Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (4): 44201   https://doi.org/10.1007/s11467-023-1381-4
  本期目录
Generalized time-dependent generator coordinate method for induced fission dynamics
B. Li1, D. Vretenar2,1(), T. Nikšić2,1, J. Zhao3, P. W. Zhao1(), J. Meng1()
1. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
2. Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
3. Center for Circuits and Systems, Peng Cheng Laboratory, Shenzhen 518055, China
 全文: PDF(5118 KB)   HTML
Abstract

The generalized time-dependent generator coordinate method (TD-GCM) is extended to include pairing correlations. The correlated GCM nuclear wave function is expressed in terms of time-dependent generator states and weight functions. The particle−hole channel of the effective interaction is determined by a Hamiltonian derived from an energy density functional, while pairing is treated dynamically in the standard BCS approximation with time-dependent pairing tensor and single-particle occupation probabilities. With the inclusion of pairing correlations, various time-dependent phenomena in open-shell nuclei can be described more realistically. The model is applied to the description of saddle-to-scission dynamics of induced fission. The generalized TD-GCM charge yields and total kinetic energy distribution for the fission of 240Pu, are compared to those obtained using the standard time-dependent density functional theory (TD-DFT) approach, and with available data.

Key wordsnuclear density functional theory    generator coordinate method    fission dynamics
收稿日期: 2023-12-24      出版日期: 2024-01-25
Corresponding Author(s): D. Vretenar,P. W. Zhao,J. Meng   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(4): 44201.
B. Li, D. Vretenar, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng. Generalized time-dependent generator coordinate method for induced fission dynamics. Front. Phys. , 2024, 19(4): 44201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1381-4
https://academic.hep.com.cn/fop/CN/Y2024/V19/I4/44201
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 J. Krappe H.Pomorski K., Theory of Nuclear Fission, Berlin, Heidelberg: Springer, 2012
2 Schunck N., M. Robledo L.. Microscopic theory of nuclear fission: A review. Rep. Prog. Phys., 2016, 79(11): 116301
https://doi.org/10.1088/0034-4885/79/11/116301
3 Younes W.M. Gogny D.F. Berger J., A Microscopic Theory of Fission Dynamics Based on the Generator Coordinate Method, Springer Cham, 2019
4 Regnier D., Dubray N., Schunck N., Verrière M.. Fission fragment charge and mass distributions in 239Pu(n, f) in the adiabatic nuclear energy density functional theory. Phys. Rev. C, 2016, 93(5): 054611
https://doi.org/10.1103/PhysRevC.93.054611
5 Verriere M., Regnier D.. The time-dependent generator coordinate method in nuclear physics. Front. Phys. (Lausanne), 2020, 8: 233
https://doi.org/10.3389/fphy.2020.00233
6 Tao H., Zhao J., P. Li Z., Nikšić T., Vretenar D.. Microscopic study of induced fission dynamics of 226Th with covariant energy density functionals. Phys. Rev. C, 2017, 96(2): 024319
https://doi.org/10.1103/PhysRevC.96.024319
7 Zhao J., Xiang J., P. Li Z., Nikšić T., Vretenar D., G. Zhou S.. Time-dependent generator-coordinate-method study of mass-asymmetric fission of actinides. Phys. Rev. C, 2019, 99(5): 054613
https://doi.org/10.1103/PhysRevC.99.054613
8 Simenel C., Umar A.. Heavy-ion collisions and fission dynamics with the time-dependent Hartree−Fock theory and its extensions. Prog. Part. Nucl. Phys., 2018, 103: 19
https://doi.org/10.1016/j.ppnp.2018.07.002
9 Nakatsukasa T., Matsuyanagi K., Matsuo M., Yabana K.. Time-dependent density-functional description of nuclear dynamics. Rev. Mod. Phys., 2016, 88(4): 045004
https://doi.org/10.1103/RevModPhys.88.045004
10 Stevenson P., Barton M.. Low-energy heavy-ion reactions and the Skyrme effective interaction. Prog. Part. Nucl. Phys., 2019, 104: 142
https://doi.org/10.1016/j.ppnp.2018.09.002
11 Bulgac A., Magierski P., J. Roche K., Stetcu I.. Induced fission of 240Pu within a real-time microscopic framework. Phys. Rev. Lett., 2016, 116(12): 122504
https://doi.org/10.1103/PhysRevLett.116.122504
12 Magierski P., Sekizawa K., Wlazlowski G.. Novel role of superfluidity in low-energy nuclear reactions. Phys. Rev. Lett., 2017, 119(4): 042501
https://doi.org/10.1103/PhysRevLett.119.042501
13 Scamps G., Simenel C.. Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides. Nature, 2018, 564(7736): 382
https://doi.org/10.1038/s41586-018-0780-0
14 Bulgac A., Jin S., J. Roche K., Schunck N., Stetcu I.. Fission dynamics of 240Pu from saddle to scission and beyond. Phys. Rev. C, 2019, 100(3): 034615
https://doi.org/10.1103/PhysRevC.100.034615
15 Bulgac A., Jin S., Stetcu I.. Nuclear fission dynamics: Past, present, needs, and future. Front. Phys. (Lausanne), 2020, 8: 63
https://doi.org/10.3389/fphy.2020.00063
16 X. Ren Z., Vretenar D., Nikšić T., W. Zhao P., Zhao J., Meng J.. Dynamical synthesis of 4He in the scission phase of nuclear fission. Phys. Rev. Lett., 2022, 128(17): 172501
https://doi.org/10.1103/PhysRevLett.128.172501
17 Li B., Vretenar D., Nikšić T., W. Zhao P., Meng J.. Generalized time-dependent generator coordinate method for small- and large-amplitude collective motion. Phys. Rev. C, 2023, 108(1): 014321
https://doi.org/10.1103/PhysRevC.108.014321
18 Marević P., Regnier D., Lacroix D.. Quantum fluctuations induce collective multiphonons in finite Fermi liquids. Phys. Rev. C, 2023, 108(1): 014620
https://doi.org/10.1103/PhysRevC.108.014620
19 G. Reinhard P., Cusson R., Goeke K.. Time evolution of coherent ground-state correlations and the TDHF approach. Nucl. Phys. A, 1983, 398(1): 141
https://doi.org/10.1016/0375-9474(83)90653-X
20 Regnier D., Lacroix D.. Microscopic description of pair transfer between two superfluid Fermi systems (ii): quantum mixing of time-dependent Hartree−Fock−Bogolyubov trajectories. Phys. Rev. C, 2019, 99(6): 064615
https://doi.org/10.1103/PhysRevC.99.064615
21 X. Ren Z., Zhao J., Vretenar D., Nikšić T., W. Zhao P., Meng J.. Microscopic analysis of induced nuclear fission dynamics. Phys. Rev. C, 2022, 105(4): 044313
https://doi.org/10.1103/PhysRevC.105.044313
22 Ebata S., Nakatsukasa T., Inakura T., Yoshida K., Hashimoto Y., Yabana K.. Canonical-basis time-dependent Hartree−Fock−Bogoliubov theory and linear-response calculations. Phys. Rev. C Nucl. Phys., 2010, 82(3): 034306
https://doi.org/10.1103/PhysRevC.82.034306
23 Scamps G., Lacroix D.. Effect of pairing on one- and two-nucleon transfer below the coulomb barrier: A time-dependent microscopic description. Phys. Rev. C, 2013, 87(1): 014605
https://doi.org/10.1103/PhysRevC.87.014605
24 W. Zhao P., P. Li Z., M. Yao J., Meng J.. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C, 2010, 82(5): 054319
https://doi.org/10.1103/PhysRevC.82.054319
25 M. Robledo L.. Sign of the overlap of Hartree−Fock−Bogoliubov wave functions. Phys. Rev. C, 2009, 79(2): 021302
https://doi.org/10.1103/PhysRevC.79.021302
26 L. Hu Q., C. Gao Z., Chen Y.. Matrix elements of one-body and two-body operators between arbitrary HFB multi-quasiparticle states. Phys. Lett. B, 2014, 734: 162
https://doi.org/10.1016/j.physletb.2014.05.045
27 Bonche P., Dobaczewski J., Flocard H., H. Heenen P., Meyer J.. Analysis of the generator coordinate method in a study of shape isomerism in 194Hg. Nucl. Phys. A, 1990, 510(3): 466
https://doi.org/10.1016/0375-9474(90)90062-Q
28 G. Reinhard P., Goeke K.. The generator coordinate method and quantised collective motion in nuclear systems. Rep. Prog. Phys., 1987, 50(1): 1
https://doi.org/10.1088/0034-4885/50/1/001
29 Bender M., Rutz K., G. Reinhard P., A. Maruhn J.. Pairing gaps from nuclear mean field models. Eur. Phys. J. A, 2000, 8(1): 59
https://doi.org/10.1007/s10050-000-4504-z
30 X. Ren Z., Q. Zhang S., Meng J.. Solving Dirac equations on a 3D lattice with inverse hamiltonian and spectral methods. Phys. Rev. C, 2017, 95(2): 024313
https://doi.org/10.1103/PhysRevC.95.024313
31 X. Ren Z., Q. Zhang S., W. Zhao P., Itagaki N., A. Maruhn J., Meng J.. Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice. Sci. China Phys. Mech. Astron., 2019, 62(11): 112062
https://doi.org/10.1007/s11433-019-9412-3
32 X. Ren Z., W. Zhao P., Q. Zhang S., Meng J.. Toroidal states in 28Si with covariant density functional theory in 3D lattice space. Nucl. Phys. A, 2020, 996: 121696
https://doi.org/10.1016/j.nuclphysa.2020.121696
33 Ramos D., Caamaño M., Farget F., Rodríguez-Tajes C., Audouin L., Benlliure J., Casarejos E., Clement E., Cortina D., Delaune O., Derkx X., Dijon A., Doré D., Fernańdez-Domínguez B., de France G., Heinz A., Jacquot B., Navin A., Paradela C., Rejmund M., Roger T., D. Salsac M., Schmitt C.. Isotopic fission-fragment distributions of 238U, 239Np, 240Pu, 244Cm, and 250Cf produced through inelastic scattering, transfer, and fusion reactions in inverse kinematics. Phys. Rev. C, 2018, 97(5): 054612
https://doi.org/10.1103/PhysRevC.97.054612
34 Zhao J., Nikšić T., Vretenar D., G. Zhou S.. Microscopic self-consistent description of induced fission dynamics: Finite-temperature effects. Phys. Rev. C, 2019, 99(1): 014618
https://doi.org/10.1103/PhysRevC.99.014618
35 Caamaño M., Farget F., Delaune O., H. Schmidt K., Schmitt C., Audouin L., O. Bacri C., Benlliure J., Casarejos E., Derkx X., Fernańdez-Domínguez B., Gaudefroy L., Golabek C., Jurado B., Lemasson A., Ramos D., Rodríguez-Tajes C., Roger T., Shrivastava A.. Characterization of the scission point from fission-fragment velocities. Phys. Rev. C, 2015, 92(3): 034606
https://doi.org/10.1103/PhysRevC.92.034606
36 Li B., Vretenar D., X. Ren Z., Nikšić T., Zhao J., W. Zhao P., Meng J.. Fission dynamics, dissipation, and clustering at finite temperature. Phys. Rev. C, 2023, 107(1): 014303
https://doi.org/10.1103/PhysRevC.107.014303
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed