Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (2): 24301   https://doi.org/10.1007/s11467-023-1339-6
  本期目录
A semiclassical perspective on nuclear chirality
Radu Budaca1,2()
1. “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, Str. Reactorului 30, RO- 077125, POB-MG6 Bucharest-Mǎgurele, Romania
2. Academy of Romanian Scientists, Splaiul Independenţei 54, 050044, Bucharest, Romania
 全文: PDF(7627 KB)   HTML
Abstract

The application of the semiclassical description to a particle-core system with imbued chiral symmetry is presented. The classical features of the chiral geometry in atomic nuclei and the associated dynamics are investigated for various core deformations and single-particle alignments. Distinct dynamical characteristics are identified in specific angular momentum ranges, triaxiality and alignment conditions. Quantum observables will be extracted from the classical picture for a quantitative description of experimental data provided as numerical examples of the model’s performance.

Key wordschiral symmetry    triaxial nuclei    semiclassical description
收稿日期: 2023-02-01      出版日期: 2023-09-21
Corresponding Author(s): Radu Budaca   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(2): 24301.
Radu Budaca. A semiclassical perspective on nuclear chirality. Front. Phys. , 2024, 19(2): 24301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1339-6
https://academic.hep.com.cn/fop/CN/Y2024/V19/I2/24301
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Nucl. j (hole) j (particle) α α E0 (MeV) J0 (MeV−1) C (keV) rms (keV)
119I 92 (π) 112 (ν) 10° 2.293 29.294 0.19 61.4
134Pr 112 (ν) 112(π) 1.759 48.076 3.24 43.9
138Pm 112 (ν) 112(π) 2.303 35.681 3.34 31.4
Tab.1  
Fig.8  
Fig.9  
1 Frauendorf S., Meng J.. Tilted rotation of triaxial nuclei. Nucl. Phys. A, 1997, 617(2): 131
https://doi.org/10.1016/S0375-9474(97)00004-3
2 Frauendorf S.. Spontaneous symmetry breaking in rotating nuclei. Rev. Mod. Phys., 2001, 73(2): 463
https://doi.org/10.1103/RevModPhys.73.463
3 Starosta K., Koike T., J. Chiara C., B. Fossan D., R. LaFosse D., A. Hecht A., W. Beausang C., A. Caprio M., R. Cooper J., Krücken R., R. Novak J., V. Zamfir N., E. Zyromski K., J. Hartley D., L. Balabanski D., Zhang J., Frauendorf S., I. Dimitrov V.. Chiral doublet structures in odd‒odd N = 75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86(6): 971
https://doi.org/10.1103/PhysRevLett.86.971
4 Meng J., Q. Zhang S.. Open problems in understanding the nuclear chirality. J. Phys. G, 2010, 37(6): 064025
https://doi.org/10.1088/0954-3899/37/6/064025
5 Meng J., B. Chen Q., Q. Zhang S.. Chirality in atomic nuclei: 2013. Int. J. Mod. Phys. E, 2014, 23(11): 1430016
https://doi.org/10.1142/S0218301314300161
6 A. Bark R., O. Lieder E., M. Lieder R., A. Lawrie E., J. Lawrie J., P. Bvumbi S., Y. Kheswa N., S. Ntshangase S., E. Madiba T., L. Masiteng P., M. Mullins S., Murray S., Papka P., Shirinda O., B. Chen Q., Q. Zhang S., H. Zhang Z., W. Zhao P., Xu C., Meng J., G. Roux D., P. Li Z., Peng J., Qi B., Y. Wang S., G. Xiao Z.. Studies of chirality in the mass 80, 100 and 190 regions. Int. J. Mod. Phys. E, 2014, 23(7): 1461001
https://doi.org/10.1142/S0218301314610011
7 A. Raduta A.. Specific features and symmetries for magnetic and chiral bands in nuclei. Prog. Part. Nucl. Phys., 2016, 90: 241
https://doi.org/10.1016/j.ppnp.2016.05.002
8 Starosta K., Koike T.. Nuclear chirality, a model and the data. Phys. Scr., 2017, 92(9): 093002
https://doi.org/10.1088/1402-4896/aa800e
9 W. Xiong B., Y. Wang Y.. Nuclear chiral doublet bands data tables. At. Data Nucl. Data Tables, 2019, 125: 193
https://doi.org/10.1016/j.adt.2018.05.002
10 Y. Wang S.. Recent progress in multiple chiral doublet bands. Chin. Phys. C, 2020, 44(11): 112001
https://doi.org/10.1088/1674-1137/abaed2
11 Meng J., Peng J., Q. Zhang S., G. Zhou S.. Possible existence of multiple chiral doublets in 106Rh. Phys. Rev. C, 2006, 73(3): 037303
https://doi.org/10.1103/PhysRevC.73.037303
12 F. Lv B., M. Petrache C., Astier A., Dupont E., Lopez-Martens A., T. Greenlees P., Badran H., Calverley T., M. Cox D., Grahn T., Hilton J., Julin R., Juutinen S., Konki J., Leino M., Pakarinen J., Papadakis P., Partanen J., Rahkila P., Sandzelius M., Saren J., Scholey C., Sorri J., Stolze S., Uusitalo J., Herzán A., Cederwall B., Ertoprak A., Liu H., Guo S., L. Liu M., H. Qiang Y., G. Wang J., H. Zhou X., Kuti I., Timár J., Tucholski A., Srebrny J., Andreoiu C.. Evolution from γ-soft to stable triaxiality in 136Nd as a prerequisite of chirality. Phys. Rev. C, 2018, 98(4): 044304
https://doi.org/10.1103/PhysRevC.98.044304
13 Guo S., M. Petrache C., Mengoni D., H. Qiang Y., P. Wang Y., Y. Wang Y., Meng J., K. Wang Y., Q. Zhang S., W. Zhao P., Astier A., G. Wang J., L. Fan H., Dupont E., F. Lv B., Bazzacco D., Boso A., Goasduff A., Recchia F., Testov D., Galtarossa F., Jaworski G., R. Napoli D., Riccetto S., Siciliano M., J. Valiente-Dobon J., L. Liu M., S. Li G., H. Zhou X., H. Zhang Y., Andreoiu C., H. Garcia F., Ortner K., Whitmore K., Ataç-Nyberg A., Bäck T., Cederwall B., A. Lawrie E., Kuti I., Sohler D., Marchlewski T., Srebrny J., Tucholski A.. Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations. Phys. Lett. B, 2020, 807: 135572
https://doi.org/10.1016/j.physletb.2020.135572
14 Zhang Y., Qi B., Q. Zhang S.. Critical point symmetry for odd‒odd nuclei and collective multiple chiral doublet bands. Sci. China Phys. Mech. Astron., 2021, 64(12): 122011
https://doi.org/10.1007/s11433-021-1766-4
15 Brant S., Vretenar D., Ventura A.. Interacting boson fermion-fermion model calculation of the πh11/2⊗νh11/2 doublet bands in 134Pr. Phys. Rev. C, 2004, 69(1): 017304
https://doi.org/10.1103/PhysRevC.69.017304
16 Tonev D., de Angelis G., Petkov P., Dewald A., Brant S., Frauendorf S., L. Balabanski D., Pejovic P., Bazzacco D., Bednarczyk P., Camera F., Fitzler A., Gadea A., Lenzi S., Lunardi S., Marginean N., Möller O., R. Napoli D., Paleni A., M. Petrache C., Prete G., O. Zell K., H. Zhang Y., Zhang J., Zhong Q., Curien D.. Transition probabilities in 134Pr: A test for chirality in nuclear systems. Phys. Rev. Lett., 2006, 96(5): 052501
https://doi.org/10.1103/PhysRevLett.96.052501
17 Tonev D., Angelis G., Brant S., Frauendorf S., Petkov P., Dewald A., Dönau F., L. Balabanski D., Zhong Q., Pejovic P., Bazzacco D., Bednarczyk P., Camera F., Curien D., D. Vedova F., Fitzler A., Gadea A., L. Bianco G., Lenzi S., Lunardi S., Marginean N., Möller O., R. Napoli D., Orlandi R., Sahin E., Saltarelli A., V. Dobon J., O. Zell K., Zhang J., H. Zhang Y.. Question of dynamic chirality in nuclei: The case of 134Pr. Phys. Rev. C, 2007, 76(4): 044313
https://doi.org/10.1103/PhysRevC.76.044313
18 G. Ganev H., I. Georgieva A., Brant S., Ventura A.. New description of the doublet bands in doubly odd nuclei. Phys. Rev. C, 2009, 79(4): 044322
https://doi.org/10.1103/PhysRevC.79.044322
19 Qi B., Q. Zhang S., Meng J., Y. Wang S., Frauendorf S.. Chirality in odd-A nucleus 135Nd in particle rotor model. Phys. Lett. B, 2009, 675(2): 175
https://doi.org/10.1016/j.physletb.2009.02.061
20 Hamamoto I.. Possible presence and properties of multi-chiral-pair bands in odd‒odd nuclei with the same intrinsic configuration. Phys. Rev. C, 2013, 88(2): 024327
https://doi.org/10.1103/PhysRevC.88.024327
21 A. Raduta A.M. Raduta C.Faessler A., A new picture for the chiral symmetry properties within a particle–core framework, J. Phys. G 41(3), 035105 (2014)
22 Y. Wang Y., Q. Zhang S., W. Zhao P., Meng J.. Multiple chiral doublet bands with octupole correlations in reflection-asymmetric triaxial particle rotor model. Phys. Lett. B, 2019, 792: 454
https://doi.org/10.1016/j.physletb.2019.04.014
23 Bohr A.R. Mottelson B., Nuclear Structure, Vol. 2, Benjamin, Reading, Massachusetts, 1975
24 H. Bhat G., A. Sheikh J., Palit R.. Triaxial projected shell model study of chiral rotation in odd–odd nuclei. Phys. Lett. B, 2012, 707(2): 250
https://doi.org/10.1016/j.physletb.2011.12.035
25 H. Bhat G., N. Ali R., A. Sheikh J., Palit R.. Investigation of doublet-bands in 124, 126, 130, 132Cs odd–odd nuclei using triaxial projected shell model approach. Nucl. Phys. A, 2014, 922: 150
https://doi.org/10.1016/j.nuclphysa.2013.12.006
26 Q. Chen F., B. Chen Q., A. Luo Y., Meng J., Q. Zhang S.. Chiral geometry in symmetry-restored states: Chiral doublet bands in 128Cs. Phys. Rev. C, 2017, 96(5): 051303
https://doi.org/10.1103/PhysRevC.96.051303
27 Q. Chen F., Meng J., Q. Zhang S.. Chiral geometry and rotational structure for 130Cs in the projected shell model. Phys. Lett. B, 2018, 785: 211
https://doi.org/10.1016/j.physletb.2018.08.039
28 Shimada M., Fujioka Y., Tagami S., R. Shimizu Y.. Rotational motion of triaxially deformed nuclei studied by the microscopic angular-momentum-projection method. II. Chiral doublet band. Phys. Rev. C, 2018, 97(2): 024319
https://doi.org/10.1103/PhysRevC.97.024319
29 K. Wang Y., Q. Chen F., W. Zhao P., Q. Zhang S., Meng J.. Multichiral facets in symmetry restored states: Five chiral doublet candidates in the even‒even nucleus 136Nd. Phys. Rev. C, 2019, 99(5): 054303
https://doi.org/10.1103/PhysRevC.99.054303
30 Mukhopadhyay S., Almehed D., Garg U., Frauendorf S., Li T., V. M. Rao P., Wang X., S. Ghugre S., P. Carpenter M., Gros S., Hecht A., V. F. Janssens R., G. Kondev F., Lauritsen T., Seweryniak D., Zhu S.. From chiral vibration to static chirality in 135Nd. Phys. Rev. Lett., 2007, 99(17): 172501
https://doi.org/10.1103/PhysRevLett.99.172501
31 Almehed D., Dönau F., Frauendorf S.. Chiral vibrations in the A = 135 region. Phys. Rev. C, 2011, 83(5): 054308
https://doi.org/10.1103/PhysRevC.83.054308
32 Meng J., Zhao P.. Nuclear chiral and magnetic rotation in covariant density functional theory. Phys. Scr., 2016, 91(5): 053008
https://doi.org/10.1088/0031-8949/91/5/053008
33 W. Zhao P.. Multiple chirality in nuclear rotation: A microscopic view. Phys. Lett. B, 2017, 773: 1
https://doi.org/10.1016/j.physletb.2017.08.001
34 X. Ren Z., W. Zhao P., Meng J.. Dynamics of rotation in chiral nuclei. Phys. Rev. C, 2022, 105(1): L011301
https://doi.org/10.1103/PhysRevC.105.L011301
35 B. Chen Q., Q. Zhang S., W. Zhao P., V. Jolos R., Meng J.. Collective Hamiltonian for chiral modes. Phys. Rev. C, 2013, 87(2): 024314
https://doi.org/10.1103/PhysRevC.87.024314
36 B. Chen Q., Q. Zhang S., W. Zhao P., V. Jolos R., Meng J.. Two-dimensional collective Hamiltonian for chiral and wobbling modes. Phys. Rev. C, 2016, 94(4): 044301
https://doi.org/10.1103/PhysRevC.94.044301
37 H. Wu X., B. Chen Q., W. Zhao P., Q. Zhang S., Meng J.. Two-dimensional collective Hamiltonian for chiral and wobbling modes. II. Electromagnetic transitions. Phys. Rev. C, 2018, 98(6): 064302
https://doi.org/10.1103/PhysRevC.98.064302
38 Budaca R.. Semiclassical description of chiral geometry in triaxial nuclei. Phys. Rev. C, 2018, 98(1): 014303
https://doi.org/10.1103/PhysRevC.98.014303
39 Budaca R.. Role of triaxiality in the structure of chiral partner bands. Phys. Lett. B, 2019, 797: 134853
https://doi.org/10.1016/j.physletb.2019.134853
40 Budaca R.. From chiral vibration to tilted-axis wobbling within broken chiral symmetry. Phys. Lett. B, 2021, 817: 136308
https://doi.org/10.1016/j.physletb.2021.136308
41 M. Raduta C., A. Raduta A., Poenaru R., H. Raduta Al.. Simultaneous description of wobbling and chiral properties in even–odd triaxial nuclei. J. Phys. G, 2022, 49: 025105
https://doi.org/10.1088/1361-6471/ac3c34
42 Frauendiener J.. Quadratic hamiltonians on the unit sphere. Mech. Res. Commun., 1995, 22(4): 313
https://doi.org/10.1016/0093-6413(95)00030-U
43 Lanchares V., Inarrea M., P. Salas J., D. Sierra J., Elipe A.. Surfaces of bifurcation in a triparametric quadratic Hamiltonian. Phys. Rev. E, 1995, 52(5): 5540
https://doi.org/10.1103/PhysRevE.52.5540
44 Iida S., Yamamura M.. Utility of the elliptic function for classical SU(2)-models of nuclear collective motions. Prog. Theor. Phys., 1983, 70(3): 783
https://doi.org/10.1143/PTP.70.783
45 Gheorghe A., A. Raduta A., Ceausescu V.. Semiclassical treatment of the cranked triaxial rotator. Nucl. Phys. A, 1998, 637(2): 201
https://doi.org/10.1016/S0375-9474(98)00229-2
46 A. Raduta A., Budaca R., M. Raduta C.. Semiclassical description of a triaxial rigid rotor. Phys. Rev. C, 2007, 76(6): 064309
https://doi.org/10.1103/PhysRevC.76.064309
47 von Roos O.. Position-dependent effective masses in semiconductor theory. Phys. Rev. B, 1983, 27(12): 7547
https://doi.org/10.1103/PhysRevB.27.7547
48 B. Chen Q., Q. Zhang S., W. Zhao P., Meng J.. Collective Hamiltonian for wobbling modes. Phys. Rev. C, 2014, 90(4): 044306
https://doi.org/10.1103/PhysRevC.90.044306
49 B. Chen Q., Q. Zhang S., Meng J.. Wobbling motion in 135Pr within a collective Hamiltonian. Phys. Rev. C, 2016, 94(5): 054308
https://doi.org/10.1103/PhysRevC.94.054308
50 B. Chen Q.Starosta K.Koike T., Three-level mixing model for nuclear chiral rotation: Role of the planar component, Phys. Rev. C 97, 041303(R) (2018)
51 Starosta K., Koike T., J. Chiara C., B. Fossan D., R. LaFosse D.. Chirality in odd–odd triaxial nuclei. Nucl. Phys. A., 2001, 682(1−4): 375
https://doi.org/10.1016/S0375-9474(00)00663-1
52 Timár J., Starosta K., Kuti I., Sohler D., B. Fossan D., Koike T., S. Paul E., J. Boston A., J. Chantler H., Descovich M., M. Clark R., Cromaz M., Fallon P., Y. Lee I., O. Macchiavelli A., J. Chiara C., Wadsworth R., A. Hecht A., Almehed D., Frauendorf S.. Medium- and high-spin band structure of the chiral-candidate nucleus 134Pr. Phys. Rev. C, 2011, 84(4): 044302
https://doi.org/10.1103/PhysRevC.84.044302
53 Y. Ma K., B. Lu J., Zhang Z., Q. Liu J., Yang D., M. Liu Y., Xu X., Y. Li X., Z. Liu Y., G. Wu X., Zheng Y., B. Li C.. Candidate chiral doublet bands in 138Pm. Phys. Rev. C, 2018, 97(1): 014305
https://doi.org/10.1103/PhysRevC.97.014305
54 M. Petrache C., Bazzacco D., Lunardi S., Rossi Alvarez C., de Angelis G., De Poli M., Bucurescu D., A. Ur C., B. Semmes P., Wyss R.. Rotational bands in the doubly odd nucleus 134Pr. Nucl. Phys. A, 1996, 597(1): 106
https://doi.org/10.1016/0375-9474(95)00416-5
55 Starosta K., J. Chiara C., B. Fossan D., Koike T., T. S. Kuo T., R. LaFosse D., G. Rohozinski S., Droste Ch., Morek T., Srebrny J.. Role of chirality in angular momentum coupling for A ~ 130 odd‒odd triaxial nuclei: 132La. Phys. Rev. C, 2002, 65(4): 044328
https://doi.org/10.1103/PhysRevC.65.044328
56 Siwach P., Arumugam P., S. Ferreira L., Maglione E.. Chirality in 136,138Pm. Phys. Lett. B, 2020, 811: 135937
https://doi.org/10.1016/j.physletb.2020.135937
57 A. J. Sierk, T. Ichikawa , H. Sagawa. P. Möller, Nuclear ground-state masses and deformations: FRDM(2012), At. Data Nucl. Data Tables 109–110, 1 (2016)
58 Budaca R.. Tilted-axis wobbling in odd-mass nuclei. Phys. Rev. C, 2018, 97(2): 024302
https://doi.org/10.1103/PhysRevC.97.024302
59 Budaca R.. Reconciliation of wobbling motion with rotational alignment in odd mass nuclei. Phys. Rev. C, 2021, 103(4): 044312
https://doi.org/10.1103/PhysRevC.103.044312
60 F. Lv B., M. Petrache C., Budaca R., Astier A., K. Zheng K., Greenlees P., Badran H., Calverley T., M. Cox D., Grahn T., Hilton J., Julin R., Juutinen S., Konki J., Pakarinen J., Papadakis P., Partanen J., Rahkila P., Ruotsalainen P., Sandzelius M., Saren J., Scholey C., Sorri J., Stolze S., Uusitalo J., Cederwall B., Ertoprak A., Liu H., Guo S., G. Wang J., J. Ong H., H. Zhou X., Y. Sun Z., Kuti I., Timár J., Tucholski A., Srebrny J., Andreoiu C.. Experimental evidence for transverse wobbling bands in 136Nd. Phys. Rev. C, 2022, 105(3): 034302
https://doi.org/10.1103/PhysRevC.105.034302
61 Budaca R., M. Petrache C.. Beyond the harmonic approximation description of wobbling excitations in even‒even nuclei with frozen alignments. Phys. Rev. C, 2022, 106(1): 014313
https://doi.org/10.1103/PhysRevC.106.014313
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed