Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (2): 23201   https://doi.org/10.1007/s11467-023-1337-8
  本期目录
Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors
Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye()
School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, and Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-sen University, Guangzhou 510275, China
 全文: PDF(3704 KB)   HTML
Abstract

Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena, which can be fundamentally traced back to non-unitarity. In this paper, we introduce an interesting quantity (denoted as η) as a new variant of the Petermann factor to directly and efficiently measure non-unitarity and the associated non-Hermitian physics. By tuning the model parameters of underlying non-Hermitian systems, we find that the discontinuity of both η and its first-order derivative (denoted as η) pronouncedly captures rich physics that is fundamentally caused by non-unitarity. More concretely, in the 1D non-Hermitian topological systems, two mutually orthogonal edge states that are respectively localized on two boundaries become non-orthogonal in the vicinity of discontinuity of η as a function of the model parameter, which is dubbed “edge state transition”. Through theoretical analysis, we identify that the appearance of edge state transition indicates the existence of exceptional points (EPs) in topological edge states. Regarding the discontinuity of η, we investigate a two-level non-Hermitian model and establish a connection between the points of discontinuity of η and EPs of bulk states. By studying this connection in more general lattice models, we find that some models have discontinuity of η, implying the existence of EPs in bulk states.

Key wordsnon-Hermitian    Su−Schrieffer−Heeger (SSH) model    exceptional point
收稿日期: 2023-04-20      出版日期: 2023-10-07
Corresponding Author(s): Peng Ye   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(2): 23201.
Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye. Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors. Front. Phys. , 2024, 19(2): 23201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1337-8
https://academic.hep.com.cn/fop/CN/Y2024/V19/I2/23201
Discontinuity EPs Model
η Topological edge states I
η Bulk states II, III, IV
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
  
  
1 M. Bender C.. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
https://doi.org/10.1088/0034-4885/70/6/R03
2 Cao H., Wiersig J.. Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 2015, 87(1): 61
https://doi.org/10.1103/RevModPhys.87.61
3 Rotter I.. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor., 2009, 42(15): 153001
https://doi.org/10.1088/1751-8113/42/15/153001
4 Ashida Y., Gong Z., Ueda M.. Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
https://doi.org/10.1080/00018732.2021.1876991
5 J. Bergholtz E., C. Budich J., K. Kunst F.. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 2021, 93(1): 015005
https://doi.org/10.1103/RevModPhys.93.015005
6 Lin R., Tai T., Li L., H. Lee C.. Topological non-Hermitian skin effect. Front. Phys., 2023, 18(5): 53605
https://doi.org/10.1007/s11467-023-1309-z
7 Yao S., Wang Z.. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
https://doi.org/10.1103/PhysRevLett.121.086803
8 Yokomizo K., Murakami S.. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 2019, 123(6): 066404
https://doi.org/10.1103/PhysRevLett.123.066404
9 Yang Z., Zhang K., Fang C., Hu J.. Non-Hermitian bulk−boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett., 2020, 125(22): 226402
https://doi.org/10.1103/PhysRevLett.125.226402
