Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (4): 41202   https://doi.org/10.1007/s11467-023-1382-3
  本期目录
Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems
Xu-Dan Xie1, Zheng-Yuan Xue1,2(), Dan-Bo Zhang1,2()
1. Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, and School of Physics, South China Normal University, Guangzhou 510006, China
2. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong−Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
 全文: PDF(5280 KB)   HTML
Abstract

Solving non-Hermitian quantum many-body systems on a quantum computer by minimizing the variational energy is challenging as the energy can be complex. Here, we propose a variational quantum algorithm for solving the non-Hermitian Hamiltonian by minimizing a type of energy variance, where zero variance can naturally determine the eigenvalues and the associated left and right eigenstates. Moreover, the energy is set as a parameter in the cost function and can be tuned to scan the whole spectrum efficiently by using a two-step optimization scheme. Through numerical simulations, we demonstrate the algorithm for preparing the left and right eigenstates, verifying the biorthogonal relations, as well as evaluating the observables. We also investigate the impact of quantum noise on our algorithm and show that its performance can be largely improved using error mitigation techniques. Therefore, our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers.

Key wordsquantum algorithm    non-Hermitian physics    quantum many-body systems
收稿日期: 2023-11-02      出版日期: 2024-02-05
Corresponding Author(s): Zheng-Yuan Xue,Dan-Bo Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(4): 41202.
Xu-Dan Xie, Zheng-Yuan Xue, Dan-Bo Zhang. Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems. Front. Phys. , 2024, 19(4): 41202.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1382-3
https://academic.hep.com.cn/fop/CN/Y2024/V19/I4/41202
Fig.1  
  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7
VQA (κ=0.4) 0.7988 0.7988 0.9165 0.7719 0.7719 0.9165 0.7978 0.7994
Exact 0.7988 0.7988 0.9165 0.7719 0.7719 0.9165 0.7979 0.7994
VQA (κ=0.2) 0.1680 0.1680 0.9798 0.5822 0.5821 0.9798 0.9537 0.9541
Exact 0.1681 0.1681 0.9798 0.5821 0.5821 0.9798 0.9537 0.9541
Tab.1  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
  
  
  
1 Ashida Y. , Gong Z. , Ueda M. . Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
https://doi.org/10.1080/00018732.2021.1876991
2 Guo A. , J. Salamo G. , Duchesne D. , Morandotti R. , Volatier-Ravat M. , Aimez V. , A. Siviloglou G. , N. Christodoulides D. . Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 2009, 103(9): 093902
https://doi.org/10.1103/PhysRevLett.103.093902
3 M. Bender C. . Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
https://doi.org/10.1088/0034-4885/70/6/R03
4 Dorey P. , Dunning C. , Tateo R. , equivalences Spectral . Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. Math. Gen., 2001, 34(28): 5679
https://doi.org/10.1088/0305-4470/34/28/305
5 K. Özdemir Ş. , Rotter S. , Nori F. , Yang L. . Parity‒time symmetry and exceptional points in photonics. Nat. Mater., 2019, 18: 783
https://doi.org/10.1038/s41563-019-0304-9
6 Yao S. , Wang Z. . Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
https://doi.org/10.1103/PhysRevLett.121.086803
7 Wang Z. , J. Lang L. , He L. . Emergent Mott insulators and non-Hermitian conservation laws in an interacting bosonic chain with noninteger filling and nonreciprocal hopping. Phys. Rev. B, 2022, 105(5): 054315
https://doi.org/10.1103/PhysRevB.105.054315
8 Jiang H. , J. Lang L. , Yang C. , L. Zhu S. , Chen S. . Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
https://doi.org/10.1103/PhysRevB.100.054301
9 J. Lang L. , Cai X. , Chen S. . Edge states and topological phases in one-dimensional optical superlattices. Phys. Rev. Lett., 2012, 108(22): 220401
https://doi.org/10.1103/PhysRevLett.108.220401
10 W. Zhang D. , Z. Tang L. , J. Lang L. , Yan H. , L. Zhu S. . Non-Hermitian topological Anderson insulators. Sci. China Phys. Mech. Astron., 2020, 63(6): 267062
https://doi.org/10.1007/s11433-020-1521-9
11 Z. Tang L. , Q. Zhang G. , F. Zhang L. , W. Zhang D. . Localization and topological transitions in non-Hermitian quasiperiodic lattices. Phys. Rev. A, 2021, 103(3): 033325
https://doi.org/10.1103/PhysRevA.103.033325
12 Z. Tang L. , F. Zhang L. , Q. Zhang G. , W. Zhang D. . Topological Anderson insulators in two-dimensional non-Hermitian disordered systems. Phys. Rev. A, 2020, 101(6): 063612
https://doi.org/10.1103/PhysRevA.101.063612
13 Heiss W. . Exceptional points of non-Hermitian operators. J. Phys. Math. Gen., 2004, 37(6): 2455
https://doi.org/10.1088/0305-4470/37/6/034
14 Song F. , Yao S. , Wang Z. . Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
https://doi.org/10.1103/PhysRevLett.123.170401
15 Feinberg J. , Zee A. . Non-Hermitian localization and delocalization. Phys. Rev. E, 1999, 59(6): 6433
https://doi.org/10.1103/PhysRevE.59.6433
16 del Campo A. , L. Egusquiza I. , B. Plenio M. , F. Huelga S. . Quantum speed limits in open system dynamics. Phys. Rev. Lett., 2013, 110(5): 050403
https://doi.org/10.1103/PhysRevLett.110.050403
17 Barahona F. . On the computational complexity of Ising spin glass models. J. Phys. Math. Gen., 1982, 15(10): 3241
https://doi.org/10.1088/0305-4470/15/10/028
18 Chen G. , Song F. , L. Lado J. . Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm. Phys. Rev. Lett., 2023, 130(10): 100401
https://doi.org/10.1103/PhysRevLett.130.100401
19 Jaschke D. , Montangero S. , D. Carr L. . One-dimensional many-body entangled open quantum systems with tensor network methods. Quantum Sci. Technol., 2018, 4(1): 013001
https://doi.org/10.1088/2058-9565/aae724
20 T. Fishman M. , Vanderstraeten L. , Zauner-Stauber V. , Haegeman J. , Verstraete F. . Faster methods for contracting infinite two-dimensional tensor networks. Phys. Rev. B, 2018, 98(23): 235148
https://doi.org/10.1103/PhysRevB.98.235148
21 Orús R. . A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys., 2014, 349: 117
https://doi.org/10.1016/j.aop.2014.06.013
22 Wiesner S., Simulations of many-body quantum systems by a quantum computer, arXiv: quant-ph/9603028 (1996)
23 Poulin D. , Wocjan P. . Preparing ground states of quantum many-body systems on a quantum computer. Phys. Rev. Lett., 2009, 102(13): 130503
https://doi.org/10.1103/PhysRevLett.102.130503
24 S. Abrams D. , Lloyd S. . Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett., 1997, 79(13): 2586
https://doi.org/10.1103/PhysRevLett.79.2586
25 Smith A. , Kim M. , Pollmann F. , Knolle J. . Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf., 2019, 5: 106
https://doi.org/10.1038/s41534-019-0217-0
26 Peruzzo A. , McClean J. , Shadbolt P. , H. Yung M. , Q. Zhou X. , J. Love P. , Aspuru-Guzik A. , L. O’brien J. . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
https://doi.org/10.1038/ncomms5213
27 Kandala A. , Mezzacapo A. , Temme K. , Takita M. , Brink M. , M. Chow J. , M. Gambetta J. . Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
https://doi.org/10.1038/nature23879
28 Tilly J. , Chen H. , Cao S. , Picozzi D. , Setia K. , Li Y. , Grant E. , Wossnig L. , Rungger I. , H. Booth G. , Tennyson J. . The variational quantum eigensolver: A review of methods and best practices. Phys. Rep., 2022, 986: 1
https://doi.org/10.1016/j.physrep.2022.08.003
29 A. Fedorov D. , Peng B. , Govind N. , Alexeev Y. . VQE method: A short survey and recent developments. Mater. Theory, 2022, 6(1): 2
https://doi.org/10.1186/s41313-021-00032-6
30 J. O’Malley P. , Babbush R. , D. Kivlichan I. , Romero J. , R. McClean J. , Barends R. , Kelly J. , Roushan P. , Tranter A. , Ding N. , Campbell B. , Chen Y. , Chen Z. , Chiaro B. , Dunsworth A. , G. Fowler A. , Jeffrey E. , Lucero E. , Megrant A. , Y. Mutus J. , Neeley M. , Neill C. , Quintana C. , Sank D. , Vainsencher A. , Wenner J. , C. White T. , V. Coveney P. , J. Love P. , Neven H. , Aspuru-Guzik A. , M. Martinis J. . Scalable quantum simulation of molecular energies. Phys. Rev. X, 2016, 6(3): 031007
https://doi.org/10.1103/PhysRevX.6.031007
31 L. Bosse J. , Montanaro A. . Probing ground-state properties of the kagome antiferromagnetic Heisenberg model using the variational quantum eigensolver. Phys. Rev. B, 2022, 105(9): 094409
https://doi.org/10.1103/PhysRevB.105.094409
32 Kattemölle J. , van Wezel J. . Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice. Phys. Rev. B, 2022, 106(21): 214429
https://doi.org/10.1103/PhysRevB.106.214429
33 M. Nakanishi K. , Mitarai K. , Fujii K. . Subspace-search variational quantum eigensolver for excited states. Phys. Rev. Res., 2019, 1(3): 033062
https://doi.org/10.1103/PhysRevResearch.1.033062
34 Higgott O. , Wang D. , Brierley S. . Variational quantum computation of excited states. Quantum, 2019, 3: 156
https://doi.org/10.22331/q-2019-07-01-156
35 Liu S. , X. Zhang S. , Y. Hsieh C. , Zhang S. , Yao H. . Probing many-body localization by excited-state variational quantum eigensolver. Phys. Rev. B, 2023, 107(2): 024204
https://doi.org/10.1103/PhysRevB.107.024204
36 X. Xie Q. , Liu S. , Zhao Y. . Orthogonal state reduction variational eigensolver for the excited-state calculations on quantum computers. J. Chem. Theory Comput., 2022, 18(6): 3737
https://doi.org/10.1021/acs.jctc.2c00159
37 B. Zhang D. , L. Chen B. , H. Yuan Z. , Yin T. . Variational quantum eigensolvers by variance minimization. Chin. Phys. B, 2022, 31(12): 120301
https://doi.org/10.1088/1674-1056/ac8a8d
38 L. Chen B. , B. Zhang D. . Variational quantum eigensolver with mutual variance-Hamiltonian optimization. Chin. Phys. Lett., 2023, 40(1): 010303
https://doi.org/10.1088/0256-307X/40/1/010303
39 Guo Z.T. Xu Z.Li M.You L.Yang S., Variational matrix product state approach for non-Hermitian system based on a companion Hermitian Hamiltonian, arXiv: 2210.14858 (2022)
40 Moiseyev N., Non-Hermitian Quantum Mechanics, Cambridge: Cambridge University Press, 2011
41 Banach S., Theory of Linear Operations, Elsevier, 1987
42 Cerezo M. , Arrasmith A. , Babbush R. , C. Benjamin S. , Endo S. , Fujii K. , R. McClean J. , Mitarai K. , Yuan X. , Cincio L. , J. Coles P. . Variational quantum algorithms. Nat. Rev. Phys., 2021, 3(9): 625
https://doi.org/10.1038/s42254-021-00348-9
43 Cleve R. , Ekert A. , Macchiavello C. , Mosca M. . Quantum algorithms revisited. Proc. Royal Soc. A, 1998, 454(1969): 339
https://doi.org/10.1098/rspa.1998.0164
44 Bharti K. , Haug T. . Quantum-assisted simulator. Phys. Rev. A, 2021, 104(4): 042418
https://doi.org/10.1103/PhysRevA.104.042418
45 Efthymiou S. , Ramos-Calderer S. , Bravo-Prieto C. , Pérez-Salinas A. , García-Martín D. , Garcia-Saez A. , I. Latorre J. , Carrazza S. . Qibo: A framework for quantum simulation with hardware acceleration. Quantum Sci. Technol., 2022, 7(1): 015018
https://doi.org/10.1088/2058-9565/ac39f5
46 R. Johansson J. , D. Nation P. , Nori F. . QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
https://doi.org/10.1016/j.cpc.2012.02.021
47 Gehlen G. . Critical and off-critical conformal analysis of the Ising quantum chain in an imaginary field. J. Phys. Math. Gen., 1991, 24(22): 5371
https://doi.org/10.1088/0305-4470/24/22/021
48 B. Sousa P.V. Ramos R., Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate, arXiv: quant-ph/0602174 (2006)
49 D. Xie X. , Guo X. , Xing H. , Y. Xue Z. , B. Zhang D. , L. Zhu S. . Variational thermal quantum simulation of the lattice Schwinger model. Phys. Rev. D, 2022, 106(5): 054509
https://doi.org/10.1103/PhysRevD.106.054509
50 Haug T. , Bharti K. , Kim M. . Capacity and quantum geometry of parametrized quantum circuits. PRX Quantum, 2021, 2(4): 040309
https://doi.org/10.1103/PRXQuantum.2.040309
51 Preskill J. . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
https://doi.org/10.22331/q-2018-08-06-79
52 F. Richardson L. , A. Gaunt J. . VIII. The deferred approach to the limit. Philos. Trans. Royal Soc. Ser. A, 1927, 226(636‒646): 299
https://doi.org/10.1098/rsta.1927.0008
53 Temme K. , Bravyi S. , M. Gambetta J. . Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 2017, 119(18): 180509
https://doi.org/10.1103/PhysRevLett.119.180509
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed