. D 64, 076001 (2001), arXiv: hep-ph/0104120
162
(LHCb), Simultaneous determination of the CKM angle γ and parameters related to mixing and CP violation in the charm sector, LHCb-CONF-2022-003, CERN-LHCb-CONF-2022-003, CERN-LHCb-CONF-2022-002 (2022)
163
Gronau M., London D.. How to determine all the angles of the unitarity triangle from B d0 → DKs and B s0 → D0. Phys. Lett. B, 1991, 253 : 483 https://doi.org/10.1016/0370-2693(91)91756-L
164
Gronau M., Wyler D.. On determining a weak phase from CP asymmetries in charged B decays. Phys. Lett. B, 1991, 265 : 172
165
Atwood D.Dunietz I.Soni A., Enhanced CP violation with B → K D0(D ¯0) modes and extraction of the Cabibbo−Kobayashi−Maskawa angle γ, Phys. Rev. Lett. 78, 3257 (1997), arXiv: hep-ph/9612433
166
Atwood D.Dunietz I.Soni A., Improved methods for observing CP violation in B±→ KD and measuring the CKM phase γ, Phys. Rev. D 63, 036005 (2001), arXiv: hep-ph/0008090
167
Giri A.Grossman Y.Soffer A.Zupan J., Determining γ using B±→ DK± with multibody D decays, Phys. Rev. D 68, 054018 (2003), arXiv: hep-ph/0303187
168
Ablikim M.(BESIII) ., et al.., Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983 [hep-ex]
169
Burdman G.Shipsey I., D 0−D ¯0 mixing and rare charm decays, Ann. Rev. Nucl. Part. Sci. 53, 431 (2003), arXiv: hep-ph/0310076
170
Golowich E.Hewett J.Pakvasa S.A. Petrov A., Relating D 0−D ¯0 mixing and D0 → l+l− with new physics, Phys. Rev. D 79, 114030 (2009), arXiv: 0903.2830 [hep-ph]
171
Ablikim M.(BESIII) ., et al.., Search for the rare decays D → h(h('))e+e−, Phys. Rev. D 97, 072015 (2018), arXiv: 1802.09752 [hep-ex]
172
Ablikim M.(BESIII) ., et al.., Search for the decay D0 → π0νν ¯, Phys. Rev. D 105, L071102 (2022), arXiv: 2112.14236 [hep-ex]
173
Chen H.-X.Chen W.Liu X.Liu Y.-R.Zhu S.-L., A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928 [hep-ph]
174
Kato Y.Iijima T., Open charm hadron spectroscopy at B-factories, Prog. Part. Nucl. Phys. 105, 61 (2019), arXiv: 1810.03748 [hep-ex]
175
Zupanc A.(Belle) ., et al.., Measurement of the branching fraction B(Λc+ → pK−π+), Phys. Rev. Lett. 113, 042002 (2014), arXiv: 1312.7826 [hep-ex]
176
Ablikim M.(BESIII) ., et al.., Measurements of absolute hadronic branching fractions of the Λc+ baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380 [hep-ex]
177
B. Yang S.(Belle) ., et al.., First observation of the doubly Cabibbo-suppressed decay of a charmed baryon: Λc + → pK+π−, Phys. Rev. Lett. 117, 011801 (2016), arXiv: 1512.07366[hep-ex]
178
M. Sirunyan A.(CMS) ., et al.., Measurement of inclusive very forward jet cross sections in proton-lead collisions at sNN = 5.02 TeV, JHEP 05, 043 (2019), arXiv: 1812.01691 [hep-ex]
179
Ablikim M.(BESIII) ., et al.., Partial wave analysis of the charmed baryon hadronic decay Λc + → Λπ+π0, JHEP 12, 033 (2022), arXiv: 2209.08464 [hep-ex]
180
Bishai M.(CLEO) ., et al.., Measurement of the decay asymmetry parameters in Λc + → Λπ+ and Λc + → Σ+π0, Phys. Lett. B 350, 256 (1995), arXiv: hep-ex/9502004
181
Cheng H.-Y.Tseng B., Cabibbo allowed nonleptonic weak decays of charmed baryons, Phys. Rev. D 48, 4188 (1993), arXiv: hep-ph/9304286
182
K. Sharma K.C. Verma R., A study of weak mesonic decays of Λc and Ξc baryons on the basis of HQET results, Eur. Phys. J. C 7, 217 (1999), arXiv: hep-ph/9803302
183
Zenczykowski P., Quark and pole models of nonleptonic decays of charmed baryons, Phys. Rev. D 50, 402 (1994), arXiv: hep-ph/9309265
184
Datta A., Nonleptonic two-body decays of charmed and Lambda(b) baryons, arXiv: hep-ph/9504428 (1995)
185
Ablikim M.(BESIII) ., et al.., Measurements of weak decay asymmetries of Λc + → pKs0, Λπ+, Σ+π0, and Σ0π+, Phys. Rev. D 100, 072004 (2019), arXiv: 1905.04707 [hep-ex]
186
K. Li L.(Belle) ., et al.., Search for CP violation and measurement of branching fractions and decay asymmetry parameters for Λc + → Λh+ and Λc + → Σ0h+ (h = K, π), Sci. Bull. 68, 583 (2023), arXiv: 2208.08695 [hep-ex]
187
B. Li Y.(Belle) ., et al.., First measurements of absolute branching fractions of the Ξc 0 baryon at Belle, Phys. Rev. Lett. 122, 082001 (2019), arXiv: 1811.09738 [hep-ex]
188
B. Li Y.(Belle) ., et al.., First measurements of absolute branching fractions of the Ξc + baryon at Belle, Phys. Rev. D 100, 031101 (2019), arXiv: 1904.12093 [hep-ex]
189
Dhir R.S. Kim C., Axial-vector emitting weak nonleptonic decays of Ωc0 baryon, Phys. Rev. D 91, 114008 (2015), arXiv: 1501.04259 [hep-ph]
190
Cheng H.-Y., Cheung C.-Y., Lin G.-L., C. Lin Y., Yan T.-M., Yu H.-L.. Heavy flavor conserving nonleptonic weak decays of heavy baryons. Phys. Rev. D, 1992, 46 : 5060
191
Aaij R.(LHCb) ., et al.., First branching fraction measurement of the suppressed decay Ξc 0 → π−Λc +, Phys. Rev. D 102, 071101 (2020), arXiv: 2007.12096 [hep-ex]
192
S. Tang S.(Belle) ., et al.., Measurement of the branching fraction of Ξc 0→Λc +π− at Belle, Phys. Rev. D 107, 032005 (2023), arXiv: 2206.08527 [hep-ex]
193
Niu P.-Y.Wang Q.Zhao Q., Study of heavy quark conserving weak decays in the quark model, Phys. Lett. B 826, 136916 (2022), arXiv: 2111.14111 [hep-ph]
194
Cheng H.-Y.Xu F., Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons, Phys. Rev. D 105, 094011 (2022), arXiv: 2204.03149 [hep-ph]
195
Cheng H.-Y.Liu C.-W.Xu F., Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons: An update, Phys. Rev. D 106, 093005 (2022), arXiv: 2209.00257 [hep-ph]
196
Perez-Marcial R.Huerta R.Garcia A. Avila-Aoki M., Predictions for semileptonic decays of charm baryons. 2. Nonrelativistic and MIT bag quark models, Phys. Rev. D 40, 2955 (1989) [Erratum: Phys. Rev. D 44, 2203 (1991)]
Cheng H.-Y.Tseng B., 1/M corrections to baryonic form-factors in the quark model, Phys. Rev. D 53, 1457 (1996) [Erratum: Phys. Rev. D 55, 1697 (1997)], arXiv: hep-ph/9502391
199
Pervin M.Roberts W.Capstick S., Semileptonic decays of heavy lambda baryons in a quark model, Phys. Rev. C 72, 035201 (2005), arXiv: nucl-th/0503030
200
A. Ivanov M.E. Lyubovitskij V.G. Korner J.Kroll P., Heavy baryon transitions in a relativistic three quark model, Phys. Rev. D 56, 348 (1997), arXiv: hep-ph/9612463
201
Gutsche T.A. Ivanov M.G. Körner J.E. Lyubovitskij V.Santorelli P., Heavy-to-light semileptonic decays of Λb and Λc baryons in the covariant confined quark model, Phys. Rev. D 90, 114033 (2014) [Erratum: Phys. Rev. D 94, 059902 (2016)], arXiv: 1410.6043 [hep-ph]
202
N. Faustov R.O. Galkin V., Semileptonic decays of Λc baryons in the relativistic quark model, Eur. Phys. J. C 76, 628 (2016), arXiv: 1610.00957 [hep-ph]
203
W. Luo C.. Heavy to light baryon weak form-factors in the light cone constituent quark model. Eur. Phys. J. C, 1998, 1 : 235
204
S. Marques de Carvalho R.S. Navarra F.Nielsen M. Ferreira E.G. Dosch H., Form-factors and decay rates for heavy lambda semileptonic decays from QCD sum rules, Phys. Rev. D 60, 034009 (1999), arXiv: hep-ph/9903326
205
Huang M.-Q.Wang D.-W., Semileptonic decay Λc → Λl+ν from QCD light-cone sum rules, arXiv: hep-ph/0608170 (2006)
206
Azizi K.Sarac Y.Sundu H., Light cone QCD sum rules study of the semileptonic heavy ΞQ and ΞQ' transitions to Ξ and Σ baryons, Eur. Phys. J. A 48, 2 (2012), arXiv: 1107.5925 [hep-ph]
207
Meinel S., Λc → Λl+νl form factors and decay rates from lattice QCD with physical quark masses, Phys. Rev. Lett. 118, 082001 (2017), arXiv: 1611.09696 [hep-lat]
208
Meinel S., Λc → N form factors from lattice QCD and phenomenology of Λc → nℓ+νℓ and Λc → pµ+µ− decays, Phys. Rev. D 97, 034511 (2018), arXiv: 1712.05783 [hep-lat]
209
Ablikim M.(BESIII) ., et al.., Measurement of the absolute branching fraction for Λc + → Λe+νe, Phys. Rev. Lett. 115, 221805 (2015), arXiv: 1510.02610 [hep-ex]
210
Cheng H.-Y., Remarks on the strong coupling constants in heavy hadron chiral Lagrangians, Phys. Lett. B 399, 281 (1997), arXiv: hep-ph/9701234
211
Cheng H.-Y.Cheung C.-Y.Lin G.-L.C. Lin Y.Yan T.-M. Yu H.-L., Chiral Lagrangians for radiative decays of heavy hadrons, Phys. Rev. D 47, 1030 (1993), arXiv: hep-ph/9209262
212
Jiang N.Chen X.-L.Zhu S.-L., Electromagnetic decays of the charmed and bottom baryons in chiral perturbation theory, Phys. Rev. D 92, 054017 (2015), arXiv: 1505.02999 [hep-ph]
213
Wang G.-J.Meng L.Zhu S.-L., Radiative decays of the singly heavy baryons in chiral perturbation theory, Phys. Rev. D 99, 034021 (2019), arXiv: 1811.06208 [hep-ph]
214
Yelton J.(Belle) ., et al.., Study of electromagnetic decays of orbitally excited Ξc baryons, Phys. Rev. D 102, 071103 (2020), arXiv: 2009.03951 [hep-ex]
215
Li Y.(Belle) ., et al.., First search for the weak radiative decays Λc+→Σ+γ and Ξc0 →Ξ0γ, Phys. Rev. D 107, 032001 (2023), arXiv: 2206.12517 [hep-ex]
216
Ablikim M.(BESIII) ., et al.., Search for the weak radiative decay Λc + → Σ+γ at BESIII, arXiv: 2212.07214 (2022)
217
Bondar A.Grabovsky A.Reznichenko A.Rudenko A.Vorobyev V., Measurement of the weak mixing angle at a super charm-tau factory with data-driven monitoring of the average electron beam polarization, JHEP 03, 076 (2020), arXiv: 1912.09760 [hep-ph]
218
Aaij R.(LHCb) ., et al.., A measurement of the CP asymmetry difference in Λc + → pK−K+ and pπ−π+ decays, JHEP 03, 182 (2018), arXiv: 1712.07051[hep-ex]
219
I. Bigi I., Probing CP asymmetries in charm baryons decays, arXiv: 1206.4554 (2012)
220
Shi X.-D.Kang X.-W.Bigi I.Wang W.-P.Peng H.-P., Prospects for CP and P violation in Λc + decays at super tau charm facility, Phys. Rev. D 100, 113002 (2019), arXiv: 1904.12415 [hep-ph]
221
Aubert B.(BaBar) ., et al.., Observation of a charmed baryon decaying to D0p at a mass near 2.94 GeV/c2, Phys. Rev. Lett. 98, 012001 (2007), arXiv: hep-ex/0603052
Aaij R.(LHCb) ., et al.., Study of the D0p amplitude in Λb0 → D0pπ− decays, JHEP 05, 030 (2017), arXiv: 1701.07873 [hep-ex]
224
Cheng H.-Y.Chiang C.-W., Quantum numbers of Ωc states and other charmed baryons, Phys. Rev. D 95, 094018 (2017), arXiv: 1704.00396 [hep-ph]
225
Luo S.-Q.Chen B.Liu Z.-W.Liu X., Resolving the low mass puzzle of Λc(2940)+, Eur. Phys. J. C 80, 301 (2020), arXiv: 1910.14545[hep-ph]
226
Aaij R.(LHCb) ., et al.., Observation of five new narrow Ωc 0 states decaying to Ξc + K−, Phys. Rev. Lett. 118, 182001 (2017), arXiv: 1703.04639 [hep-ex]
227
Yelton J.(Belle) ., et al.., Observation of excited Ωc charmed baryons in e+e− collisions, Phys. Rev. D 97, 051102 (2018), arXiv: 1711.07927 [hep-ex]
228
(LHCb), Observation of new Ωc0 states decaying to the Ξc+K− final state, arXiv: 2302.04733 (2023)
229
Li W.-D., Mao Y.-J., Wang Y.-F.. The BES-III detector and offline software. Int. J. Mod. Phys. A, 2009, 24S1 : 9
230
d’Enterria D.Shao H.-S., Prospects for ditauonium discovery at colliders, arXiv: 2302.07365 [hep-ph] (2023)
231
Davoudiasl H.J. Marciano W., Tale of two anomalies, Phys. Rev. D 98, 075011 (2018), arXiv: 1806.10252 [hep-ph]
232
Abi B.(Muon g-2) ., et al.., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281 [hep-ex]
233
Eidelman S.Passera M., Theory of the tau lepton anomalous magnetic moment, Mod. Phys. Lett. A22, 159 (2007), arXiv: hep-ph/0701260 [hep-ph]
234
Abdallah J.(DELPHI) ., et al.., Study of tau-pair production in photon−photon collisions at LEP and limits on the anomalous electromagnetic moments of the tau lepton, Eur. Phys. J. C 35, 159 (2004), arXiv: hep-ex/0406010
235
Chen X.Wu Y., Search for the electric dipole moment and anomalous magnetic moment of the tau lepton at tau factories, JHEP 10, 089 (2019), arXiv: 1803.00501 [hep-ph]
236
Bernabeu J.A. Gonzalez-Sprinberg G.Papavassiliou J.Vidal J., Tau anomalous magnetic moment form-factor at super B/flavor factories, Nucl. Phys. B 790, 160 (2008), arXiv: 0707.2496[hep-ph]
Pich A., Precision Tau Physics, Prog. Part. Nucl. Phys. 75, 41 (2014), arXiv: 1310.7922 [hep-ph]
239
Amhis Y.(HFLAV) ., et al.., Averages of B-hadron, C-hadron, and tau-lepton properties as of early 2012, arXiv: 1207.1158 (2012)
240
B. Arbuzov A.V. Kopylova T., Michel parameters in radiative muon decay, JHEP 09, 109 (2016), arXiv: 1605.06612 [hep-ph]
241
P. Lees J.(BaBar) ., et al.., Measurement of the branching fractions of the radiative leptonic τ decays τ → eγνν ¯ and τ → µγνν ¯ at BABAR, Phys. Rev. D 91, 051103 (2015), arXiv: 1502.01784 [hep-ex]
242
Shimizu N.(Belle) ., et al.., Measurement of the tau Michel parameters η ¯ and ξκ in the radiative leptonic decay τ− → ℓ−ντν ¯ℓγ, PTEP 2018, 023C01 (2018), arXiv: 1709.08833 [hep-ex]
243
G. López Castro , P. Roig. A. Flores-Tlalpa, Five-body leptonic decays of muon and tau leptons, JHEP 04, 185 (2016), arXiv: 1508.01822 [hep-ph]
Boito D., Golterman M., Jamin M., Mahdavi A., Maltman K., Osborne J., Peris S.. Updated determination of αs from τ decays. Phys. Rev. D, 2012, 85 : 093015 https://doi.org/10.1103/PhysRevD.85.093015
246
Beneke M.Boito D.Jamin M., Perturbative expansion of τ hadronic spectral function moments and αs extractions, JHEP 01, 125 (2013), arXiv: 1210.8038 [hep-ph]
247
I. Bigi I.I. Sanda A., A “Known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037
248
Grossman Y.Nir Y., CP violation in τ±→ π±KS ν and D±→ π±KS: The importance of KS−KL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]
249
Bischofberger M.(Belle) ., et al.., Search for CP violation in τ → Ks0 πντ decays at Belle, Phys. Rev. Lett. 107, 131801 (2011), arXiv: 1101.0349 [hep-ex]
250
Sang H.Shi X.Zhou X.Kang X.Liu J., Feasibility study of CP violation in τ → KS πντ decays at the Super Tau Charm Facility, Chin. Phys. C 45, 053003 (2021), arXiv: 2012.06241 [hep-ex]
251
Chen F.-Z.Li X.-Q.Yang Y.-D., CP asymmetry in the angular distribution of τ → KS πντ decays, JHEP 05, 151 (2020), arXiv: 2003.05735 [hep-ph]
252
Bernreuther W.Nachtmann O., CP violating correlations in electron positron annihilation into τ leptons, Phys. Rev. Lett. 63, 2787 (1989) [Erratum: Phys. Rev. Lett. 64, 1072 (1990)]
Inami K.(Belle) ., et al.., Search for the electric dipole moment of the tau lepton, Phys. Lett. B 551, 16 (2003), arXiv: hep-ex/0210066
255
Bernabeu J.A. Gonzalez-Sprinberg G.Vidal J., CP violation and electric-dipole-moment at low energy tau production with polarized electrons, Nucl. Phys. B 763, 283 (2007), arXiv: hep-ph/0610135
256
S. Tsai Y., Production of polarized tau pairs and tests of CP violation using polarized e+− colliders near threshold, Phys. Rev. D 51, 3172 (1995), arXiv: hep-ph/9410265
257
R. Zhou X., Tau LFV decays: Super Tau Charm Factory, URL: indico.fnal.gov/event/44457/ (2020)
258
V. Bobrov A.E. Bondar A., Search for τ → µ + γ decay at Super c−τ factory, Nucl. Phys. B Proc. Suppl. 225–227, 195 (2012), arXiv: 1206.1909 [hep-ex]
259
Xiang T.Shi X.-D.Wang D.-Y.Zhou X.-R., Sensitivity study of the charged lepton flavor violating process τ → γµ at STCF, (2023), arXiv: 2305.00483 [hep-ex]
260
Z. Bai (BES) J.. Measurement of the total cross section for hadronic production by e+e− annihilation at energies between 2.6–5 GeV. Phys. Rev. Lett., 2000, 84 : 594
261
Z. Bai J.(BES) ., et al.., Measurements of the cross-section for e+e− → hadrons at center-of-mass energies from 2-GeV to 5-GeV, Phys. Rev. Lett. 88, 101802 (2002), arXiv: hep-ex/0102003
262
V. Anashin V.(KEDR) ., et al.., Precise measurement of Ruds and R between 1.84 and 3.72 GeV at the KEDR detector, Phys. Lett. B 788, 42 (2019), arXiv: 1805.06235 [hep-ex]
263
Baak M.Kogler R., in: 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2013), pp 349–358, arXiv: 1306.0571 [hep-ph]
264
Abi B.(Muon g-2) ., et al.., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281 [hep-ex]
265
Sterman G., Smith J., C. Collins J., Whitmore J., Brock R., Huston J., Pumplin J., Tung W.-K., Weerts H., Yuan C.-P., Kuhlmann S., Mishra S., G. Morfín J., Olness F., Owens J., Qiu J., E. Soper D.. Handbook of perturbative QCD. Rev. Mod. Phys., 1995, 67 : 157
266
C. Collins J.E. Soper D., Back-to-back jets in QCD, Nucl. Phys. B 193, 381 (1981) [Erratum: Nucl. Phys. B 213, 545 (1983)]
267
Pitonyak D., Schlegel M., Metz A.. Polarized hadron pair production from electron−positron annihilation. Phys. Rev. D, 2014, 89 : 054032 https://doi.org/10.1103/PhysRevD.89.054032
268
Collins J.. Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B, 1993, 396 : 161
269
Seidl R.(Belle) ., et al.., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at s = 10.58-GeV, Phys. Rev. D 78, 032011 (2008) [Erratum: Phys. Rev. D 86, 039905 (2012)], arXiv: 0805.2975[hep-ex]
Collaboration B.Z. Bai J.Ban Y. G. Bian J., Observation of a near-threshold enhancement in th pp ¯ mass spectrum from radiative J/ψ-γpp ¯ p ¯ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006 [hep-ex]
272
E. A. Aubert (BABAR) B., Study of e+e− → ΛΛ ¯, ΛΣ ¯0 Σ0 Σ ¯ 0 using initial state radiation with BABAR, Phys. Rev. D 76, 092006 (2007).