10 D. Heiss W.. The physics of exceptional points. J. Phys. A, 2012, 45(44): 444016
https://doi.org/10.1088/1751-8113/45/44/444016
11 Gao T., Estrecho E., Y. Bliokh K., C. H. Liew T., D. Fraser M., Brodbeck S., Kamp M., Schneider C., Höfling S., Yamamoto Y., Nori F., S. Kivshar Y., G. Truscott A., G. Dall R., A. Ostrovskaya E.. Observation of non-Hermitian degeneracies in a chaotic exciton‒polariton billiard. Nature, 2015, 526(7574): 554
https://doi.org/10.1038/nature15522
12 Zhen B., W. Hsu C., Igarashi Y., Lu L., Kaminer I., Pick A., L. Chua S., D. Joannopoulos J., Soljačić M.. Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525(7569): 354
https://doi.org/10.1038/nature14889
13 Hahn C., Choi Y., W. Yoon J., H. Song S., H. Oh C., Berini P.. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices. Nat. Commun., 2016, 7(1): 12201
https://doi.org/10.1038/ncomms12201
14 Zhang D., Q. Luo X., P. Wang Y., F. Li T., Q. You J.. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 2017, 8(1): 1368
https://doi.org/10.1038/s41467-017-01634-w
15 A. Miri M., Alù A.. Exceptional points in optics and photonics. Science, 2019, 363(6422): eaar7709
https://doi.org/10.1126/science.aar7709
16 Wang S., Hou B., Lu W., Chen Y., Q. Zhang Z., T. Chan C.. Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators. Nat. Commun., 2019, 10(1): 832
https://doi.org/10.1038/s41467-019-08826-6
17 Xiao L., Deng T., Wang K., Wang Z., Yi W., Xue P.. Observation of non-Bloch parity‒time symmetry and exceptional points. Phys. Rev. Lett., 2021, 126(23): 230402
https://doi.org/10.1103/PhysRevLett.126.230402
18 Hu H., Sun S., Chen S.. Knot topology of exceptional point and non-Hermitian no−go theorem. Phys. Rev. Res., 2022, 4(2): L022064
https://doi.org/10.1103/PhysRevResearch.4.L022064
19 K. Kunst F., Edvardsson E., C. Budich J., J. Bergholtz E.. Biorthogonal bulk‒boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808
https://doi.org/10.1103/PhysRevLett.121.026808
20 H. Lee C., Thomale R.. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 2019, 99(20): 201103
https://doi.org/10.1103/PhysRevB.99.201103
21 Okuma N., Kawabata K., Shiozaki K., Sato M.. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 2020, 124(8): 086801
https://doi.org/10.1103/PhysRevLett.124.086801
22 Okuma N., Sato M.. Non-Hermitian skin effects in Hermitian correlated or disordered systems: Quantities sensitive or insensitive to boundary effects and pseudo-quantum-number. Phys. Rev. Lett., 2021, 126(17): 176601
https://doi.org/10.1103/PhysRevLett.126.176601
23 Zhang K., Yang Z., Fang C.. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496
https://doi.org/10.1038/s41467-022-30161-6
24 Lin Z., Ramezani H., Eichelkraut T., Kottos T., Cao H., N. Christodoulides D.. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
https://doi.org/10.1103/PhysRevLett.106.213901
25 Yao S., Song F., Wang Z.. Non-Hermitian Chern bands. Phys. Rev. Lett., 2018, 121(13): 136802
https://doi.org/10.1103/PhysRevLett.121.136802
26 S. Deng T., Yi W.. Non-Bloch topological invariants in a non-Hermitian domain wall system. Phys. Rev. B, 2019, 100(3): 035102
https://doi.org/10.1103/PhysRevB.100.035102
27 Liu T., R. Zhang Y., Ai Q., Gong Z., Kawabata K., Ueda M., Nori F.. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett., 2019, 122(7): 076801
https://doi.org/10.1103/PhysRevLett.122.076801
28 Longhi S.. Non-Bloch-band collapse and chiral Zener tunneling. Phys. Rev. Lett., 2020, 124(6): 066602
https://doi.org/10.1103/PhysRevLett.124.066602
29 Zhang K., Yang Z., Fang C.. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402
https://doi.org/10.1103/PhysRevLett.125.126402
30 Kawabata K., Okuma N., Sato M.. Non-Bloch band theory of non-Hermitian Hamiltonians in the symplectic class. Phys. Rev. B, 2020, 101(19): 195147
https://doi.org/10.1103/PhysRevB.101.195147
31 Shen H., Zhen B., Fu L.. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 2018, 120(14): 146402
https://doi.org/10.1103/PhysRevLett.120.146402
32 Gong Z., Ashida Y., Kawabata K., Takasan K., Higashikawa S., Ueda M.. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
https://doi.org/10.1103/PhysRevX.8.031079
33 Kawabata K., Bessho T., Sato M.. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 2019, 123(6): 066405
https://doi.org/10.1103/PhysRevLett.123.066405
34 Kawabata K., Shiozaki K., Ueda M., Sato M.. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015
https://doi.org/10.1103/PhysRevX.9.041015
35 Zhou H., Y. Lee J.. Periodic table for topological bands with non-Hermitian symmetries. Phys. Rev. B, 2019, 99(23): 235112
https://doi.org/10.1103/PhysRevB.99.235112
36 Herviou L., Regnault N., H. Bardarson J.. Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models. SciPost Phys., 2019, 7: 069
https://doi.org/10.21468/SciPostPhys.7.5.069
37 C. Wojcik C., Q. Sun X., Bzdušek T., Fan S.. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B, 2020, 101(20): 205417
https://doi.org/10.1103/PhysRevB.101.205417
38 Y. Chang P., S. You J., Wen X., Ryu S.. Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res., 2020, 2(3): 033069
https://doi.org/10.1103/PhysRevResearch.2.033069
39 M Chen L., A. Chen S., Ye P.. Entanglement, non-hermiticity, and duality. SciPost Phys., 2021, 11: 003
https://doi.org/10.21468/SciPostPhys.11.1.003
40 Sayyad S., Yu J., G. Grushin A., M. Sieberer L.. Entanglement spectrum crossings reveal non-Hermitian dynamical topology. Phys. Rev. Res., 2021, 3(3): 033022
https://doi.org/10.1103/PhysRevResearch.3.033022
41 B. Guo Y., C. Yu Y., Z. Huang R., P. Yang L., Z. Chi R., J. Liao H., Xiang T.. Entanglement entropy of non-Hermitian free fermions. J. Phys.: Condens. Matter, 2021, 33(47): 475502
https://doi.org/10.1088/1361-648X/ac216e
42 M. Chen L., Zhou Y., A. Chen S., Ye P.. Quantum entanglement of non-Hermitian quasicrystals. Phys. Rev. B, 2022, 105(12): L121115
https://doi.org/10.1103/PhysRevB.105.L121115
43 Longhi S.. Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 2019, 122(23): 237601
https://doi.org/10.1103/PhysRevLett.122.237601
44 B. Zeng Q., Xu Y.. Winding numbers and generalized mobility edges in non-Hermitian systems. Phys. Rev. Res., 2020, 2(3): 033052
https://doi.org/10.1103/PhysRevResearch.2.033052
45 Liu Y., P. Jiang X., Cao J., Chen S.. Non-Hermitian mobility edges in one-dimensional quasicrystals with parity‒time symmetry. Phys. Rev. B, 2020, 101(17): 174205
https://doi.org/10.1103/PhysRevB.101.174205
46 Liu Y., Zhou Q., Chen S.. Localization transition, spectrum structure, and winding numbers for one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 104(2): 024201
https://doi.org/10.1103/PhysRevB.104.024201
47 Hatano N., R. Nelson D.. Localization transitions in Non-Hermitian quantum mechanics. Phys. Rev. Lett., 1996, 77(3): 570
https://doi.org/10.1103/PhysRevLett.77.570
48 Hatano N., R. Nelson D.. Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B, 1997, 56(14): 8651
https://doi.org/10.1103/PhysRevB.56.8651
49 Hatano N., R. Nelson D.. Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B, 1998, 58(13): 8384
https://doi.org/10.1103/PhysRevB.58.8384
50 Lin Q., Li T., Xiao L., Wang K., Yi W., Xue P.. Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229
https://doi.org/10.1038/s41467-022-30938-9
51 M. Bender C.. Introduction to PT-symmetric quantum theory. Contemp. Phys., 2005, 46(4): 277
https://doi.org/10.1080/00107500072632
52 Wiersig J.. Nonorthogonality constraints in open quantum and wave systems. Phys. Rev. Res., 2019, 1(3): 033182
https://doi.org/10.1103/PhysRevResearch.1.033182
53 Petermann K.. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron., 1979, 15(7): 566
https://doi.org/10.1109/JQE.1979.1070064
54 G. Makris K., El-Ganainy R., N. Christodoulides D., H. Musslimani Z.. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 2008, 100(10): 103904
https://doi.org/10.1103/PhysRevLett.100.103904
55 Schomerus H.. Excess quantum noise due to mode nonorthogonality in dielectric microresonators. Phys. Rev. A, 2009, 79(6): 061801
https://doi.org/10.1103/PhysRevA.79.061801
56 Wiersig J., Eberspächer A., B. Shim J., W. Ryu J., Shinohara S., Hentschel M., Schomerus H.. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A, 2011, 84(2): 023845
https://doi.org/10.1103/PhysRevA.84.023845
57 V. Fyodorov Y., V. Savin D.. Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality. Phys. Rev. Lett., 2012, 108(18): 184101
https://doi.org/10.1103/PhysRevLett.108.184101
58 G. Makris K., Ge L., E. Türeci H.. Anomalous transient amplification of waves in non-normal photonic media. Phys. Rev. X, 2014, 4(4): 041044
https://doi.org/10.1103/PhysRevX.4.041044
59 Davy M., Z. Genack A.. Selectively exciting quasi-normal modes in open disordered systems. Nat. Commun., 2018, 9(1): 4714
https://doi.org/10.1038/s41467-018-07180-3
60 Davy M., Z. Genack A.. Probing nonorthogonality of eigenfunctions and its impact on transport through open systems. Phys. Rev. Res., 2019, 1(3): 033026
https://doi.org/10.1103/PhysRevResearch.1.033026
61 Song F., Yao S., Wang Z.. Non-Hermitian topological invariants in real space. Phys. Rev. Lett., 2019, 123(24): 246801
https://doi.org/10.1103/PhysRevLett.123.246801
62 D. Lee T., Wolfenstein L.. Analysis of CP-noninvariant interactions and the k10, k20 system. Phys. Rev., 1965, 138(6B): B1490
https://doi.org/10.1103/PhysRev.138.B1490
63 Wang H., H. Lai Y., Yuan Z., G. Suh M., Vahala K.. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun., 2020, 11(1): 1610
https://doi.org/10.1038/s41467-020-15341-6
64 Cheng J., Zhang X., H. Lu M., F. Chen Y.. Competition between band topology and non-Hermiticity. Phys. Rev. B, 2022, 105(9): 094103
https://doi.org/10.1103/PhysRevB.105.094103
65 Oztas Z., Candemir N.. Su‒Schrieffer‒Heeger model with imaginary gauge field. Phys. Lett. A, 2019, 383(15): 1821
https://doi.org/10.1016/j.physleta.2019.02.037
66 R. Wang X., X. Guo C., P. Kou S.. Defective edge states and number-anomalous bulk‒boundary correspondence in non-Hermitian topological systems. Phys. Rev. B, 2020, 101(12): 121116
https://doi.org/10.1103/PhysRevB.101.121116
67 Zhu W., X. Teo W., Li L., Gong J.. Delocalization of topological edge states. Phys. Rev. B, 2021, 103(19): 195414
https://doi.org/10.1103/PhysRevB.103.195414
68 Zhou Y.M. Chen L.Ye P., to be appeared (2023)
69 W. Demmel J.. Nearest defective matrices and the geometry of ill-conditioning. Reliable Numer. Comput., 1990, 44: 35
70 H. Lee C., Ye P., L. Qi X.. Position‒momentum duality in the entanglement spectrum of free fermions. J. Stat. Mech., 2014, 2014(10): P10023
https://doi.org/10.1088/1742-5468/2014/10/P10023
71 H. Lee C., Ye P.. Free-fermion entanglement spectrum through Wannier interpolation. Phys. Rev. B, 2015, 91(8): 085119
https://doi.org/10.1103/PhysRevB.91.085119
72 Long Y., Xue H., Zhang B.. Non-Hermitian topological systems with eigenvalues that are always real. Phys. Rev. B, 2022, 105(10): L100102
https://doi.org/10.1103/PhysRevB.105.L100102
73 Zettl A., Sturm‒Liouville Theory, 121, American Mathematical Society, 2012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed