Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors
Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye()
School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, and Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-sen University, Guangzhou 510275, China
Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena, which can be fundamentally traced back to non-unitarity. In this paper, we introduce an interesting quantity (denoted as ) as a new variant of the Petermann factor to directly and efficiently measure non-unitarity and the associated non-Hermitian physics. By tuning the model parameters of underlying non-Hermitian systems, we find that the discontinuity of both and its first-order derivative (denoted as ) pronouncedly captures rich physics that is fundamentally caused by non-unitarity. More concretely, in the 1D non-Hermitian topological systems, two mutually orthogonal edge states that are respectively localized on two boundaries become non-orthogonal in the vicinity of discontinuity of as a function of the model parameter, which is dubbed “edge state transition”. Through theoretical analysis, we identify that the appearance of edge state transition indicates the existence of exceptional points (EPs) in topological edge states. Regarding the discontinuity of , we investigate a two-level non-Hermitian model and establish a connection between the points of discontinuity of and EPs of bulk states. By studying this connection in more general lattice models, we find that some models have discontinuity of , implying the existence of EPs in bulk states.
. [J]. Frontiers of Physics, 2024, 19(2): 23201.
Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye. Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors. Front. Phys. , 2024, 19(2): 23201.
Cao H., Wiersig J.. Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 2015, 87(1): 61 https://doi.org/10.1103/RevModPhys.87.61
Yang Z., Zhang K., Fang C., Hu J.. Non-Hermitian bulk−boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett., 2020, 125(22): 226402 https://doi.org/10.1103/PhysRevLett.125.226402
Gao T., Estrecho E., Y. Bliokh K., C. H. Liew T., D. Fraser M., Brodbeck S., Kamp M., Schneider C., Höfling S., Yamamoto Y., Nori F., S. Kivshar Y., G. Truscott A., G. Dall R., A. Ostrovskaya E.. Observation of non-Hermitian degeneracies in a chaotic exciton‒polariton billiard. Nature, 2015, 526(7574): 554 https://doi.org/10.1038/nature15522
12
Zhen B., W. Hsu C., Igarashi Y., Lu L., Kaminer I., Pick A., L. Chua S., D. Joannopoulos J., Soljačić M.. Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525(7569): 354 https://doi.org/10.1038/nature14889
13
Hahn C., Choi Y., W. Yoon J., H. Song S., H. Oh C., Berini P.. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices. Nat. Commun., 2016, 7(1): 12201 https://doi.org/10.1038/ncomms12201
14
Zhang D., Q. Luo X., P. Wang Y., F. Li T., Q. You J.. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 2017, 8(1): 1368 https://doi.org/10.1038/s41467-017-01634-w
Wang S., Hou B., Lu W., Chen Y., Q. Zhang Z., T. Chan C.. Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators. Nat. Commun., 2019, 10(1): 832 https://doi.org/10.1038/s41467-019-08826-6
17
Xiao L., Deng T., Wang K., Wang Z., Yi W., Xue P.. Observation of non-Bloch parity‒time symmetry and exceptional points. Phys. Rev. Lett., 2021, 126(23): 230402 https://doi.org/10.1103/PhysRevLett.126.230402
K. Kunst F., Edvardsson E., C. Budich J., J. Bergholtz E.. Biorthogonal bulk‒boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808 https://doi.org/10.1103/PhysRevLett.121.026808
Okuma N., Sato M.. Non-Hermitian skin effects in Hermitian correlated or disordered systems: Quantities sensitive or insensitive to boundary effects and pseudo-quantum-number. Phys. Rev. Lett., 2021, 126(17): 176601 https://doi.org/10.1103/PhysRevLett.126.176601
23
Zhang K., Yang Z., Fang C.. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496 https://doi.org/10.1038/s41467-022-30161-6
24
Lin Z., Ramezani H., Eichelkraut T., Kottos T., Cao H., N. Christodoulides D.. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901 https://doi.org/10.1103/PhysRevLett.106.213901
Liu T., R. Zhang Y., Ai Q., Gong Z., Kawabata K., Ueda M., Nori F.. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett., 2019, 122(7): 076801 https://doi.org/10.1103/PhysRevLett.122.076801
Zhang K., Yang Z., Fang C.. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402 https://doi.org/10.1103/PhysRevLett.125.126402
30
Kawabata K., Okuma N., Sato M.. Non-Bloch band theory of non-Hermitian Hamiltonians in the symplectic class. Phys. Rev. B, 2020, 101(19): 195147 https://doi.org/10.1103/PhysRevB.101.195147
Gong Z., Ashida Y., Kawabata K., Takasan K., Higashikawa S., Ueda M.. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079 https://doi.org/10.1103/PhysRevX.8.031079
33
Kawabata K., Bessho T., Sato M.. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 2019, 123(6): 066405 https://doi.org/10.1103/PhysRevLett.123.066405
34
Kawabata K., Shiozaki K., Ueda M., Sato M.. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015 https://doi.org/10.1103/PhysRevX.9.041015
Herviou L., Regnault N., H. Bardarson J.. Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models. SciPost Phys., 2019, 7: 069 https://doi.org/10.21468/SciPostPhys.7.5.069
37
C. Wojcik C., Q. Sun X., Bzdušek T., Fan S.. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B, 2020, 101(20): 205417 https://doi.org/10.1103/PhysRevB.101.205417
38
Y. Chang P., S. You J., Wen X., Ryu S.. Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res., 2020, 2(3): 033069 https://doi.org/10.1103/PhysRevResearch.2.033069
Sayyad S., Yu J., G. Grushin A., M. Sieberer L.. Entanglement spectrum crossings reveal non-Hermitian dynamical topology. Phys. Rev. Res., 2021, 3(3): 033022 https://doi.org/10.1103/PhysRevResearch.3.033022
41
B. Guo Y., C. Yu Y., Z. Huang R., P. Yang L., Z. Chi R., J. Liao H., Xiang T.. Entanglement entropy of non-Hermitian free fermions. J. Phys.: Condens. Matter, 2021, 33(47): 475502 https://doi.org/10.1088/1361-648X/ac216e
Liu Y., P. Jiang X., Cao J., Chen S.. Non-Hermitian mobility edges in one-dimensional quasicrystals with parity‒time symmetry. Phys. Rev. B, 2020, 101(17): 174205 https://doi.org/10.1103/PhysRevB.101.174205
46
Liu Y., Zhou Q., Chen S.. Localization transition, spectrum structure, and winding numbers for one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 104(2): 024201 https://doi.org/10.1103/PhysRevB.104.024201
Lin Q., Li T., Xiao L., Wang K., Yi W., Xue P.. Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229 https://doi.org/10.1038/s41467-022-30938-9
Petermann K.. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron., 1979, 15(7): 566 https://doi.org/10.1109/JQE.1979.1070064
54
G. Makris K., El-Ganainy R., N. Christodoulides D., H. Musslimani Z.. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 2008, 100(10): 103904 https://doi.org/10.1103/PhysRevLett.100.103904
55
Schomerus H.. Excess quantum noise due to mode nonorthogonality in dielectric microresonators. Phys. Rev. A, 2009, 79(6): 061801 https://doi.org/10.1103/PhysRevA.79.061801
56
Wiersig J., Eberspächer A., B. Shim J., W. Ryu J., Shinohara S., Hentschel M., Schomerus H.. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A, 2011, 84(2): 023845 https://doi.org/10.1103/PhysRevA.84.023845
57
V. Fyodorov Y., V. Savin D.. Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality. Phys. Rev. Lett., 2012, 108(18): 184101 https://doi.org/10.1103/PhysRevLett.108.184101
58
G. Makris K., Ge L., E. Türeci H.. Anomalous transient amplification of waves in non-normal photonic media. Phys. Rev. X, 2014, 4(4): 041044 https://doi.org/10.1103/PhysRevX.4.041044
Davy M., Z. Genack A.. Probing nonorthogonality of eigenfunctions and its impact on transport through open systems. Phys. Rev. Res., 2019, 1(3): 033026 https://doi.org/10.1103/PhysRevResearch.1.033026
D. Lee T., Wolfenstein L.. Analysis of CP-noninvariant interactions and the k10, k20 system. Phys. Rev., 1965, 138(6B): B1490 https://doi.org/10.1103/PhysRev.138.B1490
63
Wang H., H. Lai Y., Yuan Z., G. Suh M., Vahala K.. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun., 2020, 11(1): 1610 https://doi.org/10.1038/s41467-020-15341-6
64
Cheng J., Zhang X., H. Lu M., F. Chen Y.. Competition between band topology and non-Hermiticity. Phys. Rev. B, 2022, 105(9): 094103 https://doi.org/10.1103/PhysRevB.105.094103
R. Wang X., X. Guo C., P. Kou S.. Defective edge states and number-anomalous bulk‒boundary correspondence in non-Hermitian topological systems. Phys. Rev. B, 2020, 101(12): 121116 https://doi.org/10.1103/PhysRevB.101.121116
Long Y., Xue H., Zhang B.. Non-Hermitian topological systems with eigenvalues that are always real. Phys. Rev. B, 2022, 105(10): L100102 https://doi.org/10.1103/PhysRevB.105.L100102
73
Zettl A., Sturm‒Liouville Theory, 121, American Mathematical Society, 2012