A simple semi-analytical collective model that takes into account the limitations of the variation interval of the collective variable is suggested to describe the chiral dynamics in triaxial odd−odd nuclei with a fixed particle−hole configuration. The collective Hamiltonian is constructed with the potential energy obtained using the postulated ansatz for the wave function symmetric with respect to chiral transformation. By diagonalizing the collective Hamiltonian the wave functions of the lowest states are obtained and the evolution of the energy splitting of the chiral doublets in transition from chiral vibration to chiral rotation regime is demonstrated.
. [J]. Frontiers of Physics, 2024, 19(2): 24303.
R. V. Jolos, E. A. Kolganova, D. R. Khamitova. Simple collective model for nuclear chiral mode. Front. Phys. , 2024, 19(2): 24303.
B. Chen Q. , Kaiser N. , G. Meißner U. , Meng J. . Behavior of the collective rotor in nuclear chiral motion. Phys. Rev. C, 2019, 99(6): 064326 https://doi.org/10.1103/PhysRevC.99.064326
6
B. Chen Q. , Kaiser N. , G. Meißner U. , Meng J. . Static quadrupole moments of nuclear chiral doublet bands. Phys. Lett. B, 2020, 807: 135568 https://doi.org/10.1016/j.physletb.2020.135568
7
B. Chen Q. , Q. Zhang S. , W. Zhao P. , V. Jolos R. , Meng J. . Collective Hamiltonian for chiral modes. Phys. Rev. C, 2013, 87(2): 024314 https://doi.org/10.1103/PhysRevC.87.024314
8
Starosta K. , Koike T. , J. Chiara C. , B. Fossan D. , R. LaFosse D. . Chirality in odd–odd triaxial nuclei. Nucl. Phys. A, 2001, 682(1‒4): 375 https://doi.org/10.1016/S0375-9474(00)00663-1
V. Mardyban E. , M. Shneidman T. , A. Kolganova E. , V. Jolos R. , G. Zhou S. . Analytical description of shape transition in nuclear alternating parity bands. Chin. Phys. C, 2018, 42(12): 124104 https://doi.org/10.1088/1674-1137/42/12/124104
Cooper F.Khare A.Sukhatme U., Supersymmetry in Quantum Mechanics, World Scientific, 2004
14
Starosta K. , Koike T. , J. Chiara C. , B. Fossan D. , R. LaFosse D. , A. Hecht A. , W. Beausang C. , A. Caprio M. , R. Cooper J. , Krücken R. , R. Novak J. , V. Zamfir N. , E. Zyromski K. , J. Hartley D. , L. Balabanski D. , Zhang J. , Frauendorf S. , I. Dimitrov V. . Chiral doublet structures in odd‒odd N = 75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86(6): 971 https://doi.org/10.1103/PhysRevLett.86.971
15
Frauendorf S. , Dönau F. . Transverse wobbling: A collective mode in odd-A triaxial nuclei. Phys. Rev. C, 2014, 89(1): 014322 https://doi.org/10.1103/PhysRevC.89.014322
16
B. Chen Q. , Q. Zhang S. , W. Zhao P. , V. Jolos R. , Meng J. . Two-dimensional collective Hamiltonian for chiral and wobbling modes. Phys. Rev. C, 2016, 94(4): 044301 https://doi.org/10.1103/PhysRevC.94.044301