Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (4): 43205   https://doi.org/10.1007/s11467-023-1379-y
  本期目录
Intertype superconductivity evoked by the interplay of disorder and multiple bands
P. M. Marychev1(), A. A. Shanenko1,2, A. V. Vagov1,2
1. HSE University, 101000 Moscow, Russia
2. Center for Advanced Mesoscience and Nanotechnology, MIPT, Dolgoprudny, 141700, Russia
 全文: PDF(3175 KB)   HTML
Abstract

Nonmagnetic impurity scattering is known to shift up the Ginzburg−Landau parameter κ of a superconductor. In this case, when the system is initially in type I, it can change its magnetic response, crossing the intertype domain with κ1 between the two standard superconductivity types and arriving at type II. In the present work we demonstrate that the impact of disorder can be much more profound in the presence of the multiband structure of the charge carrier states. In particular, when the band diffusivities differ from each other, the intertype domain tends to expand significantly, including points with κ1 that belong to deep type-II in conventional single-band superconductors. Our finding sheds light on the nontrivial disorder effect and significantly complements earlier results on the enlargement of the intertype domain in clean multiband superconductors.

Key wordssuperconductivity    disorder    intertype superconductivity    two-band model
收稿日期: 2023-10-10      出版日期: 2024-01-19
Corresponding Author(s): P. M. Marychev   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(4): 43205.
P. M. Marychev, A. A. Shanenko, A. V. Vagov. Intertype superconductivity evoked by the interplay of disorder and multiple bands. Front. Phys. , 2024, 19(4): 43205.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1379-y
https://academic.hep.com.cn/fop/CN/Y2024/V19/I4/43205
Fig.1  
1 B. Ketterson J.N. Song S., Superconductivity, Cambridge: Cambridge University Press, 1999
2 Auer J. , Ullmaier Y. . Magnetic behavior of type-II superconductors with small Ginzburg‒Landau parameters. Phys. Rev. B, 1973, 7(1): 136
https://doi.org/10.1103/PhysRevB.7.136
3 Krägeloh U. . Flux line lattices in the intermediate state of superconductors with Ginzburg‒Landau parameters near 1/2. Phys. Lett. A, 1969, 28(9): 657
https://doi.org/10.1016/0375-9601(69)90493-9
4 Essmann U. . Observation of the mixed state. Physica, 1971, 55: 83
https://doi.org/10.1016/0031-8914(71)90244-8
5 Kumpf U. . Magnetisierungskurven von Supraleitern zweiter Art mit kleinen Ginzburg‒Landau‒Parametern. Phys. Status Solidi B, 1971, 44(2): 829
https://doi.org/10.1002/pssb.2220440243
6 E. Jacobs A. . First-order transitions at Hc1 and Hc2 in type II superconductors. Phys. Rev. Lett., 1971, 26(11): 629
https://doi.org/10.1103/PhysRevLett.26.629
7 N. Ovchinnikov Yu. . Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg‒Landau parameter κ close to 1. J. Exp. Theor. Phys., 1999, 88(2): 398
https://doi.org/10.1134/1.558809
8 Luk’yanchuk I. . Theory of superconductors with κ close to 1/2. Phys. Rev. B, 2001, 63(17): 174504
https://doi.org/10.1103/PhysRevB.63.174504
9 Laver M. , J. Bowell C. , M. Forgan E. , B. Abrahamsen A. , Fort D. , D. Dewhurst C. , Mühlbauer S. , K. Christen D. , Kohlbrecher J. , Cubitt R. , Ramos S. . Structure and degeneracy of vortex lattice domains in pure superconducting niobium: A small-angle neutron scattering study. Phys. Rev. B, 2009, 79(1): 014518
https://doi.org/10.1103/PhysRevB.79.014518
10 H. Brandt E. , P. Das M. . Attractive vortex interaction and the intermediate mixed state of superconductors. J. Supercond. Nov. Magn., 2011, 24(1−2): 57
https://doi.org/10.1007/s10948-010-1046-8
11 Pautrat A. , Brûlet A. . Temperature dependence of clusters with attracting vortices in superconducting niobium studied by neutron scattering. J. Phys.: Condens. Matter, 2014, 26(23): 232201
https://doi.org/10.1088/0953-8984/26/23/232201
12 Y. Ge J. , Gutierrez J. , Lyashchenko A. , Filipov V. , Li J. , V. Moshchalkov V. . Direct visualization of vortex pattern transition in ZrB12 with Ginzburg-Landau parameter close to the dual point. Phys. Rev. B, 2014, 90(18): 184511
https://doi.org/10.1103/PhysRevB.90.184511
13 Reimann T. , Mühlbauer S. , Schulz M. , Betz B. , Kaestner A. , Pipich V. , Böni P. , Grünzweig C. . Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor. Nat. Commun., 2015, 6(1): 8813
https://doi.org/10.1038/ncomms9813
14 Vagov A. , A. Shanenko A. , V. Milǒsevíc M. , M. Axt V. , M. Vinokur V. , A. Aguiar J. , M. Peeters F. . Superconductivity between standard types: Multiband versus single-band materials. Phys. Rev. B, 2016, 93(17): 174503
https://doi.org/10.1103/PhysRevB.93.174503
15 Y. Ge J. , N. Gladilin V. , E. Sluchanko N. , Lyashenko A. , Filipov V. , O. Indekeu J. , V. Moshchalkov V. . Paramagnetic Meissner effect in ZrB12 single crystal with non-monotonic vortex−vortex interactions. New J. Phys., 2017, 19(9): 093020
https://doi.org/10.1088/1367-2630/aa8246
16 Reimann T. , Schulz M. , F. R. Mildner D. , Bleuel M. , Brûlet A. , P. Harti R. , Benka G. , Bauer A. , Böni P. , Mühlbauer S. . Domain formation in the type-II/1 superconductor niobium: Interplay of pinning, geometry, and attractive vortex‒vortex interaction. Phys. Rev. B, 2017, 96(14): 144506
https://doi.org/10.1103/PhysRevB.96.144506
17 Wolf S. , Vagov A. , A. Shanenko A. , M. Axt V. , A. Aguiar J. . Vortex matter stabilized by many-body interactions. Phys. Rev. B, 2017, 96(14): 144515
https://doi.org/10.1103/PhysRevB.96.144515
18 Backs A. , Schulz M. , Pipich V. , Kleinhans M. , Böni P. , Mühlbauer S. . Universal behavior of the intermediate mixed state domain formation in superconducting niobium. Phys. Rev. B, 2019, 100(6): 064503
https://doi.org/10.1103/PhysRevB.100.064503
19 T. Saraiva T. , Vagov A. , M. Axt V. , A. Aguiar J. , A. Shanenko A. . Anisotropic superconductors between types I and II. Phys. Rev. B, 2019, 99(2): 024515
https://doi.org/10.1103/PhysRevB.99.024515
20 Vagov A. , Wolf S. , D. Croitoru M. , A. Shanenko A. . Universal flux patterns and their interchange in superconductors between types I and II. Commun. Phys., 2020, 3(1): 58
https://doi.org/10.1038/s42005-020-0322-6
21 Ooi S. , Tachiki M. , Konomi T. , Kubo T. , Kikuchi A. , Arisawa S. , Ito H. , Umemori K. . Observation of intermediate mixed state in high-purity cavity-grade Nb by magneto-optical imaging. Phys. Rev. B, 2021, 104(6): 064504
https://doi.org/10.1103/PhysRevB.104.064504
22 S. Brems X. , Mühlbauer S. , Y. Córdoba-Camacho W. , A. Shanenko A. , Vagov A. , Albino Aguiar J. , Cubitt R. . Current-induced self-organisation of mixed superconducting states. Supercond. Sci. Technol., 2022, 35(3): 035003
https://doi.org/10.1088/1361-6668/ac455e
23 J. Curran P. , M. Desoky W. , V. Milǒsevíc M. , Chaves A. , B. Lalöe J. , S. Moodera J. , J. Bending S. . Spontaneous symmetry breaking in vortex systems with two repulsive length scales. Sci. Rep., 2015, 5(1): 15569
https://doi.org/10.1038/srep15569
24 Wolf S.Vagov A.A. Shanenko A.M. Axt V.Perali A.A. Aguiar J., BCS‒BEC crossover induced by a shallow band: Pushing standard superconductivity types apart, Phys. Rev. B 95(9), 094521 (2017)
25 J. F. Cavalcanti P. , T. Saraiva T. , A. Aguiar J. , Vagov A. , D. Croitoru M. , A. Shanenko A. . Multiband superconductors with degenerate excitation gaps. J. Phys.: Condens. Matter, 2020, 32(45): 455702
https://doi.org/10.1088/1361-648X/aba776
26 Gurevich A. . Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B, 2003, 67(18): 184515
https://doi.org/10.1103/PhysRevB.67.184515
27 E. Jacobs A. . Theory of inhomogeneous superconductors near T = Tc. Phys. Rev. B, 1971, 4(9): 3016
https://doi.org/10.1103/PhysRevB.4.3016
28 Vagov A. , A. Shanenko A. , V. Milǒsevíc M. , M. Axt V. , M. Peeters F. . Extended Ginzburg‒Landau formalism: Systematic expansion in small deviation from the critical temperature. Phys. Rev. B, 2012, 85(1): 014502
https://doi.org/10.1103/PhysRevB.85.014502
29 A. Shanenko A. , V. Milǒsevíc M. , M. Peeters F. , V. Vagov A. . Extended Ginzburg‒Landau formalism for two-band superconductors. Phys. Rev. Lett., 2011, 106(4): 047005
https://doi.org/10.1103/PhysRevLett.106.047005
30 Vagov A. , A. Shanenko A. , V. Milǒsevíc M. , M. Axt V. , M. Peeters F. . Two-band superconductors: Extended Ginzburg‒Landau formalism by a systematic expansion in small deviation from the critical temperature. Phys. Rev. B, 2012, 86(14): 144514
https://doi.org/10.1103/PhysRevB.86.144514
31 A. Golubov A. , Kortus J. , V. Dolgov O. , Jepsen O. , Kong Y. , K. Andersen O. , J. Gibson B. , Ahn K. , K. Kremer R. . Specific heat of MgB2 in a one- and a two-band model from first-principles calculations. J. Phys.: Condens. Matter, 2002, 14(6): 1353
https://doi.org/10.1088/0953-8984/14/6/320
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed