1. “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, Str. Reactorului 30, RO- 077125, POB-MG6 Bucharest-Mǎgurele, Romania 2. Academy of Romanian Scientists, Splaiul Independenţei 54, 050044, Bucharest, Romania
The application of the semiclassical description to a particle-core system with imbued chiral symmetry is presented. The classical features of the chiral geometry in atomic nuclei and the associated dynamics are investigated for various core deformations and single-particle alignments. Distinct dynamical characteristics are identified in specific angular momentum ranges, triaxiality and alignment conditions. Quantum observables will be extracted from the classical picture for a quantitative description of experimental data provided as numerical examples of the model’s performance.
Starosta K., Koike T., J. Chiara C., B. Fossan D., R. LaFosse D., A. Hecht A., W. Beausang C., A. Caprio M., R. Cooper J., Krücken R., R. Novak J., V. Zamfir N., E. Zyromski K., J. Hartley D., L. Balabanski D., Zhang J., Frauendorf S., I. Dimitrov V.. Chiral doublet structures in odd‒odd N = 75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86(6): 971 https://doi.org/10.1103/PhysRevLett.86.971
A. Bark R., O. Lieder E., M. Lieder R., A. Lawrie E., J. Lawrie J., P. Bvumbi S., Y. Kheswa N., S. Ntshangase S., E. Madiba T., L. Masiteng P., M. Mullins S., Murray S., Papka P., Shirinda O., B. Chen Q., Q. Zhang S., H. Zhang Z., W. Zhao P., Xu C., Meng J., G. Roux D., P. Li Z., Peng J., Qi B., Y. Wang S., G. Xiao Z.. Studies of chirality in the mass 80, 100 and 190 regions. Int. J. Mod. Phys. E, 2014, 23(7): 1461001 https://doi.org/10.1142/S0218301314610011
7
A. Raduta A.. Specific features and symmetries for magnetic and chiral bands in nuclei. Prog. Part. Nucl. Phys., 2016, 90: 241 https://doi.org/10.1016/j.ppnp.2016.05.002
Meng J., Peng J., Q. Zhang S., G. Zhou S.. Possible existence of multiple chiral doublets in 106Rh. Phys. Rev. C, 2006, 73(3): 037303 https://doi.org/10.1103/PhysRevC.73.037303
12
F. Lv B., M. Petrache C., Astier A., Dupont E., Lopez-Martens A., T. Greenlees P., Badran H., Calverley T., M. Cox D., Grahn T., Hilton J., Julin R., Juutinen S., Konki J., Leino M., Pakarinen J., Papadakis P., Partanen J., Rahkila P., Sandzelius M., Saren J., Scholey C., Sorri J., Stolze S., Uusitalo J., Herzán A., Cederwall B., Ertoprak A., Liu H., Guo S., L. Liu M., H. Qiang Y., G. Wang J., H. Zhou X., Kuti I., Timár J., Tucholski A., Srebrny J., Andreoiu C.. Evolution from γ-soft to stable triaxiality in 136Nd as a prerequisite of chirality. Phys. Rev. C, 2018, 98(4): 044304 https://doi.org/10.1103/PhysRevC.98.044304
13
Guo S., M. Petrache C., Mengoni D., H. Qiang Y., P. Wang Y., Y. Wang Y., Meng J., K. Wang Y., Q. Zhang S., W. Zhao P., Astier A., G. Wang J., L. Fan H., Dupont E., F. Lv B., Bazzacco D., Boso A., Goasduff A., Recchia F., Testov D., Galtarossa F., Jaworski G., R. Napoli D., Riccetto S., Siciliano M., J. Valiente-Dobon J., L. Liu M., S. Li G., H. Zhou X., H. Zhang Y., Andreoiu C., H. Garcia F., Ortner K., Whitmore K., Ataç-Nyberg A., Bäck T., Cederwall B., A. Lawrie E., Kuti I., Sohler D., Marchlewski T., Srebrny J., Tucholski A.. Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations. Phys. Lett. B, 2020, 807: 135572 https://doi.org/10.1016/j.physletb.2020.135572
14
Zhang Y., Qi B., Q. Zhang S.. Critical point symmetry for odd‒odd nuclei and collective multiple chiral doublet bands. Sci. China Phys. Mech. Astron., 2021, 64(12): 122011 https://doi.org/10.1007/s11433-021-1766-4
15
Brant S., Vretenar D., Ventura A.. Interacting boson fermion-fermion model calculation of the πh11/2⊗νh11/2 doublet bands in 134Pr. Phys. Rev. C, 2004, 69(1): 017304 https://doi.org/10.1103/PhysRevC.69.017304
16
Tonev D., de Angelis G., Petkov P., Dewald A., Brant S., Frauendorf S., L. Balabanski D., Pejovic P., Bazzacco D., Bednarczyk P., Camera F., Fitzler A., Gadea A., Lenzi S., Lunardi S., Marginean N., Möller O., R. Napoli D., Paleni A., M. Petrache C., Prete G., O. Zell K., H. Zhang Y., Zhang J., Zhong Q., Curien D.. Transition probabilities in 134Pr: A test for chirality in nuclear systems. Phys. Rev. Lett., 2006, 96(5): 052501 https://doi.org/10.1103/PhysRevLett.96.052501
17
Tonev D., Angelis G., Brant S., Frauendorf S., Petkov P., Dewald A., Dönau F., L. Balabanski D., Zhong Q., Pejovic P., Bazzacco D., Bednarczyk P., Camera F., Curien D., D. Vedova F., Fitzler A., Gadea A., L. Bianco G., Lenzi S., Lunardi S., Marginean N., Möller O., R. Napoli D., Orlandi R., Sahin E., Saltarelli A., V. Dobon J., O. Zell K., Zhang J., H. Zhang Y.. Question of dynamic chirality in nuclei: The case of 134Pr. Phys. Rev. C, 2007, 76(4): 044313 https://doi.org/10.1103/PhysRevC.76.044313
18
G. Ganev H., I. Georgieva A., Brant S., Ventura A.. New description of the doublet bands in doubly odd nuclei. Phys. Rev. C, 2009, 79(4): 044322 https://doi.org/10.1103/PhysRevC.79.044322
19
Qi B., Q. Zhang S., Meng J., Y. Wang S., Frauendorf S.. Chirality in odd-A nucleus 135Nd in particle rotor model. Phys. Lett. B, 2009, 675(2): 175 https://doi.org/10.1016/j.physletb.2009.02.061
20
Hamamoto I.. Possible presence and properties of multi-chiral-pair bands in odd‒odd nuclei with the same intrinsic configuration. Phys. Rev. C, 2013, 88(2): 024327 https://doi.org/10.1103/PhysRevC.88.024327
21
A. Raduta A.M. Raduta C.Faessler A., A new picture for the chiral symmetry properties within a particle–core framework, J. Phys. G 41(3), 035105 (2014)
22
Y. Wang Y., Q. Zhang S., W. Zhao P., Meng J.. Multiple chiral doublet bands with octupole correlations in reflection-asymmetric triaxial particle rotor model. Phys. Lett. B, 2019, 792: 454 https://doi.org/10.1016/j.physletb.2019.04.014
H. Bhat G., A. Sheikh J., Palit R.. Triaxial projected shell model study of chiral rotation in odd–odd nuclei. Phys. Lett. B, 2012, 707(2): 250 https://doi.org/10.1016/j.physletb.2011.12.035
25
H. Bhat G., N. Ali R., A. Sheikh J., Palit R.. Investigation of doublet-bands in 124, 126, 130, 132Cs odd–odd nuclei using triaxial projected shell model approach. Nucl. Phys. A, 2014, 922: 150 https://doi.org/10.1016/j.nuclphysa.2013.12.006
26
Q. Chen F., B. Chen Q., A. Luo Y., Meng J., Q. Zhang S.. Chiral geometry in symmetry-restored states: Chiral doublet bands in 128Cs. Phys. Rev. C, 2017, 96(5): 051303 https://doi.org/10.1103/PhysRevC.96.051303
27
Q. Chen F., Meng J., Q. Zhang S.. Chiral geometry and rotational structure for 130Cs in the projected shell model. Phys. Lett. B, 2018, 785: 211 https://doi.org/10.1016/j.physletb.2018.08.039
28
Shimada M., Fujioka Y., Tagami S., R. Shimizu Y.. Rotational motion of triaxially deformed nuclei studied by the microscopic angular-momentum-projection method. II. Chiral doublet band. Phys. Rev. C, 2018, 97(2): 024319 https://doi.org/10.1103/PhysRevC.97.024319
29
K. Wang Y., Q. Chen F., W. Zhao P., Q. Zhang S., Meng J.. Multichiral facets in symmetry restored states: Five chiral doublet candidates in the even‒even nucleus 136Nd. Phys. Rev. C, 2019, 99(5): 054303 https://doi.org/10.1103/PhysRevC.99.054303
30
Mukhopadhyay S., Almehed D., Garg U., Frauendorf S., Li T., V. M. Rao P., Wang X., S. Ghugre S., P. Carpenter M., Gros S., Hecht A., V. F. Janssens R., G. Kondev F., Lauritsen T., Seweryniak D., Zhu S.. From chiral vibration to static chirality in 135Nd. Phys. Rev. Lett., 2007, 99(17): 172501 https://doi.org/10.1103/PhysRevLett.99.172501
B. Chen Q., Q. Zhang S., W. Zhao P., V. Jolos R., Meng J.. Collective Hamiltonian for chiral modes. Phys. Rev. C, 2013, 87(2): 024314 https://doi.org/10.1103/PhysRevC.87.024314
36