273
E. A. Pakhlov (Belle) P.. Measurement of the e+e− → J/ψc c ¯ cross section at s ≈ 10.6 GeV. Phys. Rev. D, 2009, 79 : 071101
274
Ma Y.-Q.Zhang Y.-J.Chao K.-T., QCD corrections to e+e− → J/ψgg at B factories, Phys. Rev. Lett. 102, 162002 (2008), arXiv: 0812.5106 [hep-ph]
275
Zhang Y.-J., Ma Y.-Q., Wang K., Chao K.-T.. QCD radiative correction to color-octet J/ψ inclusive production at B factories. Phys. Rev. D, 2010, 81 : 034015 https://doi.org/10.1103/PhysRevD.81.034015
276
Gong B.Wang J.-X., Next-to-leading-order QCD corrections to e+e− → J/ψ gg at the B factories, Phys. Rev. Lett. 102, 162003 (2009), arXiv: 0901.0117 [hep-ph]
277
Gong B., Wang J.-X.. Next-to-leading-order QCD corrections to e+e− → J/ψcc ¯ at the B factories. Phys. Rev. D, 2009, 80 : 054015
278
Brambilla N., et al.., Heavy quarkonium: progress, puzzles, and opportunities, Euro. Phys. J. C 71, 1534 (2011)
279
B. Collaboration T.Abe K., Observation of double cc ¯ Production in e+e− annihilation at s = 10.6 GeV, Phys. Rev. Lett. 89, 142001 (2002), arXiv: hep-ex/0205104 [hep-ex]
280
Feng F.Jia Y.Mo Z.Sang W.-L.Zhang J.-Y., Next-to-next-to-leading-order QCD corrections to e+e− → J/ψ + ηc at B factories, arXiv: 1901.08447 (2019)
281
Zhang Y.-J.Gao Y.-J.Chao K.-T., Next-to-leading order QCD correction to e+e− → J/ψ + ηc at s = 10.6-GeV, Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076
282
Zhang Y.-J., Chao K.-T.. Double-charm production e+e− → J/ψ + cc ¯ at B factories with next-to-leading-order QCD corrections. Phys. Rev. Lett., 2007, 98 : 092003
283
Brambilla N., et al.., QCD and strongly coupled gauge theories: Challenges and perspectives, Eur. Phys. J. C 74, 2981 (2014), arXiv: 1404.3723 [hep-ph]
284
A. Meyer C., Van Haarlem Y.. Status of exotic-quantum-number mesons. Phys. Rev. C, 2010, 82 : 025208
285
Crede V.A. Meyer C., The Experimental Status of Glueballs, Prog. Part. Nucl. Phys. 63, 74 (2008), arXiv: 0812.0600 [hep-ex]
286
Klempt E., Zaitsev A.. Glueballs, hybrids, multiquarks: Experimental facts versus QCD inspired concepts. Phys. Rep., 2007, 454 : 1
287
Amsler C., A. Törnqvist N.. Mesons beyond the naive quark model. Phys. Rep., 2004, 389 : 61
Lee W.-J.Weingarten D., Scalar quarkonium masses and mixing with the lightest scalar glueball, Phys. Rev. D 61, 014015 (2000), arXiv: hep-lat/9910008
290
S. Bali G.Schilling K.Hulsebos A.C. Irving A.Michael C. W. Stephenson (UKQCD) P., A comprehensive lattice study of SU(3) glueballs, Phys. Lett. B 309, 378 (1993), arXiv: hep-lat/9304012
291
J. Morningstar C.J. Peardon M., Efficient glueball simulations on anisotropic lattices, Phys. Rev. D 56, 4043 (1997), arXiv: hep-lat/9704011
292
Chen Y., et al.., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73, 014516 (2006), arXiv: hep-lat/0510074
293
Lacock P.Michael C.Boyle P.Rowland (UKQCD) P., Hybrid mesons from quenched QCD, Phys. Lett. B 401, 308 (1997), arXiv: hep-lat/9611011
294
W. Bernard C.(MILC) ., et al.., Exotic mesons in quenched lattice QCD, Phys. Rev. D 56, 7039 (1997), arXiv: hep-lat/9707008
295
J. Dudek J.G. Edwards R.Joo B.J. Peardon M.G. Richards D.E. Thomas C., Isoscalar meson spectroscopy from lattice QCD, Phys. Rev. D 83, 111502 (2011), arXiv: 1102.4299 [hep-lat]
296
J. Dudek J.G. Edwards R.Guo P.E. Thomas (Hadron Spectrum) C., Toward the excited isoscalar meson spectrum from lattice QCD, Phys. Rev. D 88, 094505 (2013), arXiv: 1309.2608[hep-lat]
297
P. Druzhinin V.I. Eidelman S.I. Serednyakov S.P. Solodov E., Hadron production via e+e− collisions with initial state radiation, Rev. Mod. Phys. 83, 1545 (2011), arXiv: 1105.4975 [hep-ex]
Nambu Y.Jona-Lasinio G., Dynamical model of elementary particles based on an analogy with superconductivity (1), Phys. Rev. 122, 345 (1961)
309
Nambu Y.Jona-Lasinio G., Dynamical model of elementary particles based on an analogy with superconductivity (II), Phys. Rev. 124, 246 (1961)
310
Aoyama. T., et al.. The anomalous magnetic moment of the muon in the Standard Model, Phys. Rep. 887, 1 (2020), the anomalous magnetic moment of the muon in the Standard Model
311
Gan L.Kubis B.Passemar E.Tulin S., Precision tests of fundamental physics with η and η' mesons, Phys. Rep. 945, 1 (2022), precision tests of fundamental physics with η and η' mesons
312
Jarlskog C., Shabalin E.. On searches for CP, T, CPT and C violation in flavour-changing and flavour-conserving interactions. Phys. Scr., 2002, 2002 : 23
313
Jarlskog C., Shabalin E.. ϵ' and the decay η→ππ in a theory with both explicit and spontaneous CP violation. Phys. Rev. D, 1995, 52 : 6327 https://doi.org/10.1103/PhysRevD.52.6327
314
Escribano R.Royo E., A theoretical analysis of the semileptonic decays η(') → π0l+l- and η' → ηl+l-, Eur. Phys. J. C 80, 1190 (2020), arXiv: 2007.12467 [hep-ph]
315
Niecknig F.Kubis B.P. Schneider S., Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J. C 72, 2014 (2012), arXiv: 1203.2501 [hep-ph]
316
V. Danilkin I., Fernández-Ramírez C., Guo P., Mathieu V., Schott D., Shi M., P. Szczepa- niak A.. Dispersive analysis of ω/ϕ → 3π, πγ*. Phys. Rev. D, 2015, 91 : 094029 https://doi.org/10.1103/PhysRevD.91.094029
317
Wu J.-J., Liu X.-H., Zhao Q., Zou B.-S.. Puzzle of anomalously large isospin violations in η(1405/1475) → 3π. Phys. Rev. Lett., 2012, 108 : 081803 https://doi.org/10.1103/PhysRevLett.108.081803
318
H. Christenson J., W. Cronin J., L. Fitch V., Turlay R.. Evidence for the 2π decay of the K20 meson. Phys. Rev. Lett., 1964, 13 : 138 https://doi.org/10.1103/PhysRevLett.13.138
Tandean J., Valencia G.. CP violation in hyperon nonleptonic decays within the standard model. Phys. Rev. D, 2003, 67 : 056001 https://doi.org/10.1103/PhysRevD.67.056001
324
Materniak (HyperCP) C.. Search for CP violation in Ξ and Λ hyperon decays with the HyperCP spectrometer at Fermilab. Nucl. Phys. B Suppl., 2009, 187 : 208 https://doi.org/10.1016/j.nuclphysbps.2009.01.030
325
Ablikim M.(BESIII) ., et al.. Study of J/ψ and ψ(3686) decay to ΛΛ ¯ and Σ 0 Σ ¯0 final states, Phys. Rev. D 95, 052003 (2017)
326
Ablikim M., et al.., Study of J/ψ and ψ (3686) → Σ(1385)0 Σ ¯ (1385)0 and Ξ0 Ξ ¯0, Physics Letters B 770, 217 (2017), arXiv: 1612.08664 [hep-ex]
327
Ablikim M.(BESIII) ., et al.., Study of ψ decays to the Ξ− Ξ ¯+ and Σ(1385)∓Σ ¯(1385 )± final states, Phys. Rev. D 93, 072003 (2016)
328
Fäldt G.Kupsc A., Hadronic structure functions in the e+e− → Λ ¯Λ reaction, Phys. Lett. B 772, 16 (2017), arXiv: 1702.07288 [hep-ph]
329
Perotti E., Fäldt G., Kupsc A., Leupold S., J. Song J.. Polarization observables in e+e− annihilation to a baryon−antibaryon pair. Phys. Rev. D, 2019, 99 : 056008 https://doi.org/10.1103/PhysRevD.99.056008
Dutta B.Mimura Y.N. Mohapatra R., Observable neutron antineutron oscillation in high scale seesaw models, Phys. Rev. Lett. 96, 061801 (2005), arXiv: hep-ph/0510291 [hep-ph]
332
Baldo-Ceolin M., Benetti P., Bitter T., Bobisut F., Calligarich E., Dolfini R., Dubbers D., El-Muzeini P., Genoni M., Gibin D., Berzolari A., Gobrecht K., Guglielmi A., Last J., Laveder M., Lippert W., Mattioli F., Mauri F., Mezzetto M., Visentin L.. A new experimental limit on neutron−antineutron oscillations. Zeitsch. für Phys. C, 1994, 63 : 409 https://doi.org/10.1007/BF01580321
333
Kang X.-W., Li H.-B., Lu G.-R.. Study of Λ− Λ ¯ oscillation in quantum coherent ΛΛ ¯ by using J/ψ → ΛΛ ¯ decay. Phys. Rev. D, 2010, 81 : 051901 https://doi.org/10.1103/PhysRevD.81.051901
334
H. Dalitz R., Rajasekharan G.. The spins and lifetimes of the light hypernuclei. Phys. Lett., 1962, 1 : 58
335
I. Abelev B.(STAR) ., et al.., Observation of an antimatter hypernucleus, Science 328, 58 (2010), arXiv: 1003.2030 [nucl-ex]
S. Schwinger J., The Theory of quantized fields (1), Phys. Rev. 82, 914 (1951)
338
Chekanov S.(ZEUS) ., et al.., Search for contact interactions, large extra dimensions and finite quark radius in ep collisions at HERA, Phys. Lett. B 591, 23 (2004), arXiv: hep-ex/0401009
G. Wilson K., B. Kogut J.. The renormalization group and the epsilon expansion. Phys. Rep., 1974, 12 : 75
342
Weinberg S., Witten E.. Limits on massless particles. Phys. Lett. B, 1980, 96 : 59
343
R. Schubert K., T violation and CPT tests in neutral-meson systems, Prog. Part. Nucl. Phys. 81, 1 (2015), arXiv: 1409.5998 [hep-ex]
344
S. Bell J.Steinberger J., in: Proceedings of the Oxford Int. Conf. on Elementary Particles (1965), pp 195–222
345
Aubert B.(BaBar) ., et al.., Search for T, CP and CPT violation in B0− B ¯0 mixing with inclusive dilepton events, Phys. Rev. Lett. 96, 251802 (2006), arXiv: hep-ex/0603053
346
Higuchi T., et al.., Search for time-dependent CPT violation in hadronic and semileptonic B decays, Phys. Rev. D 85, 071105 (2012), arXiv: 1203.0930 [hep-ex]
347
Apostolakis A.. et al.. A Determination of the CP violation parameter η+− from the decay of strangeness tagged neutral kaons. Phys. Lett. B, 1999, 458 : 545 https://doi.org/10.1016/S0370-2693(99)00596-1
Essig R., et al.., in: Community Summer Study 2013: Snowmass on the Mississippi (2013), arXiv: 1311.0029 [hep-ph]
350
Adriani O.(PAMELA) ., et al.. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458, 607 (2009), arXiv: 0810.4995 [astro-ph]
351
Chang J.. et al.. An excess of cosmic ray electrons at energies of 300−800 GeV. Nature, 2008, 456 : 362
352
A. Abdo A.(Fermi-LAT) ., et al.., Measurement of the cosmic ray e+ plus e− spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102, 181101 (2009), arXiv: 0905.0025 [astro-ph.HE]
353
Aguilar M.. et al.. First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett., 2013, 110 : 141102 https://doi.org/10.1103/PhysRevLett.110.141102
354
Arkani-Hamed N.P. Finkbeiner D.R. Slatyer T.Weiner N., A theory of dark matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]
355
Pospelov M.Ritz A., Astrophysical signatures of secluded dark matter, Phys. Lett. B 671, 391 (2009), arXiv: 0810.1502 [hep-ph]
356
Arkani-Hamed N.Weiner N., LHC signals for a superunified theory of dark matter, JHEP 12, 104 (2008), arXiv: 0810.0714 [hep-ph]
357
Cheung C.T. Ruderman J.Wang L.-T.Yavin I., Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80, 035008 (2009), arXiv: 0902.3246 [hep-ph]
Fayet P., U-boson production in e+e− annihilations, ψ and Υ decays, and light dark matter, Phys. Rev. D 75, 115017 (2007), arXiv: hep-ph/0702176
360
Reece M.Wang L.-T., Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07, 051 (2009), arXiv: 0904.1743 [hep-ph]
361
Essig R.Schuster P.Toro N., Probing dark forces and light hidden sectors at low-energy e+e− colliders, Phys. Rev. D 80, 015003 (2009), arXiv: 0903.3941 [hep-ph]
362
Yin P.-F.Liu J.Zhu S.-H., Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679, 362 (2009), arXiv: 0904.4644 [hep-ph]
363
Aubert B.(BaBar) ., et al.., Search for dimuon decays of a light scalar boson in radiative transitions Υ → γA0, Phys. Rev. Lett. 103, 081803 (2009), arXiv: 0905.4539 [hep-ex]
364
D. Bjorken J.Essig R.Schuster P. Toro N., New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80, 075018 (2009), arXiv: 0906.0580 [hep-ph]
365
Jia S.(Belle) ., et al.., Search for a light Higgs boson in single-photon decays of Υ(1S) using Υ(2S) → π+π−Υ(1S) tagging method, Phys. Rev. Lett. 128, 081804 (2022), arXiv: 2112.11852 [hep-ex]
Altmannshofer W.(Belle-II) ., et al.., The Belle II physics book, PTEP 2019, 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)], arXiv: 1808.10567 [hep-ex]
368
Li H.-B.Luo T., Probing dark force at BES-III/BEPCII, Phys. Lett. B 686, 249 (2010), arXiv: 0911.2067 [hep-ph]
369
Baumgart M.Cheung C.T. Ruderman J.Wang L.-T.Yavin I., Non-Abelian dark sectors and their collider signatures, JHEP 04, 014 (2009), arXiv: 0901.0283 [hep-ph]
370
Batell B.Pospelov M.Ritz A., Probing a secluded U(1) at B-factories, Phys. Rev. D 79, 115008 (2009), arXiv: 0903.0363 [hep-ph]
371
Adachi I.(Belle-II) ., et al.., Search for an invisibly decaying Z' boson at Belle II in e+e− → µ+µ−(e± μ∓) plus missing energy final states, Phys. Rev. Lett. 124, 141801 (2020), arXiv: 1912.11276 [hep-ex]
372
Abudinén F.(Belle-II) ., et al.., Search for axionlike particles produced in e+e− collisions at Belle II, Phys. Rev. Lett. 125, 161806 (2020), arXiv: 2007.13071 [hep-ex]
Foot R., He X.-G.. Comment on zz-prime mixing in extended gauge theories. Phys. Lett. B, 1991, 267 : 509
376
Kors B.Nath P., A Stueckelberg extension of the standard model, Phys. Lett. B 586, 366 (2004), arXiv: hep-ph/0402047
377
Cheung K.Yuan T.-C., Hidden fermion as milli-charged dark matter in Stueckelberg Z-prime model, JHEP 03, 120 (2007), arXiv: hep-ph/0701107
378
Feldman D.Liu Z.Nath P., Stueckelberg Z' extension with kinetic mixing and millicharged dark matter from the hidden sector, Phys. Rev. D 75, 115001 (2007), arXiv: hep-ph/0702123
379
Jaeckel J.Ringwald A., The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010), arXiv: 1002.0329[hep-ph]
380
Liu Z.Zhang Y., Probing millicharge at BESIII via monophoton searches, Phys. Rev. D 99, 015004 (2019), arXiv: 1808.00983 [hep-ph]
381
Liang J.Liu Z.Ma Y.Zhang Y., Millicharged particles at electron colliders, Phys. Rev. D 102, 015002 (2020), arXiv: 1909.06847 [hep-ph]
A. Prinz A., et al.., Search for millicharged particles at SLAC, Phys. Rev. Lett. 81, 1175 (1998), arXiv: hep-ex/9804008
384
Magill G.Plestid R.Pospelov M.Tsai Y.-D., Millicharged particles in neutrino experiments, Phys. Rev. Lett. 122, 071801 (2019), arXiv: 1806.03310[hep-ph]
385
D. Bowman J.E. E. Rogers A.A. Monsalve R.J. Mozdzen T.Mahesh N., An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555, 67 (2018), arXiv: 1810.05912 [astro-ph.CO]
386
B. Muñoz J.Loeb A., A small amount of mini-charged dark matter could cool the baryons in the early universe, Nature 557, 684 (2018), arXiv: 1802.10094 [astro-ph.CO]
387
Berlin A.Hooper D.Krnjaic G.D. McDermott S., Severely constraining dark matter interpretations of the 21-cm anomaly, Phys. Rev. Lett. 121, 011102 (2018), arXiv: 1803.02804 [hep-ph]
388
Barkana R.J. Outmezguine N.Redigolo D. Volansky T., Strong constraints on light dark matter interpretation of the EDGES signal, Phys. Rev. D 98, 103005 (2018), arXiv: 1803.03091 [hep-ph]
389
H.Brück Circular particle accelerators, PUF, Paris (1966).
