Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (2): 24303   https://doi.org/10.1007/s11467-023-1356-5
  本期目录
Simple collective model for nuclear chiral mode
R. V. Jolos1,2(), E. A. Kolganova1,2, D. R. Khamitova1,2
1. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
2. Dubna State University, 141982 Dubna, Moscow Region, Russia
 全文: PDF(3527 KB)   HTML
Abstract

A simple semi-analytical collective model that takes into account the limitations of the variation interval of the collective variable is suggested to describe the chiral dynamics in triaxial odd−odd nuclei with a fixed particle−hole configuration. The collective Hamiltonian is constructed with the potential energy obtained using the postulated ansatz for the wave function symmetric with respect to chiral transformation. By diagonalizing the collective Hamiltonian the wave functions of the lowest states are obtained and the evolution of the energy splitting of the chiral doublets in transition from chiral vibration to chiral rotation regime is demonstrated.

Key wordscollective    model    nuclear    chiral
收稿日期: 2023-04-01      出版日期: 2023-11-17
Corresponding Author(s): R. V. Jolos   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(2): 24303.
R. V. Jolos, E. A. Kolganova, D. R. Khamitova. Simple collective model for nuclear chiral mode. Front. Phys. , 2024, 19(2): 24303.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1356-5
https://academic.hep.com.cn/fop/CN/Y2024/V19/I2/24303
Fig.1  
ξ 0.7 0.9 1.1 1.3 1.5 1.6 1.7 1.8 1.9 2.0
ΔE01 1.307 0.701 0.371 0.166 0.064 0.038 0.022 0.013 0.008 0.004
ΔE23 0.490 0.365 0.259 0.175 0.112 0.069
Tab.1  
Fig.2  
Fig.3  
1 Frauendorf S. , Meng J. . Tilted rotation of triaxial nuclei. Nucl. Phys. A, 1997, 617(2): 131
https://doi.org/10.1016/S0375-9474(97)00004-3
2 W. Xiong B. , Y. Wang Y. . Nuclear chiral doublet bands data tables. At. Data Nucl. Data Tables, 2019, 125: 193
https://doi.org/10.1016/j.adt.2018.05.002
3 Meng J. , Q. Zhang S. . Open problems in understanding the nuclear chirality. J. Phys. G, 2010, 37(6): 064025
https://doi.org/10.1088/0954-3899/37/6/064025
4 Starosta K. , Koike T. . Nuclear chirality, a model and the data. Phys. Scr., 2017, 92(9): 093002
https://doi.org/10.1088/1402-4896/aa800e
5 B. Chen Q. , Kaiser N. , G. Meißner U. , Meng J. . Behavior of the collective rotor in nuclear chiral motion. Phys. Rev. C, 2019, 99(6): 064326
https://doi.org/10.1103/PhysRevC.99.064326
6 B. Chen Q. , Kaiser N. , G. Meißner U. , Meng J. . Static quadrupole moments of nuclear chiral doublet bands. Phys. Lett. B, 2020, 807: 135568
https://doi.org/10.1016/j.physletb.2020.135568
7 B. Chen Q. , Q. Zhang S. , W. Zhao P. , V. Jolos R. , Meng J. . Collective Hamiltonian for chiral modes. Phys. Rev. C, 2013, 87(2): 024314
https://doi.org/10.1103/PhysRevC.87.024314
8 Starosta K. , Koike T. , J. Chiara C. , B. Fossan D. , R. LaFosse D. . Chirality in odd–odd triaxial nuclei. Nucl. Phys. A, 2001, 682(1‒4): 375
https://doi.org/10.1016/S0375-9474(00)00663-1
9 I. Dimitrov V. , Frauendorf S. , Dönau F. . Chirality of nuclear rotation. Phys. Rev. Lett., 2000, 84(25): 5732
https://doi.org/10.1103/PhysRevLett.84.5732
10 Almehed D. , Dönau F. , Frauendorf S. . Chiral vibrations in the A = 135 region. Phys. Rev. C, 2011, 83(5): 054308
https://doi.org/10.1103/PhysRevC.83.054308
11 V. Mardyban E. , M. Shneidman T. , A. Kolganova E. , V. Jolos R. , G. Zhou S. . Analytical description of shape transition in nuclear alternating parity bands. Chin. Phys. C, 2018, 42(12): 124104
https://doi.org/10.1088/1674-1137/42/12/124104
12 Kalka H.Soff G., Supersymmetrie, Teubner Studienbücher, Stuttgart, 1997
13 Cooper F.Khare A.Sukhatme U., Supersymmetry in Quantum Mechanics, World Scientific, 2004
14 Starosta K. , Koike T. , J. Chiara C. , B. Fossan D. , R. LaFosse D. , A. Hecht A. , W. Beausang C. , A. Caprio M. , R. Cooper J. , Krücken R. , R. Novak J. , V. Zamfir N. , E. Zyromski K. , J. Hartley D. , L. Balabanski D. , Zhang J. , Frauendorf S. , I. Dimitrov V. . Chiral doublet structures in odd‒odd N = 75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86(6): 971
https://doi.org/10.1103/PhysRevLett.86.971
15 Frauendorf S. , Dönau F. . Transverse wobbling: A collective mode in odd-A triaxial nuclei. Phys. Rev. C, 2014, 89(1): 014322
https://doi.org/10.1103/PhysRevC.89.014322
16 B. Chen Q. , Q. Zhang S. , W. Zhao P. , V. Jolos R. , Meng J. . Two-dimensional collective Hamiltonian for chiral and wobbling modes. Phys. Rev. C, 2016, 94(4): 044301
https://doi.org/10.1103/PhysRevC.94.044301
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed