1. College of Physics, Hebei Normal University, Shijiazhuang 050024, China 2. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 3. TIANFU Cosmic Ray Research Center, Chengdu 610000, China 4. College of Science, Tibet University, Lhasa 850000, China 5. Key Laboratory of Comic Rays, Ministry of Education, Tibet University, Lhasa 850000, China 6. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia 7. School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China 8. School of Management Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China 9. Moscow Institute of Physics and Technology, Moscow 141700, Russia
By accurately measuring composition and energy spectrum of cosmic ray, the origin problem of so called “knee” region (energy > one PeV) can be solved. However, up to the present, the results of the spectrum in the knee region obtained by several previous experiments have shown obvious differences, so they cannot give effective evidence for judging the theoretical models on the origin of the knee. Recently, the Large High Altitude Air Shower Observatory (LHAASO) has reported several major breakthroughs and important results in astro-particle physics field. Relying on its advantages of wide-sky survey, high altitude location and large area detector arrays, the research content of LHAASO experiment mainly includes ultra high-energy gamma-ray astronomy, measurement of cosmic ray spectra in the knee region, searching for dark matter and new phenomena of particle physics at higher energy. The electron and thermal neutron detector (EN-Detector) is a new scintillator detector which applies thermal neutron detection technology to measure cosmic ray extensive air shower (EAS). This technology is an extension of LHAASO. The EN-Detector Array (ENDA) can highly efficiently measure thermal neutrons generated by secondary hadrons so called “skeleton” of EAS. In this paper, we perform the optimization of ENDA configuration, and obtain expectations on the ENDA results, including thermal neutron distribution, trigger efficiency and capability of cosmic ray composition separation. The obtained real data results are consistent with those by the Monte Carlo simulation.
. [J]. Frontiers of Physics, 2024, 19(4): 44200.
Bing-Bing Li, Xin-Hua Ma, Shu-Wang Cui, Hao-Kun Chen, Tian-Lu Chen, Danzengluobu, Wei Gao, Hai-Bing Hu, Denis Kuleshov, Kirill Kurinov, Hu Liu, Mao-Yuan Liu, Ye Liu, Da-Yu Peng, Yao-Hui Qi, Oleg Shchegolev, Yuri Stenkin, Li-Qiao Yin, Heng-Yu Zhang, Liang-Wei Zhang. Research on the knee region of cosmic ray by using a novel type of electron−neutron detector array. Front. Phys. , 2024, 19(4): 44200.
Aguilar M., Ali Cavasonza L., Ambrosi G., Arruda L., Attig N.. et al.. The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years. Phys. Rep., 2021, 894: 1 https://doi.org/10.1016/j.physrep.2020.09.003
2
Aielli G., Bacci C., Bartoli B., Bernardini P., J. Bi X.. et al.. Highlights from the ARGO-YBJ experiment. Nucl. Instrum. Methods Phys. Res. A, 2012, 661(Suppl. 1): S50 https://doi.org/10.1016/j.nima.2010.08.005
Cao Z., (LHAASO Collaboration) .. et al.. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 gamma-ray galactic sources. Nature, 2021, 594: 33 https://doi.org/10.1038/s41586-021-03498-z
5
Cao Z., Aharonian F., An Q.. Axikegu, L. X. Bai, et al., PETA-electron volt gamma-ray emission from the Crab nebula. Science, 2021, 373(6553): 425 https://doi.org/10.1126/science.abg5137
6
Cao Z., EAS arrays at high altitudes start the era of UHE-ray astronomy, Universe 7 (9), 339 (2021)
7
Veres P.Burns E.Bissaldi E., et al.., GRB 221009A: Fermi GBM detection of an extraordinarily bright GRB, GRB Coordinates Network, No. 32636 (2022)
8
Dichiara S.D. Gropp J.A. Kennea J., et al.., Swift J1913.1+1946 a new bright hard X-ray and optical transient, GRB Coordinates Network, No. 32632 (2022)
9
Cao Z., Aharonian F., An Q.. Axikegu, L. X. Bai, et al., A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst 221009A. Science, 2023, 380(6652): 1390 https://doi.org/10.1126/science.adg9328
K. Gaisser T., Stanev T., Tilav S.. Cosmic ray energy spectrum from measurements of air showers. Front. Phys., 2013, 8(6): 748 https://doi.org/10.1007/s11467-013-0319-7
12
I. Nikolsky S.. The cause of the EAS spectrum break. Proc. 25th ICRC (Durban), 1997, 6: 105
13
A. Petrukhin A., Problem of the knee and very high energy muons, Proc. 27th ICRC (Hamburg), 1768 (2001)
14
Kazanas D.Nikolaidis A., Cosmic ray “knee”: A herald of new physics? Proc. 27th ICRC (Hamburg), 1760 (2001)
Antoni T.D. Apel W.F. Badea A.Bekk K.Bercuci A., et al.., KASCADE measurements of energy spectra for elemental groups of cosmic rays: Re sults and open problems, Astropart. Phys. 24(1‒2), 1 (2005)
17
Amenomori M., Ayabe S., Chen D., W. Cui S.. et al.. Are protons still dominant at the knee of the cosmic-ray energy spectrum. Phys. Lett. B, 2006, 632(1): 58 https://doi.org/10.1016/j.physletb.2005.10.048
18
Bartoli B., Bernardini P., J. Bi X., Cao Z., Catalanotti S.. et al.. Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO. Phys. Rev. D, 2015, 92(9): 092005 https://doi.org/10.1103/PhysRevD.92.092005
V Stenkin Y, V Alekseenko V, M Gromushkin D. et al.. Thermal neutron flux produced by EAS at various altitudes. Chin. Phys. C, 2013, 37(1): 015001
22
V. Stenkin Y., D. Djappuev D., F. Valdés-Galicia J.. Neutrons in extensive air showers. Phys. At. Nucl., 2007, 70(6): 1088 https://doi.org/10.1134/S1063778807060117
23
V. Stenkin Y., Thermal neutrons in Eas: A new dimension in Eas study, Nucl. Phys. B Proc. Suppl. 175–176, 326 (2008)
24
Bartoli B., Bernardini P., J. Bi X., Cao Z., Catalanotti S.. et al.. Detection of thermal neutrons with the PRISMA-YBJ array in extensive air showers selected by the ARGO-YBJ experiment. Astropart. Phys., 2016, 81: 49 https://doi.org/10.1016/j.astropartphys.2016.04.007
25
V. Stenkin Y., Alekseenko V., Y. Cai Z., Cao Z., Cattaneo C., Cui S., Giroletti E., Gromushkin D., Guo C., Guo X., He H., Liu Y., Ma X., Shchegolev O., Vallania P., Vigorito C., Zhao J.. Seasonal and lunar month periods observed in natural neutron flux at high altitude. Pure Appl. Geophys., 2017, 174(7): 2763 https://doi.org/10.1007/s00024-017-1545-7
26
V. Stenkin Y.Alekseenko V.Y. Cai Z. Cao Z.Cattaneo C.Cui S.Firstov P.Giroletti E.Guo X.He H.Liu Y. Ma X.Shchegolev O.Vallania P.Vigorito C.Yanin Y. Zhao J., Response of the environmental thermal neutron flux to earthquakes, J. Environ. Radioact. 208–209, 105981 (2019)
27
B. Li B.V. Alekseenko V.Cui S.L. Chen T.H. Feng S. Gao Q.Liu Y.C. Huang Q.Y. He Y.Y. Liu M. H. Ma X.I. Pozdnyakov E.B. Shchegolev O.Z. Shen F.V. Stenkin Y.I. Stepanov V.V. Yanin Y.D. Yao J. Zhou R., EAS thermal neutron detection with the PRISMA-LHAASO-16 experiment, J. Instrum. 12(12), P12028 (2017)
28
Y. Liu M., Alekseenko V., W. Cui S., L. Chen T., Gao Dangzengluobu, Kuleshov Q., Levochkin D., Liu K., B. Li Y., H. Ma B., Shchegolev X., Shi O., Stenkin C., Stepanov Y., of the thermal neutron detector array in Yangbajing V.. Tibet for cosmic ray EAS detection. Astrophys. Space Sci., 2020, 365(7): 123 https://doi.org/10.1007/s10509-020-03835-0
29
B. Li B., W. Cui S., Shi C., Yang F., W. Zhang L., Liu Y., H. Ma X., Gao W., Q. Yin L., V. Stenkin Y., A. Kuleshov D., R. Levochkin K., B. Shchegolev O., L. Chen T., Y. Liu Danzengluobu, X. Xiao M.. Electron neutron detector array (ENDA). Phys. At. Nucl., 2021, 84(6): 941 https://doi.org/10.1134/S1063778821130202
30
Yang F., H. Ma X., K. Chen H., L. Chen T., W. Cui S., Gao Danzengluobu, Kuleshov W., Kurinov D., B. Li K., Y. Liu B., Liu M., Shchegolev Y., Stenkin O., X. Xiao Y., Q. Yin D., W. Zhang L.. Correlation between thermal neutrons and soil moisture measured by ENDA. J. Instrum., 2023, 18(5): P05020 https://doi.org/10.1088/1748-0221/18/05/P05020
31
X. Xiao D., L. Chen T., W. Cui S., Gao Danzengluobu, Kuleshov W., Kurinov D., Lagutkina K., Levochkin A., B. Li K., Y. Liu B., Liu M., H. Ma Y., Shchegolev X., Stenkin O., Yang Y., Q. Yin F., W. Zhang L.. Influence of soil environment on performance of EAS electron–neutron detector array. Astrophys. Space Sci., 2022, 367(8): 75 https://doi.org/10.1007/s10509-022-04103-z
32
Heck D., Hadronic interaction models and the air shower simulation program CORSIKA, Proc. ICRC Hamburg Vol. 233, 19 (2001)
33
Allison J, Amako K, Apostolakis J. et al.. Geant4 developments and applications. IEEE Trans. Nucl. Sci., 2006, 53(1): 270 https://doi.org/10.1109/TNS.2006.869826
34
Y. Zhang H., H. He H., F. Feng C.. Approaches to composition independent energy reconstruction of cosmic rays based on the LHAASO-KM2A detector. Phys. Rev. D, 2022, 106(12): 123028 https://doi.org/10.1103/PhysRevD.106.123028