B. Chen Q., Q. Zhang S., W. Zhao P., V. Jolos R., Meng J.. Two-dimensional collective Hamiltonian for chiral and wobbling modes. Phys. Rev. C, 2016, 94(4): 044301 https://doi.org/10.1103/PhysRevC.94.044301
37
H. Wu X., B. Chen Q., W. Zhao P., Q. Zhang S., Meng J.. Two-dimensional collective Hamiltonian for chiral and wobbling modes. II. Electromagnetic transitions. Phys. Rev. C, 2018, 98(6): 064302 https://doi.org/10.1103/PhysRevC.98.064302
M. Raduta C., A. Raduta A., Poenaru R., H. Raduta Al.. Simultaneous description of wobbling and chiral properties in even–odd triaxial nuclei. J. Phys. G, 2022, 49: 025105 https://doi.org/10.1088/1361-6471/ac3c34
Lanchares V., Inarrea M., P. Salas J., D. Sierra J., Elipe A.. Surfaces of bifurcation in a triparametric quadratic Hamiltonian. Phys. Rev. E, 1995, 52(5): 5540 https://doi.org/10.1103/PhysRevE.52.5540
44
Iida S., Yamamura M.. Utility of the elliptic function for classical SU(2)-models of nuclear collective motions. Prog. Theor. Phys., 1983, 70(3): 783 https://doi.org/10.1143/PTP.70.783
A. Raduta A., Budaca R., M. Raduta C.. Semiclassical description of a triaxial rigid rotor. Phys. Rev. C, 2007, 76(6): 064309 https://doi.org/10.1103/PhysRevC.76.064309
B. Chen Q., Q. Zhang S., Meng J.. Wobbling motion in 135Pr within a collective Hamiltonian. Phys. Rev. C, 2016, 94(5): 054308 https://doi.org/10.1103/PhysRevC.94.054308
50
B. Chen Q.Starosta K.Koike T., Three-level mixing model for nuclear chiral rotation: Role of the planar component, Phys. Rev. C 97, 041303(R) (2018)
51
Starosta K., Koike T., J. Chiara C., B. Fossan D., R. LaFosse D.. Chirality in odd–odd triaxial nuclei. Nucl. Phys. A., 2001, 682(1−4): 375 https://doi.org/10.1016/S0375-9474(00)00663-1
52
Timár J., Starosta K., Kuti I., Sohler D., B. Fossan D., Koike T., S. Paul E., J. Boston A., J. Chantler H., Descovich M., M. Clark R., Cromaz M., Fallon P., Y. Lee I., O. Macchiavelli A., J. Chiara C., Wadsworth R., A. Hecht A., Almehed D., Frauendorf S.. Medium- and high-spin band structure of the chiral-candidate nucleus 134Pr. Phys. Rev. C, 2011, 84(4): 044302 https://doi.org/10.1103/PhysRevC.84.044302
53
Y. Ma K., B. Lu J., Zhang Z., Q. Liu J., Yang D., M. Liu Y., Xu X., Y. Li X., Z. Liu Y., G. Wu X., Zheng Y., B. Li C.. Candidate chiral doublet bands in 138Pm. Phys. Rev. C, 2018, 97(1): 014305 https://doi.org/10.1103/PhysRevC.97.014305
54
M. Petrache C., Bazzacco D., Lunardi S., Rossi Alvarez C., de Angelis G., De Poli M., Bucurescu D., A. Ur C., B. Semmes P., Wyss R.. Rotational bands in the doubly odd nucleus 134Pr. Nucl. Phys. A, 1996, 597(1): 106 https://doi.org/10.1016/0375-9474(95)00416-5
55
Starosta K., J. Chiara C., B. Fossan D., Koike T., T. S. Kuo T., R. LaFosse D., G. Rohozinski S., Droste Ch., Morek T., Srebrny J.. Role of chirality in angular momentum coupling for A ~ 130 odd‒odd triaxial nuclei: 132La. Phys. Rev. C, 2002, 65(4): 044328 https://doi.org/10.1103/PhysRevC.65.044328
A. J. Sierk, T. Ichikawa , H. Sagawa. P. Möller, Nuclear ground-state masses and deformations: FRDM(2012), At. Data Nucl. Data Tables 109–110, 1 (2016)
F. Lv B., M. Petrache C., Budaca R., Astier A., K. Zheng K., Greenlees P., Badran H., Calverley T., M. Cox D., Grahn T., Hilton J., Julin R., Juutinen S., Konki J., Pakarinen J., Papadakis P., Partanen J., Rahkila P., Ruotsalainen P., Sandzelius M., Saren J., Scholey C., Sorri J., Stolze S., Uusitalo J., Cederwall B., Ertoprak A., Liu H., Guo S., G. Wang J., J. Ong H., H. Zhou X., Y. Sun Z., Kuti I., Timár J., Tucholski A., Srebrny J., Andreoiu C.. Experimental evidence for transverse wobbling bands in 136Nd. Phys. Rev. C, 2022, 105(3): 034302 https://doi.org/10.1103/PhysRevC.105.034302
61
Budaca R., M. Petrache C.. Beyond the harmonic approximation description of wobbling excitations in even‒even nuclei with frozen alignments. Phys. Rev. C, 2022, 106(1): 014313 https://doi.org/10.1103/PhysRevC.106.014313