Twistronics and moiré excitonic physics in van der Waals heterostructures
Siwei Li1, Ke Wei2(), Qirui Liu1, Yuxiang Tang2, Tian Jiang2()
1. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China 2. Institute for Quantum Science and Technology, National University of Defense Technology, Changsha 410073, China
Heterostructures composed of two-dimensional van der Waals (vdW) materials allow highly controllable stacking, where interlayer twist angles introduce a continuous degree of freedom to alter the electronic band structures and excitonic physics. Motivated by the discovery of Mott insulating states and superconductivity in magic-angle bilayer graphene, the emerging research fields of “twistronics” and moiré physics have aroused great academic interests in the engineering of optoelectronic properties and the exploration of new quantum phenomena, in which moiré superlattice provides a pathway for the realization of artificial excitonic crystals. Here we systematically summarize the current achievements in twistronics and moiré excitonic physics, with emphasis on the roles of lattice rotational mismatches and atomic registries. Firstly, we review the effects of the interlayer twist on electronic and photonic physics, particularly on exciton properties such as dipole moment and spin-valley polarization, through interlayer interactions and electronic band structures. We also discuss the exciton dynamics in vdW heterostructures with different twist angles, like formation, transport and relaxation processes, whose mechanisms are complicated and still need further investigations. Subsequently, we review the theoretical analysis and experimental observations of moiré superlattice and moiré modulated excitons. Various exotic moiré effects are also shown, including periodic potential, moiré miniband, and varying wave function symmetry, which result in exciton localization, emergent exciton peaks and spatially alternating optical selection rule. We further introduce the expanded properties of moiré systems with external modulation factors such as electric field, doping and strain, showing that moiré lattice is a promising platform with high tunability for optoelectronic applications and in-depth study on frontier physics. Lastly, we focus on the rapidly developing field of correlated electron physics based on the moiré system, which is potentially related to the emerging quantum phenomena.
Osada M. , Sasaki T. . Two‐dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater., 2012, 24(2): 210 https://doi.org/10.1002/adma.201103241
2
Xu M. , Liang T. , Shi M. , Chen H. . Graphene-like two-dimensional materials. Chem. Rev., 2013, 113(5): 3766 https://doi.org/10.1021/cr300263a
3
S. Novoselov K. , Jiang D. , Schedin F. , J. Booth T. , V. Khotkevich V. , V. Morozov S. , K. Geim A. . Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA, 2005, 102(30): 10451 https://doi.org/10.1073/pnas.0502848102
Vogt P. , De Padova P. , Quaresima C. , Avila J. , Frantzeskakis E. , C. Asensio M. , Resta A. , Ealet B. , Le Lay G. . Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett., 2012, 108(15): 155501 https://doi.org/10.1103/PhysRevLett.108.155501
6
Watanabe K. , Taniguchi T. , Kanda H. . Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater., 2004, 3(6): 404 https://doi.org/10.1038/nmat1134
7
Song L. , Ci L. , Lu H. , B. Sorokin P. , Jin C. , Ni J. , G. Kvashnin A. , G. Kvashnin D. , Lou J. , I. Yakobson B. , M. Ajayan P. . Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8): 3209 https://doi.org/10.1021/nl1022139
8
Liu H. , T. Neal A. , Zhu Z. , Luo Z. , Xu X. , Tománek D. , D. Ye P. . Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033 https://doi.org/10.1021/nn501226z
9
Li L. , Yu Y. , J. Ye G. , Ge Q. , Ou X. , Wu H. , Feng D. , H. Chen X. , Zhang Y. . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372 https://doi.org/10.1038/nnano.2014.35
10
Ataca C.Topsakal M.Aktürk E.Ciraci S., A comparative study of lattice dynamics of three- and two-dimensional MoS2, J. Phys. Chem. C 115(33), 16354 (2011)
11
Ganatra R. , Zhang Q. . Few-layer MoS2: A promising layered semiconductor. ACS Nano, 2014, 8(5): 4074 https://doi.org/10.1021/nn405938z
12
H. Wang Q. , Kalantar-zadeh K. , Kis A. , N. Coleman J. , S. Strano M. . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699 https://doi.org/10.1038/nnano.2012.193
13
Gong C. , Zhang H. , Wang W. , Colombo L. , M. Wallace R. , Cho K. . Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett., 2013, 103(5): 053513 https://doi.org/10.1063/1.4817409
14
J. Chuang H. , Tan X. , J. Ghimire N. , M. Perera M. , Chamlagain B. , M. C. Cheng M. , Yan J. , Mandrus D. , Tománek D. , Zhou Z. . High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett., 2014, 14(6): 3594 https://doi.org/10.1021/nl501275p
15
Ye Y. , J. Wong Z. , Lu X. , Ni X. , Zhu H. , Chen X. , Wang Y. , Zhang X. . Monolayer excitonic laser. Nat. Photonics, 2015, 9(11): 733 https://doi.org/10.1038/nphoton.2015.197
16
K. Luo Y. , Xu J. , Zhu T. , Wu G. , J. McCormick E. , Zhan W. , R. Neupane M. , K. Kawakami R. . Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett., 2017, 17(6): 3877 https://doi.org/10.1021/acs.nanolett.7b01393
17
Radisavljevic B. , B. Whitwick M. , Kis A. . Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, 5(12): 9934 https://doi.org/10.1021/nn203715c
18
S. Ross J. , Rivera P. , Schaibley J. , Lee-Wong E. , Yu H. , Taniguchi T. , Watanabe K. , Yan J. , Mandrus D. , Cobden D. , Yao W. , Xu X. . Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett., 2017, 17(2): 638 https://doi.org/10.1021/acs.nanolett.6b03398
19
Gao C. , Nie Q. , Y. Lin C. , Huang F. , Wang L. , Xia W. , Wang X. , Hu Z. , Li M. , W. Lu H. , C. Lai Y. , F. Lin Y. , Chu J. , Li W. . Touch-modulated van der Waals heterostructure with self-writing power switch for synaptic simulation. Nano Energy, 2022, 91: 106659 https://doi.org/10.1016/j.nanoen.2021.106659
20
D. Wenbiao Niu G. , Jia Z. , Q. Ma X. , Y. Zhao J. , Zhou K. , T. Han S. , C. Kuo C. , Zhou Y. . Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys., 2024, 19(1): 13402 https://doi.org/10.1007/s11467-023-1329-8
21
Chaves A. , G. Azadani J. , Alsalman H. , R. da Costa D. , Frisenda R. , J. Chaves A. , H. Song S. , D. Kim Y. , He D. , Zhou J. , Castellanos-Gomez A. , M. Peeters F. , Liu Z. , L. Hinkle C. , Oh S.-H. , D. Ye P. , J. Koester S. , H. Lee Y. , Avouris P. , Wang X. , Low T. . Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl., 2020, 4: 29 https://doi.org/10.1038/s41699-020-00162-4
22
Wang Y. , Nie Z. , Wang F. . Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors. Light Sci. Appl., 2020, 9(1): 192 https://doi.org/10.1038/s41377-020-00430-4
23
Wu S. , S. Ross J. , B. Liu G. , Aivazian G. , Jones A. , Fei Z. , Zhu W. , Xiao D. , Yao W. , Cobden D. , Xu X. . Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys., 2013, 9(3): 149 https://doi.org/10.1038/nphys2524
24
Lee I. , Rathi S. , Lim D. , Li L. , Park J. , Lee Y. , S. Yi K. , P. Dhakal K. , Kim J. , Lee C. , H. Lee G. , D. Kim Y. , Hone J. , J. Yun S. , H. Youn D. , H. Kim G. . Gate-tunable hole and electron carrier transport in atomically thin dual-channel WSe2/MoS2 heterostructure for ambipolar field-effect transistors. Adv. Mater., 2016, 28(43): 9519 https://doi.org/10.1002/adma.201601949
25
Lee J. , F. Mak K. , Shan J. . Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol., 2016, 11: 421 https://doi.org/10.1038/nnano.2015.337
26
A. Jauregui L. , Y. Joe A. , Pistunova K. , S. Wild D. , A. High A. , Zhou Y. , Scuri G. , De Greve K. , Sushko A. , H. Yu C. , Taniguchi T. , Watanabe K. , J. Needleman D. , D. Lukin M. , Park H. , Kim P. . Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366(6467): 870 https://doi.org/10.1126/science.aaw4194
27
Chernikov A. , M. van der Zande A. , M. Hill H. , F. Rigosi A. , Velauthapillai A. , Hone J. , F. Heinz T. . Electrical tuning of exciton binding energies in monolayer WS2. Phys. Rev. Lett., 2015, 115(12): 126802 https://doi.org/10.1103/PhysRevLett.115.126802
28
V. Nguyen P. , C. Teutsch N. , P. Wilson N. , Kahn J. , Xia X. , J. Graham A. , Kandyba V. , Giampietri A. , Barinov A. , C. Constantinescu G. , Yeung N. , Hine N. , Xu X. , H. Cobden D. , R. Wilson N. . Visualizing electrostatic gating effects in two-dimensional heterostructures. Nature, 2019, 572(7768): 220 https://doi.org/10.1038/s41586-019-1402-1
29
Peng Z. , Chen X. , Fan Y. , J. Srolovitz D. , Lei D. . Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications. Light Sci. Appl., 2020, 9(1): 190 https://doi.org/10.1038/s41377-020-00421-5
30
J. Conley H. , Wang B. , I. Ziegler J. , F. Jr Haglund R. , T. Pantelides S. , I. Bolotin K. . Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett., 2013, 13(8): 3626 https://doi.org/10.1021/nl4014748
31
G. Harats M. , N. Kirchhof J. , Qiao M. , Greben K. , I. Bolotin K. . Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2. Nat. Photonics, 2020, 14(5): 324 https://doi.org/10.1038/s41566-019-0581-5
32
Li Z. , Lv Y. , Ren L. , Li J. , Kong L. , Zeng Y. , Tao Q. , Wu R. , Ma H. , Zhao B. , Wang D. , Dang W. , Chen K. , Liao L. , Duan X. , Duan X. , Liu Y. . Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun., 2020, 11(1): 1151 https://doi.org/10.1038/s41467-020-15023-3
33
Luo G. , Lv X. , Wen L. , Li Z. , Dai Z. . Strain induced topological transitions in twisted double bilayer graphene. Front. Phys., 2022, 17(2): 23502 https://doi.org/10.1007/s11467-021-1146-x
34
M. Fitzgerald J. , J. P. Thompson J. , Malic E. . Twist angle tuning of moiré exciton polaritons in van der Waals heterostructures. Nano Lett., 2022, 22(11): 4468 https://doi.org/10.1021/acs.nanolett.2c01175
35
Hoshi Y. , Kuroda T. , Okada M. , Moriya R. , Masubuchi S. , Watanabe K. , Taniguchi T. , Kitaura R. , Machida T. . Suppression of exciton−exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides. Phys. Rev. B, 2017, 95(24): 241403 https://doi.org/10.1103/PhysRevB.95.241403
36
K. M. Newaz A. , S. Puzyrev Y. , Wang B. , T. Pantelides S. , I. Bolotin K. . Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment. Nat. Commun., 2012, 3(1): 734 https://doi.org/10.1038/ncomms1740
37
Raja A. , Chaves A. , Yu J. , Arefe G. , M. Hill H. , F. Rigosi A. , C. Berkelbach T. , Nagler P. , Schüller C. , Korn T. , Nuckolls C. , Hone J. , E. Brus L. , F. Heinz T. , R. Reichman D. , Chernikov A. . Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun., 2017, 8(1): 15251 https://doi.org/10.1038/ncomms15251
38
P. Wilson N. , Yao W. , Shan J. , Xu X. . Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383 https://doi.org/10.1038/s41586-021-03979-1
39
F. Mak K. , Lee C. , Hone J. , Shan J. , F. Heinz T. . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105: 136805 https://doi.org/10.1103/physrevlett.105.136805
40
Li Y. , Chernikov A. , Zhang X. , Rigosi A. , M. Hill H. , M. van der Zande A. , A. Chenet D. , M. Shih E. , Hone J. , F. Heinz T. . Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B, 2014, 90(20): 205422 https://doi.org/10.1103/PhysRevB.90.205422
41
C. Berkelbach T. , S. Hybertsen M. , R. Reichman D. . Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B, 2013, 88(4): 045318 https://doi.org/10.1103/PhysRevB.88.045318
42
Xiao D. , Yao W. , Niu Q. . Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett., 2007, 99(23): 236809 https://doi.org/10.1103/PhysRevLett.99.236809
43
Yao W. , Xiao D. , Niu Q. . Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 2008, 77(23): 235406 https://doi.org/10.1103/PhysRevB.77.235406
44
Cao T. , Wang G. , Han W. , Ye H. , Zhu C. , Shi J. , Niu Q. , Tan P. , Wang E. , Liu B. , Feng J. . Valley- selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun., 2012, 3(1): 887 https://doi.org/10.1038/ncomms1882
45
Jin W. , C. Yeh P. , Zaki N. , Chenet D. , Arefe G. , Hao Y. , Sala A. , O. Mentes T. , I. Dadap J. , Locatelli A. , Hone J. , M. Osgood R. . Tuning the electronic structure of monolayer graphene/MoS2 van der Waals heterostructures via interlayer twist. Phys. Rev. B, 2015, 92(20): 201409 https://doi.org/10.1103/PhysRevB.92.201409
46
Yu H. , Wang Y. , Tong Q. , Xu X. , Yao W. . Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett., 2015, 115(18): 187002 https://doi.org/10.1103/PhysRevLett.115.187002
47
P. Eisenstein J. , H. MacDonald A. . Bose–Einstein condensation of excitons in bilayer electron systems. Nature, 2004, 432(7018): 691 https://doi.org/10.1038/nature03081
48
R. Dean C. , Wang L. , Maher P. , Forsythe C. , Ghahari F. , Gao Y. , Katoch J. , Ishigami M. , Moon P. , Koshino M. , Taniguchi T. , Watanabe K. , L. Shepard K. , Hone J. , Kim P. . Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 2013, 497(7451): 598 https://doi.org/10.1038/nature12186
49
Yu H. , B. Liu G. , Tang J. , Xu X. , Yao W. . Moiré excitons: From programmable quantum emitter arrays to spin‒orbit coupled artificial lattices. Sci. Adv., 2017, 3(11): e1701696 https://doi.org/10.1126/sciadv.1701696
50
Guo H. , Zhang X. , Lu G. . Shedding light on moiré excitons: A first-principles perspective. Sci. Adv., 2020, 6(42): eabc5638 https://doi.org/10.1126/sciadv.abc5638
51
Rivera P. , L. Seyler K. , Yu H. , R. Schaibley J. , Yan J. , G. Mandrus D. , Yao W. , Xu X. . Valley- polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688 https://doi.org/10.1126/science.aac7820
52
Wang Y. , Wang Z. , Yao W. , B. Liu G. , Yu H. . Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B, 2017, 95(11): 115429 https://doi.org/10.1103/PhysRevB.95.115429
53
Ren W. , Lu S. , Yu C. , He J. , Zhang Z. , Chen J. , Zhang G. . Impact of moiré superlattice on atomic stress and thermal transport in van der Waals heterostructures. Appl. Phys. Rev., 2023, 10(4): 041404 https://doi.org/10.1063/5.0159598
54
Jiang Y. , Chen S. , Zheng W. , Zheng B. , Pan A. . Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl., 2021, 10(1): 72 https://doi.org/10.1038/s41377-021-00500-1
55
Tong Q. , Yu H. , Zhu Q. , Wang Y. , Xu X. , Yao W. . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356 https://doi.org/10.1038/nphys3968
56
Zhang C. , P. Chuu C. , Ren X. , Y. Li M. , J. Li L. , Jin C. , Y. Chou M. , K. Shih C. , couplings Interlayer . Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv., 2017, 3(1): e1601459 https://doi.org/10.1126/sciadv.1601459
57
Pan Y. , Fölsch S. , Nie Y. , Waters D. , C. Lin Y. , Jariwala B. , Zhang K. , Cho K. , A. Robinson J. , M. Feenstra R. . Quantum-confined electronic states arising from the moiré pattern of MoS2–WSe2 heterobilayers. Nano Lett., 2018, 18(3): 1849 https://doi.org/10.1021/acs.nanolett.7b05125
58
J. McGilly L. , Kerelsky A. , R. Finney N. , Shapovalov K. , M. Shih E. , Ghiotto A. , Zeng Y. , L. Moore S. , Wu W. , Bai Y. , Watanabe K. , Taniguchi T. , Stengel M. , Zhou L. , Hone J. , Zhu X. , N. Basov D. , Dean C. , E. Dreyer C. , N. Pasupathy A. . Visualization of moiré superlattices. Nat. Nanotechnol., 2020, 15(7): 580 https://doi.org/10.1038/s41565-020-0708-3
59
Cao Y. , Fatemi V. , Demir A. , Fang S. , L. Tomarken S. , Y. Luo J. , D. Sanchez-Yamagishi J. , Watanabe K. , Taniguchi T. , Kaxiras E. , C. Ashoori R. , Jarillo-Herrero P. . Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80 https://doi.org/10.1038/nature26154
60
Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43 https://doi.org/10.1038/nature26160
61
Li L. , Wu M. , Lu X. . Correlation, superconductivity and topology in graphene moiré superlattice. Front. Phys., 2023, 18(4): 43401 https://doi.org/10.1007/s11467-023-1302-6
62
L. Seyler K. , Rivera P. , Yu H. , P. Wilson N. , L. Ray E. , G. Mandrus D. , Yan J. , Yao W. , Xu X. . Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66 https://doi.org/10.1038/s41586-019-0957-1
63
Wu B. , Zheng H. , Li S. , Ding J. , He J. , Zeng Y. , Chen K. , Liu Z. , Chen S. , Pan A. , Liu Y. . Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light Sci. Appl., 2022, 11(1): 166 https://doi.org/10.1038/s41377-022-00854-0
Wu F. , Lovorn T. , H. MacDonald A. . Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B, 2018, 97(3): 035306 https://doi.org/10.1103/PhysRevB.97.035306
66
Yu H. , B. Liu G. , Yao W. . Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater., 2018, 5: 035021 https://doi.org/10.1088/2053-1583/aac065
67
Jin C. , C. Regan E. , Wang D. , Iqbal Bakti Utama M. , S. Yang C. , Cain J. , Qin Y. , Shen Y. , Zheng Z. , Watanabe K. , Taniguchi T. , Tongay S. , Zettl A. , Wang F. . Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat. Phys., 2019, 15(11): 1140 https://doi.org/10.1038/s41567-019-0631-4
68
He J. , Hummer K. , Franchini C. . Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B, 2014, 89(7): 075409 https://doi.org/10.1103/PhysRevB.89.075409
69
Liu Q. , Li L. , Li Y. , Gao Z. , Chen Z. , Lu J. . Tuning electronic structure of bilayer MoS2 by vertical electric field: A first-principles investigation. J. Phys. Chem. C, 2012, 116(40): 21556 https://doi.org/10.1021/jp307124d
70
K. Nayak P. , Horbatenko Y. , Ahn S. , Kim G. , U. Lee J. , Y. Ma K. , R. Jang A. , Lim H. , Kim D. , Ryu S. , Cheong H. , Park N. , S. Shin H. . Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano, 2017, 11(4): 4041 https://doi.org/10.1021/acsnano.7b00640
71
Choi W. , Akhtar I. , A. Rehman M. , Kim M. , Kang D. , Jung J. , Myung Y. , Kim J. , Cheong H. , Seo Y. . Twist-angle-dependent optoelectronics in a few-layer transition-metal dichalcogenide heterostructure. ACS Appl. Mater. Interfaces, 2019, 11(2): 2470 https://doi.org/10.1021/acsami.8b15817
72
Kunstmann J. , Mooshammer F. , Nagler P. , Chaves A. , Stein F. , Paradiso N. , Plechinger G. , Strunk C. , Schüller C. , Seifert G. , R. Reichman D. , Korn T. . Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys., 2018, 14(8): 801 https://doi.org/10.1038/s41567-018-0123-y
73
Scuri G. , I. Andersen T. , Zhou Y. , S. Wild D. , Sung J. , J. Gelly R. , Bérubé D. , Heo H. , Shao L. , Y. Joe A. , M. Mier Valdivia A. , Taniguchi T. , Watanabe K. , Lončar M. , Kim P. , D. Lukin M. , Park H. . Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett., 2020, 124(21): 217403 https://doi.org/10.1103/PhysRevLett.124.217403
74
Zheng S. , Sun L. , Zhou X. , Liu F. , Liu Z. , Shen Z. , J. Fan H. . Coupling and interlayer exciton in twist-stacked WS2 bilayers. Adv. Opt. Mater., 2015, 3(11): 1600 https://doi.org/10.1002/adom.201500301
75
A. Puretzky A. , Liang L. , Li X. , Xiao K. , G. Sumpter B. , Meunier V. , B. Geohegan D. . Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano, 2016, 10(2): 2736 https://doi.org/10.1021/acsnano.5b07807
76
Zhang J. , Wang J. , Chen P. , Sun Y. , Wu S. , Jia Z. , Lu X. , Yu H. , Chen W. , Zhu J. , Xie G. , Yang R. , Shi D. , Xu X. , Xiang J. , Liu K. , Zhang G. . Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater., 2016, 28(10): 1950 https://doi.org/10.1002/adma.201504631
77
Jiang T. , Liu H. , Huang D. , Zhang S. , Li Y. , Gong X. , R. Shen Y. , T. Liu W. , Wu S. . Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol., 2014, 9(10): 825 https://doi.org/10.1038/nnano.2014.176
78
Wang K. , Huang B. , Tian M. , Ceballos F. , W. Lin M. , Mahjouri-Samani M. , Boulesbaa A. , A. Puretzky A. , M. Rouleau C. , Yoon M. , Zhao H. , Xiao K. , Duscher G. , B. Geohegan D. . Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano, 2016, 10(7): 6612 https://doi.org/10.1021/acsnano.6b01486
79
Ji Z. , Hong H. , Zhang J. , Zhang Q. , Huang W. , Cao T. , Qiao R. , Liu C. , Liang J. , Jin C. , Jiao L. , Shi K. , Meng S. , Liu K. . Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano, 2017, 11(12): 12020 https://doi.org/10.1021/acsnano.7b04541
80
Wu L. , Cong C. , Shang J. , Yang W. , Chen Y. , Zhou J. , Ai W. , Wang Y. , Feng S. , Zhang H. , Liu Z. , Yu T. . Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res., 2021, 14(7): 2215 https://doi.org/10.1007/s12274-020-3193-y
81
Wang X. , Yasuda K. , Zhang Y. , Liu S. , Watanabe K. , Taniguchi T. , Hone J. , Fu L. , Jarillo-Herrero P. . Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol., 2022, 17: 367 https://doi.org/10.1038/s41565-021-01059-z
82
Sung J. , Zhou Y. , Scuri G. , Zólyomi V. , I. Andersen T. , Yoo H. , S. Wild D. , Y. Joe A. , J. Gelly R. , Heo H. , J. Magorrian S. , Bérubé D. , M. M. Valdivia A. , Taniguchi T. , Watanabe K. , D. Lukin M. , Kim P. , I. Fal’ko V. , Park H. . Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol., 2020, 15(9): 750 https://doi.org/10.1038/s41565-020-0728-z
83
Michl J. , C. Palekar C. , A. Tarasenko S. , Lohof F. , Gies C. , von Helversen M. , Sailus R. , Tongay S. , Taniguchi T. , Watanabe K. , Heindel T. , Rosa B. , Rödel M. , Shubina T. , Höfling S. , Reitzenstein S. , Anton-Solanas C. , Schneider C. . Intrinsic circularly polarized exciton emission in a twisted van der Waals heterostructure. Phys. Rev. B, 2022, 105(24): L241406 https://doi.org/10.1103/PhysRevB.105.L241406
84
Shi J. , Li Y. , Zhang Z. , Feng W. , Wang Q. , Ren S. , Zhang J. , Du W. , Wu X. , Sui X. , Mi Y. , Wang R. , Sun Y. , Zhang L. , Qiu X. , Lu J. , Shen C. , Zhang Y. , Zhang Q. , Liu X. . Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics, 2019, 6(12): 3082 https://doi.org/10.1021/acsphotonics.9b00855
85
E. Zimmermann J. , Axt M. , Mooshammer F. , Nagler P. , Schüller C. , Korn T. , Höfer U. , Mette G. . Ultrafast charge-transfer dynamics in twisted MoS2/WSe2 heterostructures. ACS Nano, 2021, 15(9): 14725 https://doi.org/10.1021/acsnano.1c04549
86
Luo D. , Tang J. , Shen X. , Ji F. , Yang J. , Weathersby S. , E. Kozina M. , Chen Z. , Xiao J. , Ye Y. , Cao T. , Zhang G. , Wang X. , M. Lindenberg A. . Twist-angle-dependent ultrafast charge transfer in MoS2-graphene van der Waals heterostructures. Nano Lett., 2021, 21(19): 8051 https://doi.org/10.1021/acs.nanolett.1c02356
87
M. van der Zande A. , Kunstmann J. , Chernikov A. , A. Chenet D. , You Y. , Zhang X. , Y. Huang P. , C. Berkelbach T. , Wang L. , Zhang F. , S. Hybertsen M. , A. Muller D. , R. Reichman D. , F. Heinz T. , C. Hone J. . Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett., 2014, 14(7): 3869 https://doi.org/10.1021/nl501077m
88
Huang S. , Ling X. , Liang L. , Kong J. , Terrones H. , Meunier V. , S. Dresselhaus M. . Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett., 2014, 14(10): 5500 https://doi.org/10.1021/nl5014597
89
Wang Y. , Su Z. , Wu W. , Nie S. , Xie N. , Gong H. , Guo Y. , Hwan Lee J. , Xing S. , Lu X. , Wang H. , Lu X. , McCarty K. , Pei S. , Robles-Hernandez F. , G. Hadjiev V. , Bao J. . Resonance Raman spectroscopy of G-line and folded phonons in twisted bilayer graphene with large rotation angles. Appl. Phys. Lett., 2013, 103(12): 123101 https://doi.org/10.1063/1.4821434
90
C. Lu C. , C. Lin Y. , Liu Z. , H. Yeh C. , Suenaga K. , W. Chiu P. . Twisting bilayer graphene superlattices. ACS Nano, 2013, 7(3): 2587 https://doi.org/10.1021/nn3059828
91
Ren W. , Chen J. , Zhang G. . Phonon physics in twisted two-dimensional materials. Appl. Phys. Lett., 2022, 121: 140501 https://doi.org/10.1063/5.0106676
92
Dai Y. , Qi P. , Tao G. , Yao G. , Shi B. , Liu Z. , Liu Z. , He X. , Peng P. , Dang Z. , Zheng L. , Zhang T. , Gong Y. , Guan Y. , Liu K. , Fang Z. . Phonon-assisted upconversion in twisted two-dimensional semiconductors. Light Sci. Appl., 2023, 12(1): 6 https://doi.org/10.1038/s41377-022-01051-9
Xiao D. , B. Liu G. , Feng W. , Xu X. , Yao W. . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802 https://doi.org/10.1103/PhysRevLett.108.196802
95
F. Mak K. , He K. , Shan J. , F. Heinz T. . Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7: 494 https://doi.org/10.1038/nnano.2012.96
96
Sallen G. , Bouet L. , Marie X. , Wang G. , R. Zhu C. , P. Han W. , Lu Y. , H. Tan P. , Amand T. , L. Liu B. , Urbaszek B. . Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B., 2012, 86(8): 081301 https://doi.org/10.1103/PhysRevB.86.081301
97
F. Mak K. , L. McGill K. , Park J. , L. McEuen P. . The valley Hall effect in MoS2 transistors. Science, 2014, 344: 1489 https://doi.org/10.1126/science.1250140
98
Lee J. , Wang Z. , Xie H. , F. Mak K. , Shan J. . Valley magnetoelectricity in single-layer MoS2. Nat. Mater., 2017, 16: 887 https://doi.org/10.1038/nmat4931
99
Srivastava A. , Sidler M. , V. Allain A. , S. Lembke D. , Kis A. , Imamoğlu A. . Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141 https://doi.org/10.1038/nphys3203
100
Gong Z. , B. Liu G. , Yu H. , Xiao D. , Cui X. , Xu X. , Yao W. . Magnetoelectric effects and valley- controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun., 2013, 4(1): 2053 https://doi.org/10.1038/ncomms3053
101
Ebnonnasir A. , Narayanan B. , Kodambaka S. , V. Ciobanu C. . Tunable MoS2 bandgap in MoS2-graphene heterostructures. Appl. Phys. Lett., 2014, 105: 031603 https://doi.org/10.1063/1.4891430
102
Rivera P. , R. Schaibley J. , M. Jones A. , S. Ross J. , Wu S. , Aivazian G. , Klement P. , Seyler K. , Clark G. , J. Ghimire N. , Yan J. , G. Mandrus D. , Yao W. , Xu X. . Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun., 2015, 6(1): 6242 https://doi.org/10.1038/ncomms7242
103
Rivera P. , Yu H. , L. Seyler K. , P. Wilson N. , Yao W. , Xu X. . Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol., 2018, 13(11): 1004 https://doi.org/10.1038/s41565-018-0193-0
104
R. Schaibley J. , Yu H. , Clark G. , Rivera P. , S. Ross J. , L. Seyler K. , Yao W. , Xu X. . Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055 https://doi.org/10.1038/natrevmats.2016.55
Singh A. , Tran K. , Kolarczik M. , Seifert J. , Wang Y. , Hao K. , Pleskot D. , M. Gabor N. , Helmrich S. , Owschimikow N. , Woggon U. , Li X. . Long-lived valley polarization of intravalley trions in monolayer WSe2. Phys. Rev. Lett., 2016, 117(25): 257402 https://doi.org/10.1103/PhysRevLett.117.257402
107
Ge M. , Wang H. , Wu J. , Si C. , Zhang J. , Zhang S. . Enhanced valley splitting of WSe2 in twisted van der Waals WSe2/CrI3 heterostructures. npj Comput. Mater., 2022, 8: 32 https://doi.org/10.1038/s41524-022-00715-9
108
Hu W. , Yang J. . Two-dimensional van der Waals heterojunctions for functional materials and devices. J. Mater. Chem. C, 2017, 5(47): 12289 https://doi.org/10.1039/C7TC04697A
109
O. Özçelik V. , G. Azadani J. , Yang C. , J. Koester S. , Low T. . Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B, 2016, 94(3): 035125 https://doi.org/10.1103/PhysRevB.94.035125
110
Hong X. , Kim J. , F. Shi S. , Zhang Y. , Jin C. , Sun Y. , Tongay S. , Wu J. , Zhang Y. , Wang F. . Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol., 2014, 9(9): 682 https://doi.org/10.1038/nnano.2014.167
111
Zhu H. , Wang J. , Gong Z. , D. Kim Y. , Hone J. , Y. Zhu X. . Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett., 2017, 17(6): 3591 https://doi.org/10.1021/acs.nanolett.7b00748
112
F. Rigosi A. , M. Hill H. , Li Y. , Chernikov A. , F. Heinz T. . Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett., 2015, 15(8): 5033 https://doi.org/10.1021/acs.nanolett.5b01055
113
Yu Y. , Hu S. , Su L. , Huang L. , Liu Y. , Jin Z. , A. Purezky A. , B. Geohegan D. , W. Kim K. , Zhang Y. , Cao L. . Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett., 2015, 15(1): 486 https://doi.org/10.1021/nl5038177
114
Liu F. , Li Q. , Y. Zhu X. . Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2. Phys. Rev. B, 2020, 101(20): 201405 https://doi.org/10.1103/PhysRevB.101.201405
115
Merkl P. , Mooshammer F. , Steinleitner P. , Girnghuber A. , Q. Lin K. , Nagler P. , Holler J. , Schüller C. , M. Lupton J. , Korn T. , Ovesen S. , Brem S. , Malic E. , Huber R. . Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater., 2019, 18(7): 691 https://doi.org/10.1038/s41563-019-0337-0
116
Wang H. , Bang J. , Sun Y. , Liang L. , West D. , Meunier V. , Zhang S. . The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures. Nat. Commun., 2016, 7(1): 11504 https://doi.org/10.1038/ncomms11504
117
K. Behura S. , Miranda A. , Nayak S. , Johnson K. , Das P. , R. Pradhan N. . Moiré physics in twisted van der Waals heterostructures of 2D materials. Emergent Mater., 2021, 4(4): 813 https://doi.org/10.1007/s42247-021-00270-x
118
Wu F. , Lovorn T. , Tutuc E. , H. MacDonald A. . Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett., 2018, 121(2): 026402 https://doi.org/10.1103/PhysRevLett.121.026402
119
Wang H. , Ma S. , Zhang S. , Lei D. . Intrinsic superflat bands in general twisted bilayer systems. Light Sci. Appl., 2022, 11(1): 159 https://doi.org/10.1038/s41377-022-00838-0
120
Ma Z. , Li S. , M. Xiao M. , W. Zheng Y. , Lu M. , Liu H. , H. Gao J. , C. Xie X. . Moiré flat bands of twisted few-layer graphite. Front. Phys., 2023, 18(1): 13307 https://doi.org/10.1007/s11467-022-1220-z
121
Zhang N. , Surrente A. , Baranowski M. , K. Maude D. , Gant P. , Castellanos-Gomez A. , Plochocka P. . Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett., 2018, 18(12): 7651 https://doi.org/10.1021/acs.nanolett.8b03266
Bistritzer R. , H. MacDonald A. . Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12233 https://doi.org/10.1073/pnas.1108174108
124
Chen G. , Jiang L. , Wu S. , Lyu B. , Li H. , L. Chittari B. , Watanabe K. , Taniguchi T. , Shi Z. , Jung J. , Zhang Y. , Wang F. . Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237 https://doi.org/10.1038/s41567-018-0387-2
125
Chen G. , L. Sharpe A. , Gallagher P. , T. Rosen I. , J. Fox E. , Jiang L. , Lyu B. , Li H. , Watanabe K. , Taniguchi T. , Jung J. , Shi Z. , Goldhaber-Gordon D. , Zhang Y. , Wang F. . Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572(7768): 215 https://doi.org/10.1038/s41586-019-1393-y
126
Chen G. , L. Sharpe A. , J. Fox E. , H. Zhang Y. , Wang S. , Jiang L. , Lyu B. , Li H. , Watanabe K. , Taniguchi T. , Shi Z. , Senthil T. , Goldhaber-Gordon D. , Zhang Y. , Wang F. . Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 2020, 579(7797): 56 https://doi.org/10.1038/s41586-020-2049-7
127
Su R. , Kuiri M. , Watanabe K. , Taniguchi T. , Folk J. . Superconductivity in twisted double bilayer graphene stabilized by WSe2. Nat. Mater., 2023, 22(11): 1332 https://doi.org/10.1038/s41563-023-01653-7
128
Wang L. , M. Shih E. , Ghiotto A. , Xian L. , A. Rhodes D. , Tan C. , Claassen M. , M. Kennes D. , Bai Y. , Kim B. , Watanabe K. , Taniguchi T. , Zhu X. , Hone J. , Rubio A. , N. Pasupathy A. , R. Dean C. . Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater., 2020, 19(8): 861 https://doi.org/10.1038/s41563-020-0708-6
129
Tang Y. , Li L. , Li T. , Xu Y. , Liu S. , Barmak K. , Watanabe K. , Taniguchi T. , H. MacDonald A. , Shan J. , F. Mak K. . Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 353 https://doi.org/10.1038/s41586-020-2085-3
130
Xu Y. , Liu S. , A. Rhodes D. , Watanabe K. , Taniguchi T. , Hone J. , Elser V. , F. Mak K. , Shan J. . Correlated insulating states at fractional fillings of moiré superlattices. Nature, 2020, 587(7833): 214 https://doi.org/10.1038/s41586-020-2868-6
131
Shimazaki Y. , Schwartz I. , Watanabe K. , Taniguchi T. , Kroner M. , Imamoğlu A. . Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 2020, 580(7804): 472 https://doi.org/10.1038/s41586-020-2191-2
132
Liu Y. , Zeng C. , Yu J. , Zhong J. , Li B. , Zhang Z. , Liu Z. , M. Wang Z. , Pan A. , Duan X. . Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chem. Soc. Rev., 2021, 50(11): 6401 https://doi.org/10.1039/D0CS01002B
133
H. Naik M. , Kundu S. , Maity I. , Jain M. . Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: Realization of triangular quantum dots. Phys. Rev. B, 2020, 102(7): 075413 https://doi.org/10.1103/PhysRevB.102.075413
134
Yuan L. , Zheng B. , Kunstmann J. , Brumme T. , B. Kuc A. , Ma C. , Deng S. , Blach D. , Pan A. , Huang L. . Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater., 2020, 19(6): 617 https://doi.org/10.1038/s41563-020-0670-3
135
Zhang L. , Zhang Z. , Wu F. , Wang D. , Gogna R. , Hou S. , Watanabe K. , Taniguchi T. , Kulkarni K. , Kuo T. , R. Forrest S. , Deng H. . Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11(1): 5888 https://doi.org/10.1038/s41467-020-19466-6
136
Li Z. , Lu X. , F. Cordovilla Leon D. , Lyu Z. , Xie H. , Hou J. , Lu Y. , Guo X. , Kaczmarek A. , Taniguchi T. , Watanabe K. , Zhao L. , Yang L. , B. Deotare P. . Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 2021, 15(1): 1539 https://doi.org/10.1021/acsnano.0c08981
137
Zhao X. , Qiao J. , Zhou X. , Chen H. , Y. Tan J. , Yu H. , M. Chan S. , Li J. , Zhang H. , Zhou J. , Dan J. , Liu Z. , Zhou W. , Liu Z. , Peng B. , Deng L. , J. Pennycook S. , Y. Quek S. , P. Loh K. . Strong moiré excitons in high-angle twisted transition metal dichalcogenide homobilayers with robust commensuration. Nano Lett., 2022, 22(1): 203 https://doi.org/10.1021/acs.nanolett.1c03622
138
Ribeiro-Palau R. , Zhang C. , Watanabe K. , Taniguchi T. , Hone J. , R. Dean C. . Twistable electronics with dynamically rotatable heterostructures. Science, 2018, 361(6403): 690 https://doi.org/10.1126/science.aat6981
139
Weston A. , Zou Y. , Enaldiev V. , Summerfield A. , Clark N. , Zólyomi V. , Graham A. , Yelgel C. , Magorrian S. , Zhou M. , Zultak J. , Hopkinson D. , Barinov A. , H. Bointon T. , Kretinin A. , R. Wilson N. , H. Beton P. , I. Fal’ko V. , J. Haigh S. , Gorbachev R. . Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol., 2020, 15(7): 592 https://doi.org/10.1038/s41565-020-0682-9
140
R. Rosenberger M. , J. Chuang H. , Phillips M. , P. Oleshko V. , M. McCreary K. , V. Sivaram S. , S. Hellberg C. , T. Jonker B. . Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(4): 4550 https://doi.org/10.1021/acsnano.0c00088
141
I. Andersen T. , Scuri G. , Sushko A. , De Greve K. , Sung J. , Zhou Y. , S. Wild D. , J. Gelly R. , Heo H. , Bérubé D. , Y. Joe A. , A. Jauregui L. , Watanabe K. , Taniguchi T. , Kim P. , Park H. , D. Lukin M. . Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater., 2021, 20(4): 480 https://doi.org/10.1038/s41563-020-00873-5
142
Quan J. , Linhart L. , L. Lin M. , Lee D. , Zhu J. , Y. Wang C. , T. Hsu W. , Choi J. , Embley J. , Young C. , Taniguchi T. , Watanabe K. , K. Shih C. , Lai K. , H. MacDonald A. , H. Tan P. , Libisch F. , Li X. . Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater., 2021, 20(8): 1100 https://doi.org/10.1038/s41563-021-00960-1
143
H. Lin B. , C. Chao Y. , T. Hsieh I. , P. Chuu C. , J. Lee C. , H. Chu F. , S. Lu L. , T. Hsu W. , W. Pao C. , K. Shih C. , J. Su J. , H. Chang W. . Remarkably deep moiré potential for intralayer excitons in MoSe2/MoS2 twisted heterobilayers. Nano Lett., 2023, 23(4): 1306 https://doi.org/10.1021/acs.nanolett.2c04524
144
Li S. , Zheng H. , Ding J. , Wu B. , He J. , Liu Z. , Liu Y. . Dynamic control of moiré potential in twisted WS2‒WSe2 heterostructures. Nano Res., 2022, 15(8): 7688 https://doi.org/10.1007/s12274-022-4579-9
145
Wu B. , Zheng H. , Li S. , Ding J. , Zeng Y. , Liu Z. , Liu Y. . Observation of moiré excitons in the twisted WS2/WS2 homostructure. Nanoscale, 2022, 14(34): 12447 https://doi.org/10.1039/D2NR02450K
146
M. Alexeev E. , A. Ruiz-Tijerina D. , Danovich M. , J. Hamer M. , J. Terry D. , K. Nayak P. , Ahn S. , Pak S. , Lee J. , I. Sohn J. , R. Molas M. , Koperski M. , Watanabe K. , Taniguchi T. , S. Novoselov K. , V. Gorbachev R. , S. Shin H. , I. Fal’ko V. , I. Tartakovskii A. . Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature, 2019, 567(7746): 81 https://doi.org/10.1038/s41586-019-0986-9
147
Tran K. , Moody G. , Wu F. , Lu X. , Choi J. , Kim K. , Rai A. , A. Sanchez D. , Quan J. , Singh A. , Embley J. , Zepeda A. , Campbell M. , Autry T. , Taniguchi T. , Watanabe K. , Lu N. , K. Banerjee S. , L. Silverman K. , Kim S. , Tutuc E. , Yang L. , H. MacDonald A. , Li X. . Evidence for moiré excitons in van der Waals heterostructures. Nature, 2019, 567(7746): 71 https://doi.org/10.1038/s41586-019-0975-z
148
Tang Y. , Gu J. , Liu S. , Watanabe K. , Taniguchi T. , Hone J. , F. Mak K. , Shan J. . Tuning layer- hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol., 2021, 16(1): 52 https://doi.org/10.1038/s41565-020-00783-2
149
Brem S. , Q. Lin K. , Gillen R. , M. Bauer J. , Maultzsch J. , M. Lupton J. , Malic E. . Hybridized intervalley moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale, 2020, 12: 11088 https://doi.org/10.1039/D0NR02160A
150
A. Ruiz-Tijerina D. , I. Fal’ko V. . Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B, 2019, 99(12): 125424 https://doi.org/10.1103/PhysRevB.99.125424
151
Jin C. , C. Regan E. , Yan A. , Iqbal Bakti Utama M. , Wang D. , Zhao S. , Qin Y. , Yang S. , Zheng Z. , Shi S. , Watanabe K. , Taniguchi T. , Tongay S. , Zettl A. , Wang F. . Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76 https://doi.org/10.1038/s41586-019-0976-y
152
Zheng H.Wu B.Li S.He J.Chen K.Liu Z.Liu Y.. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 16(2), 3429 (2023)
153
Karni O. , Barré E. , Pareek V. , D. Georgaras J. , K. L. Man M. , Sahoo C. , R. Bacon D. , Zhu X. , B. Ribeiro H. , L. O’Beirne A. , Hu J. , Al-Mahboob A. , M. M. Abdelrasoul M. , S. Chan N. , Karmakar A. , J. Winchester A. , Kim B. , Watanabe K. , Taniguchi T. , Barmak K. , Madéo J. , H. da Jornada F. , F. Heinz T. , M. Dani K. . Structure of the moiré exciton captured by imaging its electron and hole. Nature, 2022, 603(7900): 247 https://doi.org/10.1038/s41586-021-04360-y
154
Dandu M. , Gupta G. , Dasika P. , Watanabe K. , Taniguchi T. , Majumdar K. . Electrically tunable localized versus delocalized intralayer moiré excitons and trions in a twisted MoS2 bilayer. ACS Nano, 2022, 16(6): 8983 https://doi.org/10.1021/acsnano.2c00145
