Recently, with the emergence of ChatGPT, the field of artificial intelligence has garnered widespread attention from various sectors of society. Reservoir Computing (RC) is a neuromorphic computing algorithm used to analyze time-series data. Unlike traditional artificial neural networks that require the weight values of all nodes in the trained network, RC only needs to train the readout layer. This makes the training process faster and more efficient, and it has been used in various applications, including speech recognition, image classification, and control systems. Its flexibility and efficiency make it a popular choice for processing large amounts of complex data. A recent research trend is to develop physical RC, which utilizes the nonlinear dynamic and short-term memory properties of physical systems (photonic modules, spintronic devices, memristors, etc.) to construct a fixed random neural network structure for processing input data to reduce computing time and energy. In this paper, we introduced the recent development of memristors and demonstrated the remarkable data processing capability of RC systems based on memristors. Not only do they possess excellent data processing ability comparable to digital RC systems, but they also have lower energy consumption and greater robustness. Finally, we discussed the development prospects and challenges faced by memristors-based RC systems.
Misra J. , Saha I. . Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing, 2010, 74(1−3): 239 https://doi.org/10.1016/j.neucom.2010.03.021
2
Liu Z. , Tang J. , Gao B. , Li X. , Yao P. , Lin Y. , Liu D. , Hong B. , Qian H. , Wu H. . Multichannel parallel processing of neural signals in memristor arrays. Sci. Adv., 2020, 6(41): eabc4797 https://doi.org/10.1126/sciadv.abc4797
Ke S. , Jiang L. , Zhao Y. , Xiao Y. , Jiang B. , Cheng G. , Wu F. , Cao G. , Peng Z. , Zhu M. , Ye C. . Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508 https://doi.org/10.1007/s11467-022-1173-2
5
J. Hopfield J. . Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA, 1982, 79(8): 2554 https://doi.org/10.1073/pnas.79.8.2554
6
J. Werbos P. . Backpropagation through time: What it does and how to do it. Proc. IEEE, 1990, 78(10): 1550 https://doi.org/10.1109/5.58337
7
Lukoševičius M. , Jaeger H. . Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev., 2009, 3(3): 127 https://doi.org/10.1016/j.cosrev.2009.03.005
8
Jaeger H., The “echo state” approach to analysing and training recurrent neural networks – with an Erratum note
9
Antonik P. , Duport F. , Hermans M. , Smerieri A. , Haelterman M. , Massar S. . Online training of an opto-electronic reservoir computer applied to real-time channel equalization. IEEE Trans. Neural Netw. Learn. Syst., 2017, 28(11): 2686 https://doi.org/10.1109/TNNLS.2016.2598655
10
Lao J. , Yan M. , Tian B. , Jiang C. , Luo C. , Xie Z. , Zhu Q. , Bao Z. , Zhong N. , Tang X. , Sun L. , Wu G. , Wang J. , Peng H. , Chu J. , Duan C. . Ultralow‐power machine vision with self‐powered sensor reservoir. Adv. Sci. (Weinh.), 2022, 9(15): 2106092 https://doi.org/10.1002/advs.202106092
11
Zhang M. , Liang Z. , R. Huang Z. . Hardware optimization for photonic time-delay reservoir computer dynamics. Neuromorph. Comput. Eng., 2023, 3(1): 014008 https://doi.org/10.1088/2634-4386/acb8d7
Papp A. , Csaba G. , Porod W. . Characterization of nonlinear spin-wave interference by reservoir-computing metrics. Appl. Phys. Lett., 2021, 119(11): 112403 https://doi.org/10.1063/5.0048982
14
Moon J. , Ma W. , H. Shin J. , Cai F. , Du C. , H. Lee S. , D. Lu W. . Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron., 2019, 2(10): 480 https://doi.org/10.1038/s41928-019-0313-3
15
Coy H. , Cabrera R. , Sepúlveda N. , E. Fernández F. . Optoelectronic and all-optical multiple memory states in vanadium dioxide. J. Appl. Phys., 2010, 108(11): 113115 https://doi.org/10.1063/1.3518508
16
Liu K. , Cheng C. , Suh J. , Tang-Kong R. , Fu D. , Lee S. , Zhou J. , O. Chua L. , Wu J. . Powerful, multifunctional torsional micromuscles activated by phase transition. Adv. Mater., 2014, 26(11): 1746 https://doi.org/10.1002/adma.201304064
17
Yi W. , K. Tsang K. , K. Lam S. , Bai X. , A. Crowell J. , A. Flores E. . Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun., 2018, 9(1): 4661 https://doi.org/10.1038/s41467-018-07052-w
18
Ismail M. , Abbas H. , Choi C. , Kim S. . Controllable analog resistive switching and synaptic characteristics in ZrO2/ZTO bilayer memristive device for neuromorphic systems. Appl. Surf. Sci., 2020, 529: 147107 https://doi.org/10.1016/j.apsusc.2020.147107
19
Ismail M. , Abbas H. , Choi C. , Kim S. . Stabilized and RESET-voltage controlled multi-level switching characteristics in ZrO2-based memristors by inserting a-ZTO interface layer. J. Alloys Compd., 2020, 835: 155256 https://doi.org/10.1016/j.jallcom.2020.155256
20
G. Hu S. , Liu Y. , P. Chen T. , Liu Z. , Yu Q. , J. Deng L. , Yin Y. , Hosaka S. . Emulating the Ebbinghaus forgetting curve of the human brain with a NiO-based memristor. Appl. Phys. Lett., 2013, 103(13): 133701 https://doi.org/10.1063/1.4822124
21
Li Y. , Chu J. , Duan W. , Cai G. , Fan X. , Wang X. , Wang G. , Pei Y. . Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater. Interfaces, 2018, 10(29): 24598 https://doi.org/10.1021/acsami.8b05749
22
Q. Le V. , H. Do T. , R. D. Retamal J. , W. Shao P. , H. Lai Y. , W. Wu W. , H. He J. , L. Chueh Y. , H. Chu Y. . Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy, 2019, 56: 322 https://doi.org/10.1016/j.nanoen.2018.10.042
23
Zhang L. , Tang Z. , Fang J. , Jiang X. , P. Jiang Y. , J. Sun Q. , M. Fan J. , G. Tang X. , Zhong G. . Synaptic and resistive switching behaviors in NiO/Cu2O heterojunction memristor for bioinspired neuromorphic computing. Appl. Surf. Sci., 2022, 606: 154718 https://doi.org/10.1016/j.apsusc.2022.154718
24
Chang T. , H. Jo S. , H. Kim K. , Sheridan P. , Gaba S. , Lu W. . Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A, 2011, 102(4): 857 https://doi.org/10.1007/s00339-011-6296-1
25
Moon J. , Ma W. , H. Shin J. , Cai F. , Du C. , H. Lee S. , D. Lu W. . Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron., 2019, 2(10): 480 https://doi.org/10.1038/s41928-019-0313-3
26
Shin J. , Kang M. , Kim S. . Gradual conductance modulation of Ti/WOx/Pt memristor with self-rectification for a neuromorphic system. Appl. Phys. Lett., 2021, 119(1): 012102 https://doi.org/10.1063/5.0053478
27
Tao Y. , Wang Z. , Xu H. , Ding W. , Zhao X. , Lin Y. , Liu Y. . Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy, 2020, 71: 104628 https://doi.org/10.1016/j.nanoen.2020.104628
28
Zhang L. , Tang Z. , Yao D. , Fan Z. , Hu S. , J. Sun Q. , G. Tang X. , P. Jiang Y. , Guo X. , Huang M. , Zhong G. , Gao J. . Synaptic behaviors in flexible Au/WOx/Pt/mica memristor for neuromorphic computing system. Mater. Today Phys., 2022, 23: 100650 https://doi.org/10.1016/j.mtphys.2022.100650
29
H. Huang C. , S. Huang J. , M. Lin S. , Y. Chang W. , H. He J. , L. Chueh Y. . ZnO1–x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano, 2012, 6(9): 8407 https://doi.org/10.1021/nn303233r
30
Park J.Lee S.Lee J.Yong K., A light incident angle switchable ZnO nanorod memristor: Reversible switching behavior between two non-volatile memory devices, Adv. Mater. 25(44), 6423 (2013)
31
Kumar A. , Das M. , Garg V. , S. Sengar B. , T. Htay M. , Kumar S. , Kranti A. , Mukherjee S. . Forming-free high-endurance Al/ZnO/Al memristor fabricated by dual ion beam sputtering. Appl. Phys. Lett., 2017, 110(25): 253509 https://doi.org/10.1063/1.4989802
32
Dirkmann S. , Kaiser J. , Wenger C. , Mussenbrock T. . Filament growth and resistive switching in hafnium oxide memristive devices. ACS Appl. Mater. Interfaces, 2018, 10(17): 14857 https://doi.org/10.1021/acsami.7b19836
33
Ku B. , Abbas Y. , Kim S. , S. Sokolov A. , R. Jeon Y. , Choi C. . Improved resistive switching and synaptic characteristics using Ar plasma irradiation on the Ti/HfO2 interface. J. Alloys Compd., 2019, 797: 277 https://doi.org/10.1016/j.jallcom.2019.05.114
34
S. Kim G. , Song H. , K. Lee Y. , H. Kim J. , Kim W. , H. Park T. , J. Kim H. , Min Kim K. , S. Hwang C. . Defect-engineered electroforming-free analog HfOx memristor and its application to the neural network. ACS Appl. Mater. Interfaces, 2019, 11(50): 47063 https://doi.org/10.1021/acsami.9b16499
35
J. Lee M.B. Lee C.Lee D.R. Lee S.Chang M.H. Hur J.B. Kim Y.J. Kim C.H. Seo D.Seo S.I. Chung U.K. Yoo I.Kim K., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures, Nat. Mater. 10(8), 625 (2011)
36
Joshua Yang J. , X. Zhang M. , D. Pickett M. , Miao F. , Paul Strachan J. , D. Li W. , Yi W. , A. A. Ohlberg D. , Joon Choi B. , Wu W. , H. Nickel J. , Medeiros-Ribeiro G. , S. Williams R. . Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett., 2012, 100(11): 113501 https://doi.org/10.1063/1.3693392
37
Miao F. , Yi W. , Goldfarb I. , J. Yang J. , X. Zhang M. , D. Pickett M. , P. Strachan J. , Medeiros-Ribeiro G. , S. Williams R. . Continuous electrical tuning of the chemical composition of TaOx-based memristors. ACS Nano, 2012, 6(3): 2312 https://doi.org/10.1021/nn2044577
38
Wang Z. , Yin M. , Zhang T. , Cai Y. , Wang Y. , Yang Y. , Huang R. . Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing. Nanoscale, 2016, 8(29): 14015 https://doi.org/10.1039/C6NR00476H
39
H. Li L. , H. Xue K. , Q. Zou L. , H. Yuan J. , Sun H. , Miao X. . Multilevel switching in Mg-doped HfOx memristor through the mutual-ion effect. Appl. Phys. Lett., 2021, 119(15): 153505 https://doi.org/10.1063/5.0065840
40
H. Ryu J. , Mahata C. , Kim S. . Long-term and short-term plasticity of Ta2O5/HfO2 memristor for hardware neuromorphic application. J. Alloys Compd., 2021, 850: 156675 https://doi.org/10.1016/j.jallcom.2020.156675
41
Saleem A. , M. Simanjuntak F. , Chandrasekaran S. , Rajasekaran S. , Y. Tseng T. , Prodromakis T. . Transformation of digital to analog switching in TaOx-based memristor device for neuromorphic applications. Appl. Phys. Lett., 2021, 118(11): 112103 https://doi.org/10.1063/5.0041808
42
Du L. , Wang Z. , Zhao G. . Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17(2): 23602 https://doi.org/10.1007/s11467-022-1152-7
43
Zhou Z. , Yang F. , Wang S. , Wang L. , Wang X. , Wang C. , Xie Y. , Liu Q. . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204 https://doi.org/10.1007/s11467-021-1114-5
44
T. Chan Y. , Fu Y. , Yu L. , Y. Wu F. , W. Wang H. , H. Lin T. , H. Chan S. , C. Wu M. , C. Wang J. . Compacted self-assembly graphene with hydrogen plasma surface modification for robust artificial electronic synapses of gadolinium oxide memristors. Adv. Mater. Interfaces, 2020, 7(20): 2000860 https://doi.org/10.1002/admi.202000860
45
Zhao X. , Ma J. , Xiao X. , Liu Q. , Shao L. , Chen D. , Liu S. , Niu J. , Zhang X. , Wang Y. , Cao R. , Wang W. , Di Z. , Lv H. , Long S. , Liu M. . Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv. Mater., 2018, 30(14): 1705193 https://doi.org/10.1002/adma.201705193
46
Lee J. , Du C. , Sun K. , Kioupakis E. , D. Lu W. . Tuning ionic transport in memristive devices by graphene with engineered nanopores. ACS Nano, 2016, 10(3): 3571 https://doi.org/10.1021/acsnano.5b07943
47
Naqi M. . et al.. Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. npj 2D Mater. Appl., 2022, 6: 53 https://doi.org/10.1038/s41699-022-00325-5
48
Yan X. , Zhao Q. , P. Chen A. , Zhao J. , Zhou Z. , Wang J. , Wang H. , Zhang L. , Li X. , Xiao Z. , Wang K. , Qin C. , Wang G. , Pei Y. , Li H. , Ren D. , Chen J. , Liu Q. . Vacancy‐induced synaptic behavior in 2D WS2 nanosheet-based memristor for low‐power neuromorphic computing. Small, 2019, 15(24): 1901423 https://doi.org/10.1002/smll.201901423
49
Xie Z. , Duo Y. , Lin Z. , Fan T. , Xing C. , Yu L. , Wang R. , Qiu M. , Zhang Y. , Zhao Y. , Yan X. , Zhang H. . The rise of 2D photothermal materials beyond graphene for clean water production. Adv. Sci. (Weinh.), 2020, 7(5): 1902236 https://doi.org/10.1002/advs.201902236
50
Manzeli S.Ovchinnikov D.Pasquier D.V. Yazyev O.Kis A., 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(8), 17033 (2017)
51
Shi Y. , Liang X. , Yuan B. , Chen V. , Li H. , Hui F. , Yu Z. , Yuan F. , Pop E. , S. P. Wong H. , Lanza M. . Electronic synapses made of layered two-dimensional materials. Nat. Electron., 2018, 1(8): 458 https://doi.org/10.1038/s41928-018-0118-9
52
Moreno C. , Munuera C. , Valencia S. , Kronast F. , Obradors X. , Ocal C. . Reversible resistive switching and multilevel recording in La0.7Sr0.3MnO3 thin films for low cost nonvolatile memories. Nano Lett., 2010, 10(10): 3828 https://doi.org/10.1021/nl1008162
53
Liu D. , Wang N. , Wang G. , Shao Z. , Zhu X. , Zhang C. , Cheng H. . Nonvolatile bipolar resistive switching in amorphous Sr-doped LaMnO3 thin films deposited by radio frequency magnetron sputtering. Appl. Phys. Lett., 2013, 102(13): 134105 https://doi.org/10.1063/1.4800229
54
Liu D. , Cheng H. , Zhu X. , Wang G. , Wang N. . Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films. ACS Appl. Mater. Interfaces, 2013, 5(21): 11258 https://doi.org/10.1021/am403497y
55
Lee N. , Lansac Y. , Hwang H. , H. Jang Y. . Switching mechanism of Al/La1−xSrxMnO3 resistance random access memory. I. Oxygen vacancy formation in perovskites. RSC Adv., 2015, 5(124): 102772 https://doi.org/10.1039/C5RA21982E
56
Szot K. , Speier W. , Bihlmayer G. , Waser R. . Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater., 2006, 5(4): 312 https://doi.org/10.1038/nmat1614
57
Hu Z. , Li Q. , Li M. , Wang Q. , Zhu Y. , Liu X. , Zhao X. , Liu Y. , Dong S. . Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett., 2013, 102(10): 102901 https://doi.org/10.1063/1.4795145
58
Messerschmitt F. , Kubicek M. , Schweiger S. , L. M. Rupp J. . Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO3−δ bits: The memristor-based cottrell analysis connecting material to device performance. Adv. Funct. Mater., 2014, 24(47): 7448 https://doi.org/10.1002/adfm.201402286
59
H. Shen Z. , H. Li W. , G. Tang X. , Hu J. , Y. Wang K. , P. Jiang Y. , B. Guo X. , artificial synapse based on Sr(Ti An . Co)O3 films. Mater. Today Commun., 2022, 33: 104754 https://doi.org/10.1016/j.mtcomm.2022.104754
60
Yan X. , Han X. , Fang Z. , Zhao Z. , Zhang Z. , Sun J. , Shao Y. , Zhang Y. , Wang L. , Sun S. , Guo Z. , Jia X. , Zhang Y. , Guan Z. , Shi T. . Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing. Front. Phys., 2023, 18(6): 63301 https://doi.org/10.1007/s11467-023-1308-0
61
Q. Yang J. , Wang R. , P. Wang Z. , Y. Ma Q. , Y. Mao J. , Ren Y. , Yang X. , Zhou Y. , T. Han S. . Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks. Nano Energy, 2020, 74: 104828 https://doi.org/10.1016/j.nanoen.2020.104828
62
Wang L. , Sun J. , Zhang Y. , Niu J. , Zhao Z. , Guo Z. , Zhang Z. , Shao Y. , Sun S. , Jia X. , Han X. , Yan X. . Ferroelectric memristor based on Li-doped BiFeO3 for information processing. Appl. Phys. Lett., 2022, 121(24): 241901 https://doi.org/10.1063/5.0131063
63
Luo F.M. Zhong W.G. Tang X.Y. Chen J.P. Jiang Y.X. Liu Q., Application of artificial synapse based on all-inorganic perovskite memristor in neuromorphic computing, Nano Mater. Sci., S258996512300003X (2023)
64
M. Zhong W.G. Tang X.L. Bai L.Y. Chen J.F. Dong H.J. Sun Q.P. Jiang Y.X. Liu Q. A halide perovskite thin film diode with modulated depletion layers for artificial synapse, J. Alloys Compd. 960, 170773 (2023)
65
Ye F. , G. Tang X. , Y. Chen J. , M. Zhong W. , Zhang L. , P. Jiang Y. , X. Liu Q. . Neurosynaptic-like behavior of Ce-doped BaTiO3 ferroelectric thin film diodes for visual recognition applications. Appl. Phys. Lett., 2022, 121(17): 171901 https://doi.org/10.1063/5.0120159
66
M. Zhong W. , G. Tang X. , X. Liu Q. , P. Jiang Y. . Artificial optoelectronic synaptic characteristics of Bi2FeMnO6 ferroelectric memristor for neuromorphic computing. Mater. Des., 2022, 222: 111046 https://doi.org/10.1016/j.matdes.2022.111046
67
Su R. , Xiao R. , Shen C. , Song D. , Chen J. , Zhou B. , Cheng W. , Li Y. , Wang X. , Miao X. . Oxygen ion migration induced polarity switchable SrFeOx memristor for high-precision handwriting recognition. Appl. Surf. Sci., 2023, 617: 156620 https://doi.org/10.1016/j.apsusc.2023.156620
68
A. Lapkin D. , V. Emelyanov A. , A. Demin V. , V. Erokhin V. , A. Feigin L. , K. Kashkarov P. , V. Kovalchuk M. . Polyaniline-based memristive microdevice with high switching rate and endurance. Appl. Phys. Lett., 2018, 112(4): 043302 https://doi.org/10.1063/1.5013929
Gerasimov Y. , Zykov E. , Prudnikov N. , Talanov M. , Toschev A. , Erokhin V. . On the organic memristive device resistive switching efficacy. Chaos Solitons Fractals, 2021, 143: 110549 https://doi.org/10.1016/j.chaos.2020.110549
71
Li S. , Zeng F. , Chen C. , Liu H. , Tang G. , Gao S. , Song C. , Lin Y. , Pan F. , Guo D. . Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C, 2013, 1(34): 5292 https://doi.org/10.1039/c3tc30575a
72
Ali S. , Bae J. , H. Choi K. , H. Lee C. , H. Doh Y. , Shin S. , P. Kobayashi N. . Organic non-volatile memory cell based on resistive elements through electro-hydrodynamic technique. Org. Electron., 2015, 17: 121 https://doi.org/10.1016/j.orgel.2014.11.028
73
C. Nguyen V. , S. Lee P. . Coexistence of write once read many memory and memristor in blend of Poly(3, 4-ethylenedioxythiophene): Polystyrene sulfonate and polyvinyl alcohol. Sci. Rep., 2016, 6(1): 38816 https://doi.org/10.1038/srep38816
74
P. Ma L. , Liu J. , Yang Y. . Organic electrical bistable devices and rewritable memory cells. Appl. Phys. Lett., 2002, 80(16): 2997 https://doi.org/10.1063/1.1473234
75
Kano M. , Orito S. , Tsuruoka Y. , Ueno N. . Nonvolatile memory effect of an Al/2-Amino-4, 5-dicyanoimidazole/Al structure. Synth. Met., 2005, 153(1−3): 265 https://doi.org/10.1016/j.synthmet.2005.07.090
76
Terai M. , Fujita K. , Tsutsui T. . Electrical bistability of organic thin-film device using Ag electrode. Jpn. J. Appl. Phys., 2006, 45(4B): 3754 https://doi.org/10.1143/JJAP.45.3754
77
Zhao Y. , J. Sun W. , Wang J. , H. He J. , Li H. , F. Xu Q. , J. Li N. , Y. Chen D. , M. Lu J. . All‐inorganic ionic polymer‐based memristor for high‐performance and flexible artificial synapse. Adv. Funct. Mater., 2020, 30(39): 2004245 https://doi.org/10.1002/adfm.202004245
78
Li J. , Qian Y. , Li W. , H. Lin Y. , Qian H. , Zhang T. , Sun K. , Wang J. , Zhou J. , Chen Y. , Zhu J. , Zhang G. , Yi M. , Huang W. . Humidity‐enabled organic artificial synaptic devices with ultrahigh moisture resistivity. Adv. Electron. Mater., 2022, 8(10): 2200320 https://doi.org/10.1002/aelm.202200320
79
Park Y. , S. Lee J. . Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 2017, 11(9): 8962 https://doi.org/10.1021/acsnano.7b03347
80
M. Zhong W. , L. Luo C. , G. Tang X. , B. Lu X. , Y. Dai J. . Dynamic FET-based memristor with relaxor antiferroelectric HfO2 gate dielectric for fast reservoir computing. Mater. Today Nano, 2023, 23: 100357 https://doi.org/10.1016/j.mtnano.2023.100357
81
Choi E. , Schuetz A. , F. Stewart W. , Sun J. . Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc., 2017, 24(2): 361 https://doi.org/10.1093/jamia/ocw112
82
Maass W. , Natschläger T. , Markram H. . Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput., 2002, 14(11): 2531 https://doi.org/10.1162/089976602760407955
83
Zhang G. , Y. Xiong Z. , Gong Y. , Zhu Z. , Lv Z. , Wang Y. , Q. Yang J. , Xing X. , P. Wang Z. , Qin J. , Zhou Y. , T. Han S. . Polyoxometalate accelerated cationic migration for reservoir computing. Adv. Funct. Mater., 2022, 32(45): 2204721 https://doi.org/10.1002/adfm.202204721
84
Du C. , Cai F. , A. Zidan M. , Ma W. , H. Lee S. , D. Lu W. . Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun., 2017, 8(1): 2204 https://doi.org/10.1038/s41467-017-02337-y
85
Milano G. , Pedretti G. , Montano K. , Ricci S. , Hashemkhani S. , Boarino L. , Ielmini D. , Ricciardi C. . In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater., 2022, 21(2): 195 https://doi.org/10.1038/s41563-021-01099-9
86
N. Matsukatova A. , V. Prudnikov N. , A. Kulagin V. , Battistoni S. , A. Minnekhanov A. , D. Trofimov A. , A. Nesmelov A. , A. Zavyalov S. , N. Malakhova Y. , Parmeggiani M. , Ballesio A. , L. Marasso S. , N. Chvalun S. , A. Demin V. , V. Emelyanov A. , Erokhin V. . Combination of organic‐based reservoir computing and spiking neuromorphic systems for a robust and efficient pattern classification. Adv. Intell. Syst., 2023, 5(6): 2200407 https://doi.org/10.1002/aisy.202200407
87
V. Prudnikov N.A. Kulagin V.Battistoni S.A. Demin V.V. Erokhin V.V. Emelyanov A., Polyaniline‐based memristive devices as key elements of robust reservoir computing for image classification, Phys. Status Solidi A 220(11), 2200700 (2023)
88
A. Koroleva A.S. Kuzmichev D.G. Kozodaev M.V. Zabrosaev I.V. Korostylev E.M. Markeev A., CMOS-compatible self-aligned 3D memristive elements for reservoir computing systems, Appl. Phys. Lett. 122(2), 022905 (2023)
89
Appeltant L. , C. Soriano M. , Van der Sande G. , Danckaert J. , Massar S. , Dambre J. , Schrauwen B. , R. Mirasso C. , Fischer I. . Information processing using a single dynamical node as complex system. Nat. Commun., 2011, 2(1): 468 https://doi.org/10.1038/ncomms1476
90
Appeltant L. , Van der Sande G. , Danckaert J. , Fischer I. . Constructing optimized binary masks for reservoir computing with delay systems. Sci. Rep., 2014, 4(1): 3629 https://doi.org/10.1038/srep03629
91
Zhong Y. , Tang J. , Li X. , Gao B. , Qian H. , Wu H. . Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun., 2021, 12(1): 408 https://doi.org/10.1038/s41467-020-20692-1
92
Zhong Y.Tang J.Li X.Liang X.Liu Z.Li Y.Xi Y.Yao P.Hao Z.Gao B.Qian H.Wu H., A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing, Nat. Electron. 5(10), 672 (2022)
Yang Y. , Cui H. , Ke S. , Pei M. , Shi K. , Wan C. , Wan Q. . Reservoir computing based on electric-double-layer coupled InGaZnO artificial synapse. Appl. Phys. Lett., 2023, 122(4): 043508 https://doi.org/10.1063/5.0137647
95
Jaurigue L. , Lüdge K. . Connecting reservoir computing with statistical forecasting and deep neural networks. Nat. Commun., 2022, 13(1): 227 https://doi.org/10.1038/s41467-021-27715-5
96
Bollt E. . On explaining the surprising success of reservoir computing forecaster of chaos? The universal machine learning dynamical system with contrast to VAR and DMD,. Chaos, 2021, 31(1): 013108 https://doi.org/10.1063/5.0024890
97
Gonon L. , P. Ortega J. . Reservoir computing universality with stochastic inputs. IEEE Trans. Neural Netw. Learn. Syst., 2020, 31(1): 100 https://doi.org/10.1109/TNNLS.2019.2899649
98
G. Hart A. , L. Hook J. , H. P. Dawes J. . Echo State Networks trained by Tikhonov least squares are L2(μ) approximators of ergodic dynamical systems. Physica D, 2021, 421: 132882 https://doi.org/10.1016/j.physd.2021.132882
99
J. Gauthier D. , Bollt E. , Griffith A. , A. S. Barbosa W. . Next generation reservoir computing. Nat. Commun., 2021, 12(1): 5564 https://doi.org/10.1038/s41467-021-25801-2
100
Ren K. , Y. Zhang W. , Wang F. , Y. Guo Z. , S. Shang D. . Next-generation reservoir computing based on memristor array. Acta Physica Sinica, 2022, 71(14): 140701 https://doi.org/10.7498/aps.71.20220082