390
(2022)
391
Battaglia M.Da Via C.Bortoletto D.Brenner R.Campbell M. Collins P.Dalla Betta G.Demarteau M.Denes P.Graafsma H., et al.., R&d paths of pixel detectors for vertex tracking and radiation imaging, Nucl. Instrum. Methods Phys. Res. A 716, 29 (2013)
392
Contin G., Anderssen E., Greiner L., Schambach J., Silber J., Stezelberger T., Sun X., Szelezniak M., Vu C., Wieman H.. et al.. The maps based PXL vertex detector for the star experiment. J. Instrum., 2015, 10 : C03026
393
Lacasta C., in: Proceedings of the 22nd International Workshop on Vertex Detectors (Vertex2013), 15−20 September (2013), page 5
394
e. a. Abe T., Belle II technical design report, (2010)
395
Balla A.Bencivenni G.Cerioni S.Ciambrone P.De Lucia E. Domenici D.Dong J.Felici G.Gatta M.Jacewicz M., et al.., in: 2011 IEEE Nuclear Science Symposium Conference Record (IEEE, 2011) pp 1002–1005
396
Bencivenni G., Branchini P., Ciambrone P., Czerwinski E., De Lucia E., Di Cicco A., Domenici D., Felici G., Kang X., Morello G.. The cylindrical-gem inner tracker detector of the kloe-2 experiment. Nucl. Instrum. Meth. Phys. Res. A, 2020, 958 : 162366
397
Amoroso A., Baldini R., Bertani M., Bettoni D., Bianchi F., Calcaterra A., Carassiti V., Cerioni S., Chai J., Cibinetto G.. et al.. A cylindrical gem detector with analog readout for the be- siii experiment. Nucl. Instrum. Meth. Phys. Res. A, 2016, 824 : 515
398
P. Lener M., Bencivenni G., de Olivera R., Felici G., Franchino S., Gatta M., Maggi M., Morello G., Sharma A.. The μ-RWELL: A compact, spark protected, single amplification-stage mpgd. Nucl. Instrum. Meth. Phys. Res. A, 2016, 824 : 565
399
Bencivenni G., De Oliveira R., Felici G., Gatta M., Morello G., Ochi A., P. Lener M., Tskhadadze E.. Performance of μ-RWELL detector vs resistivity of the resistive stage. Nucl. Instrum. Meth. Phys. Res. A, 2018, 886 : 36
400
Bencivenni G., Benussi L., Borgonovi L., De Oliveira R., De Simone P., Felici G., Gatta M., Giacomelli P., Morello G., Ochi A.. et al.. The μ-RWELL detector. J. Instrum., 2017, 12 : C06027
401
Bachmann S., Bressan A., Ropelewski L., Sauli F., Sharma A., Mörmann D.. Charge amplification and transfer processes in the gas electron multiplier. Nucl. Instru. Meth. Phys. Res. A, 1999, 438 : 376
402
Agostinelli S., Allison J., A. Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G.. et al.. GEANT4 — a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A, 2003, 506 : 250
403
Bencivenni G.Felici G.Gatta M. Giovannetti M.Morello G.P. Lener M. de Oliveira R.Ochi A.Tskhadadze E., in: Journal of Physics: Conference Series, Vol. 1498 (IOP Publishing, 2020), page 012003
404
Wang H., Wang Y., Yao Y.-Z., Hu J., Yang J., Hao W., Luo Y.-Q.. Aramid paper’s structure and performance and their effect on the mechanical properties of aramid paper honey-comb. J. Funct. Mater., 2013, 44 : 2184
405
Arezoo S., Tagarielli V., Siviour C., Petrinic N.. Compressive deformation of rohacell foams: Effects of strain rate and temperature. Inter. J. Impact Eng., 2013, 51 : 50
406
Contin G., Anderssen E., Greiner L., Schambach J., Silber J., Stezelberger T., Sun X., Szelezniak M., Vu C., Wieman H.. et al.. The maps based pxl vertex detector for the star experiment. J. Instrum., 2015, 10 : C03026
407
Valin I., Hu-Guo C., Baudot J., Bertolone G., Besson A., Colledani C., Claus G., Dorokhov A., Doziere G., Dulinski W.. et al.. A reticle size cmos pixel sensor dedicated to the star hft. J. Instrum., 2012, 7 : C01102
408
Abelev B., Adam J., Adamová D., Aggarwal M., A. Rinella G., Agnello M., Agostinelli A., Agrawal N., Ahammed Z., Ahmad N.. et al.. Technical design report for the upgrade of the alice inner tracking system. J. Phys. G, 2014, 41 : 087002
409
A. Rinella G.. et al.. The alpide pixel sensor chip for the upgrade of the alice inner tracking system. Nucl. Instrum. Meth. Phys. Res. A, 2017, 845 : 583
410
Chen L., et al.., Characterization of the prototype cmos pixel sensor Jadepix-1 for the CEPC vertex detector, (2019)
411
S. Group C., et al.., CEPC conceptual design report: Volume 2 − physics & detector, arXiv: 1811.10545 (2018)
412
Arndt K., Augustin H., Baesso P., Berger N., Berg F., Betancourt C., Bortoletto D., Bravar A., Briggl K., vom Bruch D.. et al.. Technical design of the phase I MU3E experiment. Nucl. Instrum. Meth. Phys. Res. A, 2021, 1014 : 165679
413
Prathapan M.Schimassek R.Benoit M.Casanova R.Ehrler F. Meneses A.Pangaud P.Sultan D.Vilella E.L. Weber A., et al.., in: Proceedings of Topical Workshop on Electronics for Particle Physics-PoS (TWEPP2019) (Sissa Medialab, 2020)
414
Spannagel S.. Silicon technologies for the clic vertex detector. J. Instrum., 2017, 12 : C06006
415
Schöning A.Anders J.Augustin H. Benoit M.Berger N.Dittmeier S.Ehrler F.Fehr A. Golling T.G. Sevilla S., et al.., Mupix and atlaspix-architectures and results, arXiv: 2002.07253 (2020)
416
Snoeys W.. et al.. A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance. Nucl. Instrum. Meth. A, 2017, 871 : 90
417
Gustavino G., et al.., in: 23rd International Workshop on Radiation Imaging Detectors (2022), arXiv: 2209.14676 [physics.ins-det]
418
Paladino A.. Beam background evaluation at superkekb and Belle II. J. Instrum., 2020, 15 : C07023
419
Mager M., collaboration A.. et al.. Alpide, the monolithic active pixel sensor for the alice its upgrade. Nucl. Instrum. Meth. A, 2016, 824 : 434
420
Titov M., in: Innovative Detectors for Supercolliders, World Scientific, 2004, pp 199–226
421
Ablikim M., An Z., Bai J., Berger N., Bian J., Cai X., Cao G., Cao X., Chang J., Chen C.. et al.. Design and construction of the besiii detector. Nucl. Instrum. Meth. A, 2010, 614 : 345
422
Abe T.Adachi I.Adamczyk K.Ahn S.Aihara H. Akai K.Aloi M.Andricek L.Aoki K.Arai Y., et al.., Belle II technical design report, arXiv: 1011.0352 (2010)
423
Adhikari S., Akondi C., Al Ghoul H., Ali A., Amaryan M., Anassontzis E., Austregesilo A., Barbosa F., Barlow J., Barnes A.. et al.. The gluex beamline and detector. Nucl. Instrum. Meth. A, 2021, 987 : 164807
424
Baldini A., Baracchini E., Bemporad C., Berg F., Biasotti M., Boca G., Cattaneo P., Cavoto G., Cei F., Chiappini M.. et al.. The design of the meg ii experiment. Eur. Phys. J. C, 2018, 78 : 1
425
Tassielli G.Collaboration I., et al.., in: 40th International Conference on High Energy physics (2021), p. 877
426
B. Smirnov I.. Modeling of ionization produced by fast charged particles in gases. Nucl. Instrum. Meth. A, 2005, 554 : 474
427
Cao X.-X., Li W.-D., Liu C.-L., Mao Z.-P., Chen S.-J., Deng Z.-Y., He K.-L., Huang X.-T., Huang B., Huang Y.-P.. et al.. Studies of dE/dx measurements with the besiii. Chin. Phys. C, 2010, 34 : 1852
428
Bachmann S., Bressan A., Ropelewski L., Sauli F., Sharma A., Mörmann D.. Charge ampli fication and transfer processes in the gas electron multiplier. Nucl. Instrum. Meth. A, 1999, 438 : 376
Di Mauro A.. et al.. Performance of large area CsI RICH prototypes for ALICE at LHC. Nucl. Instrum. Meth. A, 1999, 433 : 190
431
Boutigny D.Goy C.Karyotakis Y.Lees J.L. Rosier S.Palano A.Chen G.Wang Y. Wen O.Lan Y., et al.., Babar technical design report, Stanford Linear Accelerator Center, Stanford, CA94309 (1995)
432
Singh B., Erni W., Krusche B., Steinacher M., Walford N., Liu B., Liu H., Liu Z., Shen X., Wang C.. et al.. Technical design report for the barrel dirc detector. J. Phys. G, 2019, 46 : 045001
433
Kalicy G., Allison L., Cao T., Dzhygadlo R., Hartlove T., Horn T., Hyde C., Ilieva Y., Nadel-Turonski P., Park K.. et al.. High-performance dirc detector for the future electron ion collider experiment. J. Instrum., 2018, 13 : C04018
434
J. Charles M.Forty (LHCb) R., TORCH: Time of flight identification with Cherenkov radiation, Nucl. Instrum. Meth. A 639, 173 (2011), arXiv: 1009.3793 [physics.ins-det]
435
Wu B., Wang Y., Cao Q., Li Z., Li X., Zhou X., Hu Y., Wang Z., Shao M., Liu J.. et al.. Design of time-to-digital converters for time-over-threshold measurement in picosecond timing detectors. IEEE Trans. Nucl. Sci., 2021, 68 : 470
436
Hu Y., Wang Y., Kuang J., Wu B.. A clock distribution and synchronization scheme over optical links for large-scale physics experiments. IEEE Trans. Nucl. Sci., 2021, 68 : 1351
437
Ablikim M., An Z., Bai J., Berger N., Bian J., Cai X., Cao G., Cao X., Chang J., Chen C.. et al.. Design and construction of the besiii detector. Nucl. Instrum. Meth. Phys. Res. A, 2010, 614 : 345
438
Miyabayashi K.. Belle electromagnetic calorimeter. Nucl. Instrum. Meth. Phys. Res. A, 2002, 494 : 298
439
Yamamoto A., Kichimi H., Kimura N., Inoue H., Yamaoka H., Haruyama T., Mito T., Araoka O., Tadano M., Suzuki S.. et al.. Performance of the topaz thin superconducting solenoid wound with internal winding method. Japan. J. Appl. Phys., 1986, 25 : L440
440
M. Sirunyan A.(CMS) ., et al.., Reconstruction of signal amplitudes in the CMS electromagnetic calorimeter in the presence of overlapping proton−proton interactions, JINST 15, P10002 (2020), arXiv: 2006.14359 [physics.ins-det]
441
S. Huang G., The 15th International Workshop on Tau Lepton Physics, talk on “The Super Tau Charm Factory Plan in China” (2018)
442
B. Liu J., Joint Workshop on Future Tau-Charm Factories, talk on “Detector Concepts for the Super Tau-Charm Facility in China” (2018)
443
Abe T.Adachi I.Adamczyk K.Ahn S.Aihara H. Akai K.Aloi M.Andricek L.Aoki K.Arai Y., et al.., Belle II technical design report, arXiv: 1011.0352 (2010)
Hoshi Y., Kikuchi N., Nagamine T., Neichi K., Yamaguchi A.. Performance of the endcap RPC in the Belle detector under high luminosity operation of the KEKB accelerator. Nucl. Phys. B, 2006, 158 : 190
446
Kanazawa K., Ohnishi Y., Nakayama Y., Kiesling C., Koblitz S.. et al.. Beam background simulation for superKEKB/Belle-II. Proceed. IPAC, 2011, 1109094 : 3700
447
Gouzevitch M.Lagarde F.Laktineh I. Buridon V.Chen X.Combaret C.Eynard A.Germani L. Grenier G.Mathez H., et al.., High rate, fast timing glass rpc for the high ηcms muon detectors, arXiv: 1606.00993 (2016)
448
Collaboration A., et al.., Atlas muon spectrometer: Technical design report (1997)
449
Aubert B., Bazan A., Boucham A., Boutigny D., De Bonis I., Favier J., Gaillard J.-M., Jeremie A., Karyotakis Y., Le Flour T.. et al.. The babar detector. Nucl. Instrum. Meth. Phys. Res. A, 2002, 479 : 1
450
Belle-BaBar Workshop, talk on “RPC and Muon Detection at BELLE” (2002)
451
Ackermann K., Adams N., Adler C., Ahammed Z., Ahmad S., Allgower C., Amonett J., Amsbaugh J., Anderson B., Anderson M.. et al.. Star detector overview. Nucl. Instrum. Meth. Phys. Res. A, 2003, 499 : 624
452
Xie Y.. et al.. Performance study of rpc prototypes for the BESIII muon detector. Chin. Phys. C, 2007, 31 :
453
An F., Bai J., Balantekin A., Band H., Beavis D., Beriguete W., Bishai M., Blyth S., Brown R., Butorov I.. et al.. The detector system of the daya bay reactor neutrino experiment. Nucl. Instrum. Meth. Phys. Res. A, 2016, 811 : 133
454
Aushev T., Besson D., Chilikin K., Chistov R., Danilov M., Katrenko P., Mizuk R., Pakhlova G., Pakhlov P., Rusinov V.. et al.. A scintillator based endcap KL and muon detector for the Belle II experiment. Nucl. Instrum. Meth. Phys. Res. A, 2015, 789 : 134
455
Agostinelli S., Allison J., a. Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G.. et al.. GEANT4 — a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A, 2003, 506 : 250
456
Fang Z., Liu Y., Shi H., Liu J., Shao M.. A hybrid muon detector design with rpc and plastic scintillator for the experiment at the super tau-charm facility. J. Instrum., 2021, 16 : P09022
457
M. Hamada M., R. Rela P., E. da Costa F., H. de Mesquita C.. Radiation damage studies on the optical and mechanical properties of plastic scintillators. Nucl. Instrum. Meth. Phys. Res. A, 1999, 422 : 148
458
Vasil’Chenko V., Lapshin V., Peresypkin A., Konstantinchenko A., Pyshchev A., Shershukov V., Semenov B., Solov’ev A.. New results on radiation damage studies of plastic scintillators. Nucl. Instrum. Meth. A, 1996, 369 : 55
459
Yamamoto A., Mito T., Kimura N., Haruyama T., Yamaoka H., Araoka O., Tadano M., Suzuki S., Kondo Y., Kawai M.. et al.. Quench characteristics and operational stability of the topaz thin superconducting solenoid. Japan. J. Appl. Phys., 1986, 25 : L443
460
Acquistapace G.Collaboration C., et al.., Cms, the magnet project: Technical design report, Technical Design Report CMS (1997)
461
Ma X., et al.., Determination of event start time at BESIII, Chin. Phys. C 32, 744 (2008)
462
H. Zou J., T. Huang X., D. Li W., Lin T., Li T., Zhang K., Y. Deng Z., F. Cao G.. SNiPER: An offline software framework for non-collider physics experiments. J. Phys. Conf. Ser., 2015, 664 : 072053 https://doi.org/10.1088/1742-6596/664/7/072053
463
Li T.Xia X. Huang X.Zou J.Li W.lin T.Zhang K. Deng Z., Design and Development of JUNO Event Data Model, Chin. Phys. C 41, 066201 (2017), arXiv: 1702.04100
Li H., Huang W., Liu D., Song Y., Shao M., Huang X.. Detector geometry management system designed for super tau charm facility offline software. J. Instrum., 2021, 16 : T04004 https://doi.org/10.1088/1748-0221/16/04/T04004
466
Frank M., Gaede F., Grefe C., Mato P.. DD4hep: A detector description toolkit for high energy physics experiments. J. Phys. Conf. Ser., 2014, 513 : 022010 https://doi.org/10.1088/1742-6596/513/2/022010
467
Extensible Markup Language (XML) web page, URL: www.w3.org/XML/ (2022)
468
Agostinelli S.. et al.. GEANT4 – a simulation toolkit. Nucl. Instrum. Meth. A, 2003, 506 : 250
469
Li H., H. Huang W., Liu D., Song Y., Shao M., T. Huang X.. Detector geometry management system designed for Super Tau Charm Facility offline software. JINST, 2021, 16 : T04004 https://doi.org/10.1088/1748-0221/16/04/T04004
470
Ablikim M.(BESIII) ., et al.., Measurement of azimuthal asymmetries in inclusive charged dip- ion production in e+e− annihilations at s = 3.65 GeV, Phys. Rev. Lett. 116, 042001 (2016), arXiv: 1507.06824 [hep-ex]
Ablikim M.(BESIII) ., et al.., Observation of the leptonic decay D+ → τ+ντ, Phys. Rev. Lett. 123, 211802 (2019), arXiv: 1908.08877 [hep-ex]
473
Ablikim M.(BESIII) ., et al.., Determination of the pseudoscalar decay constant f Ds+ via Ds+ → µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890 [hep-ex]
Ablikim M.(BESIII) ., et al.., Precision measurement of the mass of the τ lepton, Phys. Rev. D 90, 012001 (2014), arXiv: 1405.1076 [hep-ex]
476
Airapetian A.(HERMES) ., et al.., Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target, Phys. Rev. Lett. 94, 012002 (2005), arXiv: hep-ex/0408013
477
Airapetian A.(HERMES) ., et al.., Effects of transversity in deep-inelastic scattering by polarized protons, Phys. Lett. B 693, 11 (2010), arXiv: 1006.4221[hep-ex]
478
Adolph C.(COMPASS) ., et al.., Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries, Phys. Lett. B 717, 376 (2012), arXiv: 1205.5121 [hep-ex]
479
Qian X.(Jefferson Lab Hall A) ., et al.., Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target, Phys. Rev. Lett. 107, 072003 (2011), arXiv: 1106.0363 [nucl-ex]
480
Abe K.(Belle) ., et al.., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at Belle, Phys. Rev. Lett. 96, 232002 (2006), arXiv: hep-ex/0507063
481
Seidl R.(Belle) ., et al.., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at s = 10.58-GeV, Phys. Rev. D 78, 032011 (2008) [Erratum: Phys. Rev. D 86, 039905 (2012)], arXiv: 0805.2975 [hep-ex]
482
P. Lees J.(BaBar) ., et al.., Measurement of Collins asymmetries in inclusive production of charged pion pairs in e+e− annihilation at BABAR, Phys. Rev. D 90, 052003 (2014), arXiv: 1309.5278 [hep-ex]
I. Bigi I.I. Sanda A., A “known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037
485
Grossman Y.Nir Y., CP violation in τ±→ π±KSν and D±→ π±KS: The importance of KS−KL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]
486
P. Lees J.(BaBar) ., et al.., Search for CP violation in the decay τ− → π− KS0 (≥ Oπ0)ντ, Phys. Rev. D 85, 031102 (2012) [Erratum: Phys. Rev. D 85, 099904 (2012)], arXiv: 1109.1527 [hep-ex]
487
Bonvicini G.(CLEO) ., et al.., Search for CP violation in τ → Kπντ decays, Phys. Rev. Lett. 88, 111803 (2002), arXiv: hep-ex/0111095
488
Bischofberger M.(Belle) ., et al.., Search for CP violation in τ → KS0πντ decays at Belle, Phys. Rev. Lett. 107, 131801 (2011), arXiv: 1101.0349 [hep-ex]
489
H. Kuhn J.Mirkes E., Structure functions in tau decays, Z. Phys. C 56, 661 (1992) [Erratum: Z. Phys. C 67, 364 (1995)]
490
Jadach S.F. L. Ward B.Was Z., The precision Monte Carlo event generator KK for two fermion final states in e+e− collisions, Comput. Phys. Commun. 130, 260 (2000), arXiv: hep-ph/9912214
Salone N.Adlarson P.Batozskaya V.Kupsc A.Leupold S. Tandean J., Study of CP violation in hyperon decays at super-charm-τ factories with a polarized electron beam, Phys. Rev. D 105, 116022 (2022), arXiv: 2203.03035 [hep-ph]
493
Cronin-Hennessy D.(CLEO) ., et al.., Measurement of Charm Production Cross Sections in e+e− Annihilation at Energies between 3.97 and 4.26-GeV, Phys. Rev. D 80, 072001 (2009), arXiv: 0801.3418 [hep-ex]
494
S. Babu K.Kolda C., Higgs mediated τ → 3μ in the supersymmetric seesaw model, Phys. Rev. Lett. 89, 241802 (2002), arXiv: hep-ph/0206310
495
R. Ellis J.Hisano J.Raidal M.Shimizu Y., A New parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66, 115013 (2002), arXiv: hep-ph/0206110
496
Borzumati F., Masiero A.. Large muon and electron number violations in supergravity the-ories. Phys. Rev. Lett., 1986, 57 : 961 https://doi.org/10.1103/PhysRevLett.57.961
497
Ma E., Neutrino, lepton, and quark masses in supersymmetry, Phys. Rev. D 64, 097302 (2001), arXiv: hep-ph/0107177
498
Yue C.-X.Zhang Y.-M.Liu L.-J., Nonuniversal gauge bosons Z-prime and lepton flavor violation tau decays, Phys. Lett. B 547, 252 (2002), arXiv: hep-ph/0209291
499
E. Kim J., Ko P., Lee D.-G.. More on r-parity- and lepton-family-number-violating couplings from muon(ium) conversion, and τ and π0 decays. Phys. Rev. D, 1997, 56 : 100 https://doi.org/10.1103/PhysRevD.56.100
500
Aubert B.(BaBar) ., et al.., Searches for lepton flavor violation in the decays τ± → e±γ and τ± → μ±γ, Phys. Rev. Lett. 104, 021802 (2010), arXiv: 0908.2381 [hep-ex]
501
Hayasaka K.(Belle) ., et al.., New search for τ → μγ and τ → eγ decays at Belle, Phys. Lett. B 666, 16 (2008), arXiv: 0705.0650 [hep-ex]
502
Balossini G.M. Carloni Calame C.Montagna G. Nicrosini O.Piccinini F., Matching perturbative and parton shower corrections to Bhabha process at flavour factories, Nucl. Phys. B 758, 227 (2006), arXiv: hep-ph/0607181
503
Balossini G.Bignamini C.M. C. Calame C.Montagna G.Nicrosini O.Piccinini F., Photon pair production at flavour factories with per mille accuracy, Phys. Lett. B 663, 209 (2008), arXiv: 0801.3360 [hep-ph]
504
Rodrigo G.Czyz H.H. Kuhn J.Szopa M., Radiative return at NLO and the measurement of the hadronic cross-section in electron positron annihilation, Eur. Phys. J. C 24, 71 (2002), arXiv: hep-ph/0112184
505
Actis S.(Working Group on Radiative Corrections .Carlo generators for low energies) Monte, et al.., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66, 585 (2010), arXiv: 0912.0749 [hep-ph]
506
Sturm C., Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED, Nucl. Phys. B 874, 698 (2013), arXiv: 1305.0581 [hep-ph]
507
Jegerlehner F., The Running fine structure constant alpha(E) via the Adler function, Nucl. Phys. B Suppl. 181–182, 135 (2008), arXiv: 0807.4206 [hep-ph]