Lagoin C. , Dubin F. . Key role of the moiré potential for the quasicondensation of interlayer excitons in van der Waals heterostructures. Phys. Rev. B, 2021, 103(4): L041406 https://doi.org/10.1103/PhysRevB.103.L041406
157
Götting N. , Lohof F. , Gies C. . Moiré-Bose-Hubbard model for interlayer excitons in twisted transition metal dichalcogenide heterostructures. Phys. Rev. B, 2022, 105(16): 165419 https://doi.org/10.1103/PhysRevB.105.165419
158
Choi J. , T. Hsu W. , S. Lu L. , Sun L. , Y. Cheng H. , H. Lee M. , Quan J. , Tran K. , Y. Wang C. , Staab M. , Jones K. , Taniguchi T. , Watanabe K. , W. Chu M. , Gwo S. , Kim S. , K. Shih C. , Li X. , H. Chang W. . Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv., 2020, 6(39): eaba8866 https://doi.org/10.1126/sciadv.aba8866
159
Mahdikhanysarvejahany F. , N. Shanks D. , Muccianti C. , H. Badada B. , Idi I. , Alfrey A. , Raglow S. , R. Koehler M. , G. Mandrus D. , Taniguchi T. , Watanabe K. , L. A. Monti O. , Yu H. , J. LeRoy B. , R. Schaibley J. . Temperature dependent moiré trapping of interlayer excitons in MoSe2‒WSe2 heterostructures. npj 2D Mater. Appl., 2021, 5: 67 https://doi.org/10.1038/s41699-021-00248-7
160
Choi J. , Florian M. , Steinhoff A. , Erben D. , Tran K. , S. Kim D. , Sun L. , Quan J. , Claassen R. , Majumder S. , A. Hollingsworth J. , Taniguchi T. , Watanabe K. , Ueno K. , Singh A. , Moody G. , Jahnke F. , Li X. . Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys. Rev. Lett., 2021, 126(4): 047401 https://doi.org/10.1103/PhysRevLett.126.047401
161
Cai H. , Rasmita A. , Tan Q. , M. Lai J. , He R. , Cai X. , Zhao Y. , Chen D. , Wang N. , Mu Z. , Huang Z. , Zhang Z. , J. H. Eng J. , Liu Y. , She Y. , Pan N. , Miao Y. , Wang X. , Liu X. , Zhang J. , Gao W. . Interlayer donor-acceptor pair excitons in MoSe2/WSe2 moiré heterobilayer. Nat. Commun., 2023, 14(1): 5766 https://doi.org/10.1038/s41467-023-41330-6
162
Zheng H. , Wu B. , T. Wang C. , Li S. , He J. , Liu Z. , T. Wang J. , Duan J. , Liu Y. . Exploring the regulatory effect of stacked layers on moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer. Nano Res., 2023, 16(7): 10573 https://doi.org/10.1007/s12274-023-5822-8
163
Zheng H. , Wu B. , Li S. , Ding J. , He J. , Liu Z. , T. Wang C. , T. Wang J. , Pan A. , Liu Y. . Localization- enhanced moiré exciton in twisted transition metal dichalcogenide heterotrilayer superlattices. Light Sci. Appl., 2023, 12(1): 117 https://doi.org/10.1038/s41377-023-01171-w
164
Zhang L. , Gogna R. , W. Burg G. , Horng J. , Paik E. , H. Chou Y. , Kim K. , Tutuc E. , Deng H. . Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B, 2019, 100(4): 041402 https://doi.org/10.1103/PhysRevB.100.041402
165
Brotons-Gisbert M. , Baek H. , Molina-Sánchez A. , Campbell A. , Scerri E. , White D. , Watanabe K. , Taniguchi T. , Bonato C. , D. Gerardot B. . Spin-layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater., 2020, 19(6): 630 https://doi.org/10.1038/s41563-020-0687-7
166
Wang X. , Zhu J. , L. Seyler K. , Rivera P. , Zheng H. , Wang Y. , He M. , Taniguchi T. , Watanabe K. , Yan J. , G. Mandrus D. , R. Gamelin D. , Yao W. , Xu X. . Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol., 2021, 16(11): 1208 https://doi.org/10.1038/s41565-021-00969-2
167
Bai Y. , Zhou L. , Wang J. , Wu W. , J. McGilly L. , Halbertal D. , F. B. Lo C. , Liu F. , Ardelean J. , Rivera P. , R. Finney N. , C. Yang X. , N. Basov D. , Yao W. , Xu X. , Hone J. , N. Pasupathy A. , Y. Zhu X. . Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater., 2020, 19(10): 1068 https://doi.org/10.1038/s41563-020-0730-8
168
Zhao W. , C. Regan E. , Wang D. , Jin C. , Hsieh S. , Wang Z. , Wang J. , Wang Z. , Yumigeta K. , Blei M. , Watanabe K. , Taniguchi T. , Tongay S. , Y. Yao N. , Wang F. . Dynamic tuning of moiré excitons in a WSe2/WS2 heterostructure via mechanical deformation. Nano Lett., 2021, 21(20): 8910 https://doi.org/10.1021/acs.nanolett.1c03611
169
Anđelković M. , P. Milovanović S. , Covaci L. , M. Peeters F. . Double moiré with a twist: Supermoiré in encapsulated graphene. Nano Lett., 2020, 20(2): 979 https://doi.org/10.1021/acs.nanolett.9b04058
170
Tagarelli F. , Lopriore E. , Erkensten D. , Perea-Causín R. , Brem S. , Hagel J. , Sun Z. , Pasquale G. , Watanabe K. , Taniguchi T. , Malic E. , Kis A. . Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nat. Photonics, 2023, 17(7): 615 https://doi.org/10.1038/s41566-023-01198-w
171
Lian Z. , Chen D. , Meng Y. , Chen X. , Su Y. , Banerjee R. , Taniguchi T. , Watanabe K. , Tongay S. , Zhang C. , T. Cui Y. , F. Shi S. . Exciton superposition across moiré states in a semiconducting moiré superlattice. Nat. Commun., 2023, 14(1): 5042 https://doi.org/10.1038/s41467-023-40783-z
172
Li L. , Wu M. . Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano, 2017, 11(6): 6382 https://doi.org/10.1021/acsnano.7b02756
173
Li F. , Fu J. , Xue M. , Li Y. , Zeng H. , Kan E. , Hu T. , Wan Y. . Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding. Front. Phys., 2023, 18(5): 53305 https://doi.org/10.1007/s11467-023-1304-4
174
Wang Y. , Cong C. , Yang W. , Shang J. , Peimyoo N. , Chen Y. , Kang J. , Wang J. , Huang W. , Yu T. . Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res., 2015, 8(8): 2562 https://doi.org/10.1007/s12274-015-0762-6
175
He X. , Li H. , Zhu Z. , Dai Z. , Yang Y. , Yang P. , Zhang Q. , Li P. , Schwingenschlogl U. , Zhang X. . Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl. Phys. Lett., 2016, 109(17): 173105 https://doi.org/10.1063/1.4966218
176
Feng J. , Qian X. , W. Huang C. , Li J. . Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics, 2012, 6(12): 866 https://doi.org/10.1038/nphoton.2012.285
177
Castellanos-Gomez A. , Roldán R. , Cappelluti E. , Buscema M. , Guinea F. , S. J. van der Zant H. , A. Steele G. . Local strain engineering in atomically thin MoS2. Nano Lett., 2013, 13(11): 5361 https://doi.org/10.1021/nl402875m
Liu X. , Zeng J. . Gap solitons in parity–time symmetric moiré optical lattices. Photon. Res., 2023, 11(2): 196 https://doi.org/10.1364/PRJ.474527
180
Liu Y. , Ouyang C. , Xu Q. , Su X. , Yang Q. , Ma J. , Li Y. , Tian Z. , Gu J. , Liu L. , Han J. , Shi Y. , Zhang W. . Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface. Photon. Res., 2022, 10(9): 2056 https://doi.org/10.1364/PRJ.462119
