1. Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China 2. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physical and Technology, Wuhan University, Wuhan 430072, China 3. College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China 4. Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore 5. i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China 6. Institute of Optical Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Currently, magnetic storage devices are encountering the problem of achieving lightweight and high integration in mobile computing devices during the information age. As a result, there is a growing urgency for two-dimensional half-metallic materials with a high Curie temperature (TC). This study presents a theoretical investigation of the fundamental electromagnetic properties of the monolayer hexagonal lattice of Mn2X3 (X = S, Se, Te). Additionally, the potential application of Mn2X3 as magneto-resistive components is explored. All three of them fall into the category of ferromagnetic half-metals. In particular, the Monte Carlo simulations indicate that the TC of Mn2S3 reachs 381 K, noticeably greater than room temperature. These findings present notable advantages for the application of Mn2S3 in spintronic devices. Hence, a prominent spin filtering effect is apparent when employing non-equilibrium Green’s function simulations to examine the transport parameters. The resulting current magnitude is approximately 2 × 104 nA, while the peak gigantic magnetoresistance exhibits a substantial value of 8.36 × 1016 %. It is noteworthy that the device demonstrates a substantial spin Seebeck effect when the temperature differential between the electrodes is modified. In brief, Mn2X3 exhibits outstanding features as a high TC half-metal, exhibiting exceptional capabilities in electrical and thermal drives spin transport. Therefore, it holds great potential for usage in spintronics applications.
Bian H., Y. Goh Y., Liu Y., Ling H., Xie L., Liu X.. Stimuli-responsive memristive materials for artificial synapses and neuromorphic computing. Adv. Mater., 2021, 33(46): 2006469 https://doi.org/10.1002/adma.202006469
2
Kim D., Jeon B., Lee Y., Kim D., Cho Y., Kim S.. Prospects and applications of volatile memristors. Appl. Phys. Lett., 2022, 121(1): 010501 https://doi.org/10.1063/5.0093964
3
Zhou Z., Yang F., Wang S., Wang L., Wang X., Wang C., Xie Y., Liu Q.. Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204 https://doi.org/10.1007/s11467-021-1114-5
4
Hamdioui S.Aziza H.C. Sirakoulis G., Memristor based memories: Technology, design and test, in: 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2014, pp 1−7
5
Endoh T., 3D integration of memories including heterogeneous integration, in: 2021 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2021, pp 1−2
6
Ikegawa S.B. Mancoff F.Aggarwal S., Commercialization of MRAM − Historical and future perspective, in: 2021 IEEE International Interconnect Technology Conference (IITC), 2021, pp 1−3
7
Cao Q., Lü W., R. Wang X., Guan X., Wang L., Yan S., Wu T., Wang X.. Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces, 2020, 12(38): 42449 https://doi.org/10.1021/acsami.0c10184
8
Puebla J., Kim J., Kondou K., Otani Y.. Spintronic devices for energy-efficient data storage and energy harvesting. Commun. Mater., 2020, 1(1): 24 https://doi.org/10.1038/s43246-020-0022-5
9
Zhang X., Gong P., Liu F., Yao K., Wu J., Zhu S.. High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2). Front. Phys., 2022, 17(5): 53510 https://doi.org/10.1007/s11467-022-1184-z
10
Hu X.Li D. Wang Y.Feng J.Ma Z.Wang S.Min T. Zeng X.Xie Y., An 8Kb 40-nm 2T2MTJ STT-MRAM design with 2.6ns access time and time-adjustable writing process, in: 2021 IEEE 14th International Conference on ASIC (ASICON), 2021, pp 1−4
11
Hatami M., E. W. Bauer G., Zhang Q., J. Kelly P.. Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett., 2007, 99(6): 066603 https://doi.org/10.1103/PhysRevLett.99.066603
12
D. Sarma S.. Spintronics: A new class of device based on electron spin, rather than on charge, may yield the next generation of microelectronics. Am. Sci., 2001, 89(6): 516 https://doi.org/10.1511/2001.6.516
13
A. Wolf S., D. Awschalom D., A. Buhrman R., M. Daughton J., von Molnár S., L. Roukes M., Y. Chtchelkanova A., M. Treger D.. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488 https://doi.org/10.1126/science.1065389
14
Zheng C., Jiang K., Yao K., Zhu S., Wu K.. The electromagnetic performance of transition metal-substituted monolayer black arsenic-phosphorus. Phys. Chem. Chem. Phys., 2021, 23(43): 24570 https://doi.org/10.1039/D1CP02583J
15
C. Zhu S., J. Peng S., M. Wu K., T. Yip C., L. Yao K., H. Lam C.. Negative differential resistance, perfect spin-filtering effect and tunnel magnetoresistance in vanadium-doped zigzag blue phosphorus nanoribbons. Phys. Chem. Chem. Phys., 2018, 20(32): 21105 https://doi.org/10.1039/C8CP02935K
16
Cao Z., Sun B., Zhou G., Mao S., Zhu S., Zhang J., Ke C., Zhao Y., Shao J.. Memristor-based neural networks: A bridge from device to artificial intelligence. Nanoscale Horiz., 2023, 8(6): 716 https://doi.org/10.1039/D2NH00536K
17
S. Iyer S.Vaisband B., Heterogeneous integration at scale, in: Advances in Semiconductor Technologies, Wiley, 2022, pp 1−24
18
Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270 https://doi.org/10.1038/nature22391
19
Lv Y., Qin W., Wang C., Liao L., Liu X.. Recent advances in low-dimensional heterojunction-based tunnel field effect transistors. Adv. Electron. Mater., 2019, 5(1): 1800569 https://doi.org/10.1002/aelm.201800569
20
Z. Butler S., M. Hollen S., Cao L., Cui Y., A. Gupta J., R. Gutiérrez H., F. Heinz T., S. Hong S., Huang J., F. Ismach A., Johnston-Halperin E., Kuno M., V. Plashnitsa V., D. Robinson R., S. Ruoff R., Salahuddin S., Shan J., Shi L., G. Spencer M., Terrones M., Windl W., E. Goldberger J.. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7(4): 2898 https://doi.org/10.1021/nn400280c
21
Guo R., Guo Y., Zhang Y., Gong X., Zhang T., Yu X., Yuan S., Wang J.. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer. Front. Phys., 2023, 18(4): 43304 https://doi.org/10.1007/s11467-023-1297-z
22
F. Dayen J., J. Ray S., Karis O., J. Vera-Marun I., V. Kamalakar M.. Two-dimensional van der Waals spinterfaces and magnetic-interfaces. Appl. Phys. Rev., 2020, 7(1): 011303 https://doi.org/10.1063/1.5112171
23
Xin C., Zheng J., Su Y., Li S., Zhang B., Feng Y., Pan F.. Few-layer tin sulfide: A new black-phosphorus-analogue 2D material with a sizeable band gap, odd–even quantum confinement effect, and high carrier mobility. J. Phys. Chem. C, 2016, 120(39): 22663 https://doi.org/10.1021/acs.jpcc.6b06673
24
Cheng J., Wang C., Zou X., Liao L.. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater., 2019, 7(1): 1800441 https://doi.org/10.1002/adom.201800441
25
J. Yin W., L. Zeng X., Wen B., X. Ge Q., Xu Y., Teobaldi G., M. Liu L.. The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16(3): 33501 https://doi.org/10.1007/s11467-020-1021-1
26
Mendoza-Sánchez B., Gogotsi Y.. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater., 2016, 28(29): 6104 https://doi.org/10.1002/adma.201506133
27
Fidrysiak M., Spałek J.. Universal collective modes from strong electronic correlations: Modified 1/Nf theory with application to high-Tc cuprates. Phys. Rev. B, 2021, 103(16): 165111 https://doi.org/10.1103/PhysRevB.103.165111
28
Laurell P., Okamoto S.. Dynamical and thermal magnetic properties of the Kitaev spin liquid candidate α-RuCl3. npj Quantum Mater., 2020, 5: 2 https://doi.org/10.1038/s41535-019-0203-y
29
Zhang L., Zhang C., F. Zhang S., Ji W., Li P., Wang P.. Two-dimensional honeycomb-kagome Ta2S3: A promising single-spin Dirac fermion and quantum anomalous hall insulator with half-metallic edge states. Nanoscale, 2019, 11(12): 5666 https://doi.org/10.1039/C9NR00826H
30
X. Shen Z., Bo X., Cao K., Wan X., He L.. Magnetic ground state and electron-doping tuning of Curie temperature in Fe3GeTe2: First-principles studies. Phys. Rev. B, 2021, 103(8): 085102 https://doi.org/10.1103/PhysRevB.103.085102
31
K. Pati S., Ramasesha S., Sen D.. Low-lying excited states and low-temperature properties of an alternating spin-1‒spin-1/2 chain: A density-matrix renormalization-group study. Phys. Rev. B, 1997, 55(14): 8894 https://doi.org/10.1103/PhysRevB.55.8894
32
Wang H., Qi J., Qian X.. Electrically tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett., 2020, 117(8): 083102 https://doi.org/10.1063/5.0014865
33
C. Wang M., C. Huang C., H. Cheung C., Y. Chen C., G. Tan S., W. Huang T., Zhao Y., Zhao Y., Wu G., P. Feng Y., C. Wu H., R. Chang C.. Prospects and opportunities of 2D van der Waals magnetic systems. Ann. Phys., 2020, 532(5): 1900452 https://doi.org/10.1002/andp.201900452
34
L. Cortie D., L. Causer G., C. Rule K., Fritzsche H., Kreuzpaintner W., Klose F.. Two-dimensional magnets: Forgotten history and recent progress towards spintronic applications. Adv. Funct. Mater., 2020, 30(18): 1901414 https://doi.org/10.1002/adfm.201901414
35
Xing J., Jiang X., Liu Z., Qi Y., Zhao J.. Robust Dirac spin gapless semiconductors in a two-dimensional oxalate based organic honeycomb-Kagome lattice. Nanoscale, 2022, 14(5): 2023 https://doi.org/10.1039/D1NR07076B
36
P. Wang H., Luo W., J. Xiang H.. Prediction of high-temperature quantum anomalous Hall effect in two-dimensional transition-metal oxides. Phys. Rev. B, 2017, 95(12): 125430 https://doi.org/10.1103/PhysRevB.95.125430
37
K. Liu X., Y. Li X., J. Ren M., J. Wang P., W. Zhang C.. High-temperature nodal ring semimetal in two-dimensional honeycomb-Kagome Mn2N3 lattice. Chin. Phys. B, 2022, 31(12): 127203 https://doi.org/10.1088/1674-1056/ac921c
38
Zhang S., Zhang C., Zhang S., Ji W., Li P., Wang P., Li S., Yan S.. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice. Phys. Rev. B, 2017, 96(20): 205433 https://doi.org/10.1103/PhysRevB.96.205433
39
Y. Chen J., X. Li X., Z. Zhou W., L. Yang J., P. Ouyang F., Xiong X.. Large-spin-gap nodal-line half-metal and high-temperature ferromagnetic semiconductor in Cr2X3 (X = O, S, Se) monolayers. Adv. Electron. Mater., 2020, 6(1): 1900490 https://doi.org/10.1002/aelm.201900490
40
Addou R., Dahal A., Batzill M.. Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene. Nat. Nanotechnol., 2013, 8(1): 41 https://doi.org/10.1038/nnano.2012.217
41
T. Song T., Yang M., W. Chai J., Callsen M., Zhou J., Yang T., Zhang Z., S. Pan J., Z. Chi D., P. Feng Y., J. Wang S.. The stability of aluminium oxide monolayer and its interface with two-dimensional materials. Sci. Rep., 2016, 6(1): 29221 https://doi.org/10.1038/srep29221
42
Zhao C., Zhang H., Si W., Wu H.. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nat. Commun., 2016, 7(1): 12543 https://doi.org/10.1038/ncomms12543
43
Feng Y., Liu N., Gao G.. Spin transport properties in Dirac spin gapless semiconductors Cr2X3 with high Curie temperature and large magnetic anisotropic energy. Appl. Phys. Lett., 2021, 118(11): 112407 https://doi.org/10.1063/5.0045262
44
G. Dance I., J. Fisher K.. Density functional calculations of electronic structure, geometric structure and stability for molecular manganese sulfide clusters. J. Chem. Soc. Dalton Trans., 1997, (15): 2563 https://doi.org/10.1039/a700821j
Mabrouki A., Mnasri T., Bougoffa A., Benali A., Dhahri E., A. Valente M.. Experimental study and DFT calculation of the oxygen deficiency effects on structural, magnetic and optical properties of La0.8□0.2MnO3−δ (δ = 0, 0.1 and 0.2) compounds. J. Alloys Compd., 2021, 860: 157922 https://doi.org/10.1016/j.jallcom.2020.157922
47
Kaur R., Maitra T., Nautiyal T.. Study of structural and electronic properties of Mn3O4. AIP Conf. Proc., 2014, 1591: 1137 https://doi.org/10.1063/1.4872880
48
del Pennino U., De Renzi V., Biagi R., Corradini V., Zobbi L., Cornia A., Gatteschi D., Bondino F., Magnano E., Zangrando M., Zacchigna M., Lichtenstein A., W. Boukhvalov D.. Valence band resonant photoemission of Mn12 single molecules grafted on Au(111) surface. Surf. Sci., 2006, 600(18): 4185 https://doi.org/10.1016/j.susc.2006.01.144
49
Ding G., Xie C., Bai J., Cheng Z., Wang X., Wu W.. Recipe for single-pair-Weyl-points phonons carrying the same chiral charges. Phys. Rev. B, 2023, 108(2): L020302 https://doi.org/10.1103/PhysRevB.108.L020302
50
Ding G., Xie C., Gong J., Wang J., Bai J., Wang W., Li D., P. Li X., Wang X.. Exotic topological phonon modes in semiconductors: Symmetry analysis and first-principles calculations for representative examples. Phys. Rev. B, 2023, 108(7): 075201 https://doi.org/10.1103/PhysRevB.108.075201
Torelli D., S. Thygesen K., Olsen T.. High throughput computational screening for 2D ferromagnetic materials: The critical role of anisotropy and local correlations. 2D Mater., 2019, 6: 045018 https://doi.org/10.1088/2053-1583/ab2c43
53
Sun J., Zhong X., Cui W., Shi J., Hao J., Xu M., Li Y.. The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides. Phys. Chem. Chem. Phys., 2020, 22(4): 2429 https://doi.org/10.1039/C9CP05084A
54
Hu Y., Y. Liu X., H. Shen Z., F. Luo Z., G. Chen Z., L. Fan X.. High Curie temperature and carrier mobility of novel Fe, Co and Ni carbide MXenes. Nanoscale, 2020, 12(21): 11627 https://doi.org/10.1039/C9NR10927G
55
Guan Z., Ni S.. Strain-controllable high Curie temperature and magnetic crystal anisotropy in a 2D ferromagnetic semiconductive FeI3 monolayer. ACS Appl. Electron. Mater., 2021, 3(7): 3147 https://doi.org/10.1021/acsaelm.1c00363
56
Sun Y., Zhuo Z., Wu X.. Bipolar magnetism in a two-dimensional NbS2 semiconductor with high Curie temperature. J. Mater. Chem. C, 2018, 6(42): 11401 https://doi.org/10.1039/C8TC04188A
57
Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., Zhang Y.. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94 https://doi.org/10.1038/s41586-018-0626-9
58
Zhou F., Liu Y., Kuang M., Wang P., Wang J., Yang T., Wang X., Cheng Z., Zhang G.. Time-reversal-breaking Weyl nodal lines in two-dimensional A3C2 (A = Ti, Zr, and Hf) intrinsically ferromagnetic materials with high Curie temperature. Nanoscale, 2021, 13(17): 8235 https://doi.org/10.1039/D1NR00139F
59
Jiang Z., Wang P., Xing J., Jiang X., Zhao J.. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl. Mater. Interfaces, 2018, 10(45): 39032 https://doi.org/10.1021/acsami.8b14037
60
Liu Z.Liu J.Zhao J., YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics, Nano Res. 10(6), 1972 (2017)
61
Yu W., Li J., S. Herng T., Wang Z., Zhao X., Chi X., Fu W., Abdelwahab I., Zhou J., Dan J., Chen Z., Chen Z., Li Z., Lu J., J. Pennycook S., P. Feng Y., Ding J., P. Loh K.. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater., 2019, 31(40): 1903779 https://doi.org/10.1002/adma.201903779
62
Zhang X., Wang X., He T., Wang L., Yu W., Liu Y., Liu G., Cheng Z.. Magnetic topological materials in two-dimensional: Theory, material realization and application prospects. Sci. Bull. (Beijing), 2023, 68(21): 2639 https://doi.org/10.1016/j.scib.2023.09.004
Gao Q., Opahle I., Zhang H.. High-throughput screening for spin-gapless semiconductors in quaternary Heusler compounds. Phys. Rev. Mater., 2019, 3(2): 024410 https://doi.org/10.1103/PhysRevMaterials.3.024410
68
D. Guo S., L. Tao Y., Wang G., Chen S., Huang D., S. Ang Y.. Proposal for valleytronic materials: Ferrovalley metal and valley gapless semiconductor. Front. Phys., 2024, 19(2): 23302 https://doi.org/10.1007/s11467-023-1334-y