1. College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China 2. Shenzhen SpinQ Technology Co., Ltd., Shenzhen 518045, China 3. DEEPROUTE.AI
Optimization problems are prevalent in various fields, and the gradient-based gradient descent algorithm is a widely adopted optimization method. However, in classical computing, computing the numerical gradient for a function with variables necessitates at least function evaluations, resulting in a computational complexity of . As the number of variables increases, the classical gradient estimation methods require substantial resources, ultimately surpassing the capabilities of classical computers. Fortunately, leveraging the principles of superposition and entanglement in quantum mechanics, quantum computers can achieve genuine parallel computing, leading to exponential acceleration over classical algorithms in some cases. In this paper, we propose a novel quantum-based gradient calculation method that requires only a single oracle calculation to obtain the numerical gradient result for a multivariate function. The complexity of this algorithm is just . Building upon this approach, we successfully implemented the quantum gradient descent algorithm and applied it to the variational quantum eigensolver (VQE), creating a pure quantum variational optimization algorithm. Compared with classical gradient-based optimization algorithm, this quantum optimization algorithm has remarkable complexity advantages, providing an efficient solution to optimization problems.The proposed quantum-based method shows promise in enhancing the performance of optimization algorithms, highlighting the potential of quantum computing in this field.
Farhi E.Goldstone J.Gutmann S.Sipser M., Quantum computation by adiabatic evolution, arXiv: quant-ph/0001106 (2000)
3
G. Guerreschi G., Y. Matsuura A.. Qaoa for max-cut requires hundreds of qubits for quantum speed-up. Sci. Rep., 2019, 6(1): 6903 https://doi.org/10.1038/s41598-019-43176-9
4
A. Nielsen M., Neural Networks and Deep Learning, Determination Press, 2015
5
Schuld M.Sinayskiy I., The quest for a quantum neural network, arXiv: 1408.7005 (2014)
Sakuma T., Application of deep quantum neural networks to finance, arXiv: 2011.07319 (2020)
8
Orus R.Mugel S.Lizaso E., Quantum computing for finance: Overview and prospects, arXiv: 1807.03890v2 (2018)
9
J. Egger D., Gambella C., Marecek J., McFaddin S., Mevissen M., Raymond R., Simonetto A., Woerner S., Yndurain E.. Quantum computing for finance: State-of-the-art and future prospects. IEEE Trans. Quant. Eng., 2020, 1: 3101724 https://doi.org/10.1109/TQE.2020.3030314
A. Fedorov D., J. Otten M., K. Gray S., Alexeev Y.. Ab initio molecular dynamics on quantum computers. J. Chem. Phys., 2021, 154(16): 164103 https://doi.org/10.1063/5.0046930
12
Gandhi V., Prasad G., Coyle D., Behera L., M. McGinnity T.. Quantum neural network-based EEG filtering for a brain–computer interface. IEEE Trans. Neural Netw. Learn. Syst., 2014, 25(2): 278 https://doi.org/10.1109/TNNLS.2013.2274436
13
Peruzzo A.McClean J.Shadbolt P., et al.., A variational eigenvalue solver on a quantum processor, arXiv: 1304.3061 (2013)
14
Wei S., Li H., Long G.. A full quantum eigensolver for quantum chemistry simulations. Research, 2020, 2020: 1486935 https://doi.org/10.34133/2020/1486935
15
Ruder S., An overview of gradient descent optimization algorithms, arXiv: 1609.04747 (2016)
16
R. McClean J., Romero J., Babbush R., Aspuru-Guzik A.. The theory of variational hybrid quantumclassical algorithms. New J. Phys., 2016, 18(2): 023023 https://doi.org/10.1088/1367-2630/18/2/023023
17
Cerezo M.Arrasmith A.Babbush R.C. Benjamin S.Endo S. Fujii K.R. McClean J.Mitarai K.Yuan X.Cincio L. J. Coles P., Variational quantum algorithms, arXiv: 2012.09265 (2020)
18
Y. Hou S., Feng G., Wu Z., Zou H., Shi W., Zeng J., Cao C., Yu S., Sheng Z., Rao X., Ren B., Lu D., Zou J., Miao G., Xiang J., Zeng B.. Spinq gemini: A desktop quantum computing platform for education and research. EPJ Quantum Technol., 2021, 8(1): 20 https://doi.org/10.1140/epjqt/s40507-021-00109-8
19
Yuan G., Li T., Hu W.. A conjugate gradient algorithm and its application in large-scale optimization problems and image restoration. J. Inequal. Appl., 2019, 2019(1): 247 https://doi.org/10.1186/s13660-019-2192-6
20
G. Broyden C.. The convergence of a class of double-rank minimization algorithms (1): General considerations. IMA J. Appl. Math., 1970, 6(1): 76 https://doi.org/10.1093/imamat/6.1.76
W. Shor P., Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp 124–134
29
Monz T., Nigg D., A. Martinez E., F. Brandl M., Schindler P., Rines R., X. Wang S., L. Chuang I., Blatt R.. Realization of a scalable Shor algorithm. Science, 2016, 351(6277): 1068 https://doi.org/10.1126/science.aad9480
Duan B., Yuan J., H. Yu C., Huang J., Y. Hsieh C.. A survey on HHLalgorithm: From theory to application in quantum machine learning. Phys. Lett. A, 2020, 384(24): 126595 https://doi.org/10.1016/j.physleta.2020.126595
Aleksandrowicz G., et al.., Qiskit: An open-source framework for quantum computing, 2019
42
M. Parrish R., G. Hohenstein E., L. McMahon P., J. Martínez T.. Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev. Lett., 2019, 122(23): 230401 https://doi.org/10.1103/PhysRevLett.122.230401
43
Kandala A., Mezzacapo A., Temme K., Takita M., Brink M., M. Chow J., M. Gambetta J.. Hardwareefficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242 https://doi.org/10.1038/nature23879
44
Hempel C., Maier C., Romero J., McClean J., Monz T., Shen H., Jurcevic P., P. Lanyon B., Love P., Babbush R., Aspuru-Guzik A., Blatt R., F. Roos C.. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X, 2018, 8(3): 031022 https://doi.org/10.1103/PhysRevX.8.031022
Schuld M., Bergholm V., Gogolin C., Izaac J., Killoran N.. Evaluating analytic gradients on quantum hardware. Phys. Rev. A, 2019, 99(3): 032331 https://doi.org/10.1103/PhysRevA.99.032331
47
Lee J., J. Huggins W., Head-Gordon M., B. Whaley K.. Generalized unitary coupled cluster wave functions for quantum computation. J. Chem. Theory Comput., 2019, 15(1): 311 https://doi.org/10.1021/acs.jctc.8b01004
48
Wecker D., B. Hastings M., Troyer M.. Progress towards practical quantum variational algorithms. Phys. Rev. A, 2015, 92(4): 042303 https://doi.org/10.1103/PhysRevA.92.042303
49
Wiersema R., Zhou C., de Sereville Y., F. Carrasquilla J., B. Kim Y., Yuen H.. Exploring entanglement and optimization within the hamiltonian variational ansatz. PRX Quantum, 2020, 1(2): 020319 https://doi.org/10.1103/PRXQuantum.1.020319
50
Gilyén A.Su Y.H. Low G. Wiebe N., Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics, arXiv: 1806.01838 (2018)
51
H. Low G.L. Chuang I., Hamiltonian simulation by qubitization, arXiv: 1610.06546 (2016)
52
M. Childs A.Wiebe N., Hamiltonian simulation using linear combinations of unitary operations, arXiv: 1202.5822 (2012)
53
Bottou L., Large-scale machine learning with stochastic gradient descent, in: Proceedings of COMPSTAT’2010, edited by Y. Lechevallier and G. Saporta, Physica-Verlag HD, Heidelberg, 2010, pp 177–186