Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides
YanZuo Chen1, ShaoGang Yu1(), Tao Jiang2, XiaoJun Liu1, XinBin Cheng2,3, Di Huang2()
1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 2. MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China 3. Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
Exciton physics in atomically thin transition-metal dichalcogenides (TMDCs) holds paramount importance for fundamental physics research and prospective applications. However, the experimental exploration of exciton physics, including excitonic coherence dynamics, exciton many-body interactions, and their optical properties, faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects. In this perspective, we elaborate upon how optical two-dimensional coherent spectroscopy (2DCS) emerges as an effective tool to tackle the challenges, and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.
Wang G., Chernikov A., M. Glazov M., F. Heinz T., Marie X., Amand T., Urbaszek B.. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys., 2018, 90(2): 021001 https://doi.org/10.1103/RevModPhys.90.021001
3
P. Aue W., Bartholdi E., R. Ernst R.. Two dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys., 1976, 64(5): 2229 https://doi.org/10.1063/1.432450
4
Tanimura Y., Mukamel S.. Two-dimensional femtosecond vibrational spectroscopy of liquids. J. Chem. Phys., 1993, 99(12): 9496 https://doi.org/10.1063/1.465484
Hamm P., Lim M., F. DeGrado W., M. Hochstrasser R.. The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three dimensional structure. Proc. Natl. Acad. Sci. USA, 1999, 96(5): 2036 https://doi.org/10.1073/pnas.96.5.2036
Cho M., Coherent Multidimensional Spectroscopy, Springer, 2019
10
Li H.Lomsadze B. Moody G.Smallwood C.T. Cundiff S., Optical Multidimensional Coherent Spectroscopy, Oxford University Press, 2023
11
Brixner T., Stenger J., M. Vaswani H., Cho M., E. Blankenship R., R. Fleming G.. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature, 2005, 434(7033): 625 https://doi.org/10.1038/nature03429
12
Collini E., Y. Wong C., E. Wilk K., M. Curmi P., Brumer P., D. Scholes G.. Coherently wired light harvesting in photosynthetic marine algae at ambient temperature. Nature, 2010, 463(7281): 644 https://doi.org/10.1038/nature08811
13
J. Fecko C., D. Eaves J., J. Loparo J., Tokmakoff A., L. Geissler P.. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science, 2003, 301(5640): 1698 https://doi.org/10.1126/science.1087251
14
Dereka B., Yu Q., H. C. Lewis N., B. Carpenter W., M. Bowman J., Tokmakoff A.. Crossover from hydrogen to chemical bonding. Science, 2021, 371(6525): 160 https://doi.org/10.1126/science.abe1951
15
Dai X., Richter M., Li H., D. Bristow A., Falvo C., Mukamel S., T. Cundiff S.. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett., 2012, 108(19): 193201 https://doi.org/10.1103/PhysRevLett.108.193201
16
Yu S., Titze M., Zhu Y., Liu X., Li H.. Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor. Opt. Lett., 2019, 44(11): 2795 https://doi.org/10.1364/OL.44.002795
17
W. Stone K., Gundogdu K., B. Turner D., Li X., T. Cundiff S., A. Nelson K.. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science, 2009, 324(5931): 1169 https://doi.org/10.1126/science.1170274
18
M. Richter J., Branchi F., Valduga de Almeida Camargo F., Zhao B., H. Friend R., Cerullo G., Deschler F.. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commun., 2017, 8(1): 376 https://doi.org/10.1038/s41467-017-00546-z
19
Nishida J., P. Breen J., P. Lindquist K., Umeyama D., I. Karunadasa H., D. Fayer M.. Dynamically disordered lattice in a layered Pb−I−SCN perovskite thin film probed by two dimensional infrared spectroscopy. J. Am. Chem. Soc., 2018, 140(31): 9882 https://doi.org/10.1021/jacs.8b03787
20
Moody G., Kavir Dass C., Hao K., H. Chen C., J. Li L., Singh A., Tran K., Clark G., Xu X., Berghäuser G., Malic E., Knorr A., Li X.. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun., 2015, 6(1): 8315 https://doi.org/10.1038/ncomms9315
21
Guo L., A. Chen C., Zhang Z., M. Monahan D., H. Lee Y., R. Fleming G.. Lineshape characterization of excitons in monolayer WS2 by two-dimensional electronic spectroscopy. Nanoscale Adv., 2020, 2(6): 2333 https://doi.org/10.1039/D0NA00240B
22
Jakubczyk T., Delmonte V., Koperski M., Nogajewski K., Faugeras C., Langbein W., Potemski M., Kasprzak J.. Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy. Nano Lett., 2016, 16(9): 5333 https://doi.org/10.1021/acs.nanolett.6b01060
23
Jakubczyk T., Nogajewski K., R. Molas M., Bartos M., Langbein W., Potemski M., Kasprzak J.. Impact of environment on dynamics of exciton complexes in a WS2 monolayer. 2D Mater., 2018, 5: 031007 https://doi.org/10.1088/2053-1583/aabc1c
24
Boule C., Vaclavkova D., Bartos M., Nogajewski K., Zdražil L., Taniguchi T., Watanabe K., Potemski M., Kasprzak J.. Coherent dynamics and mapping of excitons in single-layer MoSe2 and WSe2 at the homogeneous limit. Phys. Rev. Mater., 2020, 4(3): 034001 https://doi.org/10.1103/PhysRevMaterials.4.034001
25
L. Purz T., W. Martin E., G. Holtzmann W., Rivera P., Alfrey A., M. Bates K., Deng H., Xu X., T. Cundiff S.. Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J. Chem. Phys., 2022, 156(21): 214704 https://doi.org/10.1063/5.0087544
26
F. Mak K., He K., Shan J., F. Heinz T.. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494 https://doi.org/10.1038/nnano.2012.96
27
Ye Z., Sun D., F. Heinz T.. Optical manipulation of valley pseudospin. Nat. Phys., 2017, 13(1): 26 https://doi.org/10.1038/nphys3891
28
Hao K., Moody G., Wu F., K. Dass C., Xu L., H. Chen C., Sun L., Y. Li M., J. Li L., H. MacDonald A., Li X.. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys., 2016, 12(7): 677 https://doi.org/10.1038/nphys3674
29
Titze M., Li B., Zhang X., M. Ajayan P., Li H.. Intrinsic coherence time of trions in monolayer MoSe2 measured via two-dimensional coherent spectroscopy. Phys. Rev. Mater., 2018, 2(5): 054001 https://doi.org/10.1103/PhysRevMaterials.2.054001
30
Hao K., Xu L., Wu F., Nagler P., Tran K., Ma X., Schüller C., Korn T., H. MacDonald A., Moody G., Li X.. Trion valley coherence in monolayer semiconductors. 2D Mater., 2017, 4: 025105 https://doi.org/10.1088/2053-1583/aa70f9
31
B. Muir J., Levinsen J., K. Earl S., A. Conway M., H. Cole J., Wurdack M., Mishra R., J. Ing D., Estrecho E., Lu Y., K. Efimkin D., O. Tollerud J., A. Ostrovskaya E., M. Parish M., A. Davis J.. Interactions between Fermi polarons in monolayer WS2. Nat. Commun., 2022, 13(1): 6164 https://doi.org/10.1038/s41467-022-33811-x
32
Huang D., Sampson K., Ni Y., Liu Z., Liang D., Watanabe K., Taniguchi T., Li H., Martin E., Levinsen J., M. Parish M., Tutuc E., K. Efimkin D., Li X.. Quantum dynamics of attractive and repulsive polarons in a doped MoSe2 monolayer. Phys. Rev. X, 2023, 13(1): 011029 https://doi.org/10.1103/PhysRevX.13.011029
33
Helmrich S., Sampson K., Huang D., Selig M., Hao K., Tran K., Achstein A., Young C., Knorr A., Malic E., Woggon U., Owschimikow N., Li X.. Phonon-assisted intervalley scattering determines ultrafast exciton dynamics in MoSe2 bilayers. Phys. Rev. Lett., 2021, 127(15): 157403 https://doi.org/10.1103/PhysRevLett.127.157403
34
Li D., Trovatello C., Dal Conte S., Nuß M., Soavi G., Wang G., C. Ferrari A., Cerullo G., Brixner T.. Exciton–phonon coupling strength in single-layer MoSe2 at room temperature. Nat. Commun., 2021, 12(1): 954 https://doi.org/10.1038/s41467-021-20895-0
35
Li D., Shan H., Rupprecht C., Knopf H., Watanabe K., Taniguchi T., Qin Y., Tongay S., Nuß M., Schröder S., Eilenberger F., Höfling S., Schneider C., Brixner T.. Hybridized exciton−photon−phonon states in a transition metal dichalcogenide van der Waals heterostructure microcavity. Phys. Rev. Lett., 2022, 128(8): 087401 https://doi.org/10.1103/PhysRevLett.128.087401
36
Guo L., Wu M., Cao T., M. Monahan D., H. Lee Y., G. Louie S., R. Fleming G.. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys., 2019, 15(3): 228 https://doi.org/10.1038/s41567-018-0362-y
37
T. Lloyd L., E. Wood R., Mujid F., Sohoni S., L. Ji K., C. Ting P., S. Higgins J., Park J., S. Engel G.. Sub-10 fs intervalley exciton coupling in monolayer MoS2 revealed by helicity-resolved two-dimensional electronic spectroscopy. ACS Nano, 2021, 15(6): 10253 https://doi.org/10.1021/acsnano.1c02381
38
Mapara V., Barua A., Turkowski V., T. Trinh M., Stevens C., Liu H., A. Nugera F., Kapuruge N., R. Gutierrez H., Liu F., Zhu X., Semenov D., A. McGill S., Pradhan N., J. Hilton D., Karaiskaj D.. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett., 2022, 22(4): 1680 https://doi.org/10.1021/acs.nanolett.1c04667
39
Singh A., Moody G., Wu S., Wu Y., J. Ghimire N., Yan J., G. Mandrus D., Xu X., Li X.. Coherent electronic coupling in atomically thin MoSe2. Phys. Rev. Lett., 2014, 112(21): 216804 https://doi.org/10.1103/PhysRevLett.112.216804
40
Hao K., Xu L., Nagler P., Singh A., Tran K., K. Dass C., Schüller C., Korn T., Li X., Moody G.. Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2. Nano Lett., 2016, 16(8): 5109 https://doi.org/10.1021/acs.nanolett.6b02041
41
Rodek A., Hahn T., Howarth J., Taniguchi T., Watanabe K., Potemski M., Kossacki P., Wigger D., Kasprzak J.. Controlled coherent-coupling and dynamics of exciton complexes in a MoSe2 monolayer. 2D Mater., 2023, 10: 025027 https://doi.org/10.1088/2053-1583/acc59a
42
Tempelaar R., C. Berkelbach T.. Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides. Nat. Commun., 2019, 10(1): 3419 https://doi.org/10.1038/s41467-019-11497-y
43
Hao K., F. Specht J., Nagler P., Xu L., Tran K., Singh A., K. Dass C., Schüller C., Korn T., Richter M., Knorr A., Li X., Moody G.. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun., 2017, 8(1): 15552 https://doi.org/10.1038/ncomms15552
44
E. Wood R., T. Lloyd L., Mujid F., Wang L., A. Allodi M., Gao H., Mazuski R., C. Ting P., Xie S., Park J., S. Engel G.. Evidence for the dominance of carrier-induced band gap renormalization over biexciton formation in cryogenic ultrafast experiments on MoS2 monolayers. J. Phys. Chem. Lett., 2020, 11(7): 2658 https://doi.org/10.1021/acs.jpclett.0c00169
45
A. Conway M., B. Muir J., K. Earl S., Wurdack M., Mishra R., O. Tollerud J., A. Davis J.. Direct measurement of biexcitons in monolayer WS2. 2D Mater., 2022, 9: 021001 https://doi.org/10.1088/2053-1583/ac4779
46
Mai C., Barrette A., Yu Y., G. Semenov Y., W. Kim K., Cao L., Gundogdu K.. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett., 2014, 14(1): 202 https://doi.org/10.1021/nl403742j
47
Kylänpää I., P. Komsa H.. Binding energies of exciton-complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B, 2015, 92(20): 205418 https://doi.org/10.1103/PhysRevB.92.205418
48
Aeschlimann M., Brixner T., Fischer A., Kramer C., Melchior P., Pfeiffer W., Schneider C., Strüber C., Tuchscherer P., V. Voronine D.. Coherent two-dimensional nanoscopy. Science, 2011, 333(6050): 1723 https://doi.org/10.1126/science.1209206
49
S. Novoselov K., Mishchenko A., Carvalho A., H. Castro Neto A.. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439 https://doi.org/10.1126/science.aac9439
50
L. Purz T., W. Martin E., Rivera P., G. Holtzmann W., Xu X., T. Cundiff S.. Coherent exciton-exciton interactions and exciton dynamics in a MoSe2/WSe2 heterostructure. Phys. Rev. B, 2021, 104(24): L241302 https://doi.org/10.1103/PhysRevB.104.L241302
51
R. Policht V., Russo M., Liu F., Trovatello C., Maiuri M., Bai Y., Zhu X., Dal Conte S., Cerullo G.. Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Lett., 2021, 21(11): 4738 https://doi.org/10.1021/acs.nanolett.1c01098
E. Stevens C., Paul J., Cox T., K. Sahoo P., R. Gutiérrez H., Turkowski V., Semenov D., A. McGill S., D. Kapetanakis M., E. Perakis I., J. Hilton D., Karaiskaj D.. Biexcitons in monolayer transition metal dichalcogenides tuned by magnetic fields. Nat. Commun., 2018, 9(1): 3720 https://doi.org/10.1038/s41467-018-05643-1
55
Mapara V., E. Stevens C., Paul J., Barua A., L. Reno J., A. McGill S., J. Hilton D., Karaiskaj D.. Multidimensional spectroscopy of magneto-excitons at high magnetic fields. J. Chem. Phys., 2021, 155(20): 204201 https://doi.org/10.1063/5.0070113
56
I. Azzam S., Parto K., Moody G.. Prospects and challenges of quantum emitters in 2D materials. Appl. Phys. Lett., 2021, 118(24): 240502 https://doi.org/10.1063/5.0054116