181
C. Regan E. , Wang D. , Jin C. , I. Bakti Utama M. , Gao B. , Wei X. , Zhao S. , Zhao W. , Zhang Z. , Yumigeta K. , Blei M. , D. Carlström J. , Watanabe K. , Taniguchi T. , Tongay S. , Crommie M. , Zettl A. , Wang F. . Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 359 https://doi.org/10.1038/s41586-020-2092-4
182
G. Bednorz J. , A. Müller K. . Possible high Tc superconductivity in the Ba−La−Cu−O system. Zeitschrift für Physik B Condensed Matter, 1986, 64: 189 https://doi.org/10.1007/BF01303701
183
Li T. , Jiang S. , Li L. , Zhang Y. , Kang K. , Zhu J. , Watanabe K. , Taniguchi T. , Chowdhury D. , Fu L. , Shan J. , F. Mak K. . Continuous Mott transition in semiconductor moiré superlattices. Nature, 2021, 597(7876): 350 https://doi.org/10.1038/s41586-021-03853-0
184
Miao S. , Wang T. , Huang X. , Chen D. , Lian Z. , Wang C. , Blei M. , Taniguchi T. , Watanabe K. , Tongay S. , Wang Z. , Xiao D. , T. Cui Y. , F. Shi S. . Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moiré superlattice. Nat. Commun., 2021, 12(1): 3608 https://doi.org/10.1038/s41467-021-23732-6
185
Chen D. , Lian Z. , Huang X. , Su Y. , Rashetnia M. , Yan L. , Blei M. , Taniguchi T. , Watanabe K. , Tongay S. , Wang Z. , Zhang C. , T. Cui Y. , F. Shi S. . Tuning moiré excitons and correlated electronic states through layer degree of freedom. Nat. Commun., 2022, 13(1): 4810 https://doi.org/10.1038/s41467-022-32493-9
186
H. Naik M. , C. Regan E. , Zhang Z. , H. Chan Y. , Li Z. , Wang D. , Yoon Y. , S. Ong C. , Zhao W. , Zhao S. , I. B. Utama M. , Gao B. , Wei X. , Sayyad M. , Yumigeta K. , Watanabe K. , Taniguchi T. , Tongay S. , H. da Jornada F. , Wang F. , G. Louie S. . Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature, 2022, 609(7925): 52 https://doi.org/10.1038/s41586-022-04991-9
187
Wang X. , Xiao C. , Park H. , Zhu J. , Wang C. , Taniguchi T. , Watanabe K. , Yan J. , Xiao D. , R. Gamelin D. , Yao W. , Xu X. . Light-induced ferromagnetism in moiré superlattices. Nature, 2022, 604(7906): 468 https://doi.org/10.1038/s41586-022-04472-z
188
Zhang Z. , C. Regan E. , Wang D. , Zhao W. , Wang S. , Sayyad M. , Yumigeta K. , Watanabe K. , Taniguchi T. , Tongay S. , Crommie M. , Zettl A. , P. Zaletel M. , Wang F. . Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys., 2022, 18(10): 1214 https://doi.org/10.1038/s41567-022-01702-z
189
Rohringer G. , Hafermann H. , Toschi A. , A. Katanin A. , E. Antipov A. , I. Katsnelson M. , I. Lichtenstein A. , N. Rubtsov A. , Held K. . Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory. Rev. Mod. Phys., 2018, 90(2): 025003 https://doi.org/10.1103/RevModPhys.90.025003
Ghiotto A. , M. Shih E. , S. S. G. Pereira G. , A. Rhodes D. , Kim B. , Zang J. , J. Millis A. , Watanabe K. , Taniguchi T. , C. Hone J. , Wang L. , R. Dean C. , N. Pasupathy A. . Quantum criticality in twisted transition metal dichalcogenides. Nature, 2021, 597(7876): 345 https://doi.org/10.1038/s41586-021-03815-6
192
Szasz A. , Motruk J. , P. Zaletel M. , E. Moore J. . Chiral spin liquid phase of the triangular lattice Hubbard model: A density matrix renormalization group study. Phys. Rev. X, 2020, 10(2): 021042 https://doi.org/10.1103/PhysRevX.10.021042
M. Jones A. , Yu H. , S. Ross J. , Klement P. , J. Ghimire N. , Yan J. , G. Mandrus D. , Yao W. , Xu X. . Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys., 2014, 10(2): 130 https://doi.org/10.1038/nphys2848
196
Xiong R. , Nie J. , Brantly S. , Hays P. , Sailus R. , Watanabe K. , Taniguchi T. , Tongay S. , Jin C. . Correlated insulator of excitons in WSe2/WS2 moiré superlattices. Science, 2023, 380(6647): 860 https://doi.org/10.1126/science.add5574
197
Brem S. , Linderälv C. , Erhart P. , Malic E. . Tunable phases of moiré excitons in van der Waals heterostructures. Nano Lett., 2020, 20(12): 8534 https://doi.org/10.1021/acs.nanolett.0c03019
198
Zhang Z. , Wang Y. , Watanabe K. , Taniguchi T. , Ueno K. , Tutuc E. , J. LeRoy B. . Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys., 2020, 16(11): 1093 https://doi.org/10.1038/s41567-020-0958-x
199
Hu Q. , Zhan Z. , Cui H. , Zhang Y. , Jin F. , Zhao X. , Zhang M. , Wang Z. , Zhang Q. , Watanabe K. , Taniguchi T. , Cao X. , M. Liu W. , Wu F. , Yuan S. , Xu Y. . Observation of Rydberg moiré excitons. Science, 2023, 380(6652): 1367 https://doi.org/10.1126/science.adh1506
200
Tan Q. , Rasmita A. , Zhang Z. , S. Novoselov K. , Gao W. . Signature of cascade transitions between interlayer excitons in a moiré superlattice. Phys. Rev. Lett., 2022, 129(24): 247401 https://doi.org/10.1103/PhysRevLett.129.247401
201
Halbertal D. , R. Finney N. , S. Sunku S. , Kerelsky A. , Rubio-Verdú C. , Shabani S. , Xian L. , Carr S. , Chen S. , Zhang C. , Wang L. , Gonzalez-Acevedo D. , S. McLeod A. , Rhodes D. , Watanabe K. , Taniguchi T. , Kaxiras E. , R. Dean C. , C. Hone J. , N. Pasupathy A. , M. Kennes D. , Rubio A. , N. Basov D. . Moiré metrology of energy landscapes in van der Waals heterostructures. Nat. Commun., 2021, 12(1): 242 https://doi.org/10.1038/s41467-020-20428-1
202
Li H. , Li S. , C. Regan E. , Wang D. , Zhao W. , Kahn S. , Yumigeta K. , Blei M. , Taniguchi T. , Watanabe K. , Tongay S. , Zettl A. , F. Crommie M. , Wang F. . Imaging two-dimensional generalized Wigner crystals. Nature, 2021, 597(7878): 650 https://doi.org/10.1038/s41586-021-03874-9
203
H. Stansbury C. , I. B. Utama M. , G. Fatuzzo C. , C. Regan E. , Wang D. , Xiang Z. , Ding M. , Watanabe K. , Taniguchi T. , Blei M. , Shen Y. , Lorcy S. , Bostwick A. , Jozwiak C. , Koch R. , Tongay S. , Avila J. , Rotenberg E. , Wang F. , Lanzara A. . Visualizing electron localization of WS2/WSe2 moiré superlattices in momentum space. Sci. Adv., 2021, 7(37): eabf4387 https://doi.org/10.1126/sciadv.abf4387
204
Z. Chen Y. , G. Yu S. , Jiang T. , J. Liu X. , B. Cheng X. , Huang D. . Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides. Front. Phys., 2024, 19: 23301 https://doi.org/10.1007/s11467-023-1345-8
205
V. Enaldiev V. , Ferreira F. , J. Magorrian S. , I. Fal’ko V. . Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Mater., 2021, 8: 025030 https://doi.org/10.1088/2053-1583/abdd92