Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (4): 44200   https://doi.org/10.1007/s11467-023-1383-2
  本期目录
Research on the knee region of cosmic ray by using a novel type of electron−neutron detector array
Bing-Bing Li1, Xin-Hua Ma2,3(), Shu-Wang Cui1(), Hao-Kun Chen4,5, Tian-Lu Chen4,5, Danzengluobu4,5, Wei Gao2,3, Hai-Bing Hu4,5, Denis Kuleshov6, Kirill Kurinov6, Hu Liu7, Mao-Yuan Liu4,5, Ye Liu8, Da-Yu Peng4,5, Yao-Hui Qi1, Oleg Shchegolev6,9, Yuri Stenkin6,9, Li-Qiao Yin2,3, Heng-Yu Zhang4,5, Liang-Wei Zhang1
1. College of Physics, Hebei Normal University, Shijiazhuang 050024, China
2. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3. TIANFU Cosmic Ray Research Center, Chengdu 610000, China
4. College of Science, Tibet University, Lhasa 850000, China
5. Key Laboratory of Comic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
6. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
7. School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
8. School of Management Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China
9. Moscow Institute of Physics and Technology, Moscow 141700, Russia
 全文: PDF(6302 KB)   HTML
Abstract

By accurately measuring composition and energy spectrum of cosmic ray, the origin problem of so called “knee” region (energy > one PeV) can be solved. However, up to the present, the results of the spectrum in the knee region obtained by several previous experiments have shown obvious differences, so they cannot give effective evidence for judging the theoretical models on the origin of the knee. Recently, the Large High Altitude Air Shower Observatory (LHAASO) has reported several major breakthroughs and important results in astro-particle physics field. Relying on its advantages of wide-sky survey, high altitude location and large area detector arrays, the research content of LHAASO experiment mainly includes ultra high-energy gamma-ray astronomy, measurement of cosmic ray spectra in the knee region, searching for dark matter and new phenomena of particle physics at higher energy. The electron and thermal neutron detector (EN-Detector) is a new scintillator detector which applies thermal neutron detection technology to measure cosmic ray extensive air shower (EAS). This technology is an extension of LHAASO. The EN-Detector Array (ENDA) can highly efficiently measure thermal neutrons generated by secondary hadrons so called “skeleton” of EAS. In this paper, we perform the optimization of ENDA configuration, and obtain expectations on the ENDA results, including thermal neutron distribution, trigger efficiency and capability of cosmic ray composition separation. The obtained real data results are consistent with those by the Monte Carlo simulation.

Key wordscosmic ray    EAS    knee region    LHAASO    ENDA
收稿日期: 2023-10-21      出版日期: 2024-02-07
Corresponding Author(s): Xin-Hua Ma,Shu-Wang Cui   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(4): 44200.
Bing-Bing Li, Xin-Hua Ma, Shu-Wang Cui, Hao-Kun Chen, Tian-Lu Chen, Danzengluobu, Wei Gao, Hai-Bing Hu, Denis Kuleshov, Kirill Kurinov, Hu Liu, Mao-Yuan Liu, Ye Liu, Da-Yu Peng, Yao-Hui Qi, Oleg Shchegolev, Yuri Stenkin, Li-Qiao Yin, Heng-Yu Zhang, Liang-Wei Zhang. Research on the knee region of cosmic ray by using a novel type of electron−neutron detector array. Front. Phys. , 2024, 19(4): 44200.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1383-2
https://academic.hep.com.cn/fop/CN/Y2024/V19/I4/44200
Fig.1  
Fig.2  
Composition a 1 a 2 a 3 γ 1 γ 2 γ 3
P 7860 20 1.7 2.66 2.44 2.44
He 3550 20 1.7 2.58 2.44 2.44
CNO 2200 13.4 1.14 2.63 2.44 2.44
MgAlSi 1430 13.4 1.14 2.67 2.44 2.44
Fe 2120 13.4 1.14 2.63 2.44 2.44
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Target component a0 b0 ? η H2
Proton −50 2.0 76% 32% 0.62
Light component −5.0 1.0 86% 56% 0.79
Iron −20 4.0 52% 47% 0.51
Tab.2  
Fig.8  
Fig.9  
Fig.10  
1 Aguilar M., Ali Cavasonza L., Ambrosi G., Arruda L., Attig N.. et al.. The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years. Phys. Rep., 2021, 894: 1
https://doi.org/10.1016/j.physrep.2020.09.003
2 Aielli G., Bacci C., Bartoli B., Bernardini P., J. Bi X.. et al.. Highlights from the ARGO-YBJ experiment. Nucl. Instrum. Methods Phys. Res. A, 2012, 661(Suppl. 1): S50
https://doi.org/10.1016/j.nima.2010.08.005
3 H. Ma X.. et al.. Chapter 1 LHAASO instruments and detector technology. Chin. Phys. C, 2022, 46: 030001
https://doi.org/10.1088/1674-1137/ac3fa6
4 Cao Z., (LHAASO Collaboration) .. et al.. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 gamma-ray galactic sources. Nature, 2021, 594: 33
https://doi.org/10.1038/s41586-021-03498-z
5 Cao Z., Aharonian F., An Q.. Axikegu, L. X. Bai, et al., PETA-electron volt gamma-ray emission from the Crab nebula. Science, 2021, 373(6553): 425
https://doi.org/10.1126/science.abg5137
6 Cao Z., EAS arrays at high altitudes start the era of UHE-ray astronomy, Universe 7 (9), 339 (2021)
7 Veres P.Burns E.Bissaldi E., et al.., GRB 221009A: Fermi GBM detection of an extraordinarily bright GRB, GRB Coordinates Network, No. 32636 (2022)
8 Dichiara S.D. Gropp J.A. Kennea J., et al.., Swift J1913.1+1946 a new bright hard X-ray and optical transient, GRB Coordinates Network, No. 32632 (2022)
9 Cao Z., Aharonian F., An Q.. Axikegu, L. X. Bai, et al., A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst 221009A. Science, 2023, 380(6652): 1390
https://doi.org/10.1126/science.adg9328
10 R. Hörandel J.. Models of the knee in the energy spectrum of cosmic rays. Astropart. Phys., 2004, 21(3): 241
https://doi.org/10.1016/j.astropartphys.2004.01.004
11 K. Gaisser T., Stanev T., Tilav S.. Cosmic ray energy spectrum from measurements of air showers. Front. Phys., 2013, 8(6): 748
https://doi.org/10.1007/s11467-013-0319-7
12 I. Nikolsky S.. The cause of the EAS spectrum break. Proc. 25th ICRC (Durban), 1997, 6: 105
13 A. Petrukhin A., Problem of the knee and very high energy muons, Proc. 27th ICRC (Hamburg), 1768 (2001)
14 Kazanas D.Nikolaidis A., Cosmic ray “knee”: A herald of new physics? Proc. 27th ICRC (Hamburg), 1760 (2001)
15 V. Stenkin Y.. Does the “knee” in primary cosmic ray spectrum exist. Mod. Phys. Lett. A, 2003, 18(18): 1225
https://doi.org/10.1142/S0217732303011058
16 Antoni T.D. Apel W.F. Badea A.Bekk K.Bercuci A., et al.., KASCADE measurements of energy spectra for elemental groups of cosmic rays: Re sults and open problems, Astropart. Phys. 24(1‒2), 1 (2005)
17 Amenomori M., Ayabe S., Chen D., W. Cui S.. et al.. Are protons still dominant at the knee of the cosmic-ray energy spectrum. Phys. Lett. B, 2006, 632(1): 58
https://doi.org/10.1016/j.physletb.2005.10.048
18 Bartoli B., Bernardini P., J. Bi X., Cao Z., Catalanotti S.. et al.. Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO. Phys. Rev. D, 2015, 92(9): 092005
https://doi.org/10.1103/PhysRevD.92.092005
19 V. Stenkin Y., F. Valdes-Galicia J.. On the neutron bursts origin. Mod. Phys. Lett. A, 2002, 17(26): 1745
https://doi.org/10.1142/S0217732302008137
20 V. Stenkin Y.. On the PRISMA project. Nucl. Phys. B Proc. Suppl., 2009, 196: 293
https://doi.org/10.1016/j.nuclphysbps.2009.09.056
21 V Stenkin Y, V Alekseenko V, M Gromushkin D. et al.. Thermal neutron flux produced by EAS at various altitudes. Chin. Phys. C, 2013, 37(1): 015001
22 V. Stenkin Y., D. Djappuev D., F. Valdés-Galicia J.. Neutrons in extensive air showers. Phys. At. Nucl., 2007, 70(6): 1088
https://doi.org/10.1134/S1063778807060117
23 V. Stenkin Y., Thermal neutrons in Eas: A new dimension in Eas study, Nucl. Phys. B Proc. Suppl. 175–176, 326 (2008)
24 Bartoli B., Bernardini P., J. Bi X., Cao Z., Catalanotti S.. et al.. Detection of thermal neutrons with the PRISMA-YBJ array in extensive air showers selected by the ARGO-YBJ experiment. Astropart. Phys., 2016, 81: 49
https://doi.org/10.1016/j.astropartphys.2016.04.007
25 V. Stenkin Y., Alekseenko V., Y. Cai Z., Cao Z., Cattaneo C., Cui S., Giroletti E., Gromushkin D., Guo C., Guo X., He H., Liu Y., Ma X., Shchegolev O., Vallania P., Vigorito C., Zhao J.. Seasonal and lunar month periods observed in natural neutron flux at high altitude. Pure Appl. Geophys., 2017, 174(7): 2763
https://doi.org/10.1007/s00024-017-1545-7
26 V. Stenkin Y.Alekseenko V.Y. Cai Z. Cao Z.Cattaneo C.Cui S.Firstov P.Giroletti E.Guo X.He H.Liu Y. Ma X.Shchegolev O.Vallania P.Vigorito C.Yanin Y. Zhao J., Response of the environmental thermal neutron flux to earthquakes, J. Environ. Radioact. 208–209, 105981 (2019)
27 B. Li B.V. Alekseenko V.Cui S.L. Chen T.H. Feng S. Gao Q.Liu Y.C. Huang Q.Y. He Y.Y. Liu M. H. Ma X.I. Pozdnyakov E.B. Shchegolev O.Z. Shen F.V. Stenkin Y.I. Stepanov V.V. Yanin Y.D. Yao J. Zhou R., EAS thermal neutron detection with the PRISMA-LHAASO-16 experiment, J. Instrum. 12(12), P12028 (2017)
28 Y. Liu M., Alekseenko V., W. Cui S., L. Chen T., Gao Dangzengluobu, Kuleshov Q., Levochkin D., Liu K., B. Li Y., H. Ma B., Shchegolev X., Shi O., Stenkin C., Stepanov Y., of the thermal neutron detector array in Yangbajing V.. Tibet for cosmic ray EAS detection. Astrophys. Space Sci., 2020, 365(7): 123
https://doi.org/10.1007/s10509-020-03835-0
29 B. Li B., W. Cui S., Shi C., Yang F., W. Zhang L., Liu Y., H. Ma X., Gao W., Q. Yin L., V. Stenkin Y., A. Kuleshov D., R. Levochkin K., B. Shchegolev O., L. Chen T., Y. Liu Danzengluobu, X. Xiao M.. Electron neutron detector array (ENDA). Phys. At. Nucl., 2021, 84(6): 941
https://doi.org/10.1134/S1063778821130202
30 Yang F., H. Ma X., K. Chen H., L. Chen T., W. Cui S., Gao Danzengluobu, Kuleshov W., Kurinov D., B. Li K., Y. Liu B., Liu M., Shchegolev Y., Stenkin O., X. Xiao Y., Q. Yin D., W. Zhang L.. Correlation between thermal neutrons and soil moisture measured by ENDA. J. Instrum., 2023, 18(5): P05020
https://doi.org/10.1088/1748-0221/18/05/P05020
31 X. Xiao D., L. Chen T., W. Cui S., Gao Danzengluobu, Kuleshov W., Kurinov D., Lagutkina K., Levochkin A., B. Li K., Y. Liu B., Liu M., H. Ma Y., Shchegolev X., Stenkin O., Yang Y., Q. Yin F., W. Zhang L.. Influence of soil environment on performance of EAS electron–neutron detector array. Astrophys. Space Sci., 2022, 367(8): 75
https://doi.org/10.1007/s10509-022-04103-z
32 Heck D., Hadronic interaction models and the air shower simulation program CORSIKA, Proc. ICRC Hamburg Vol. 233, 19 (2001)
33 Allison J, Amako K, Apostolakis J. et al.. Geant4 developments and applications. IEEE Trans. Nucl. Sci., 2006, 53(1): 270
https://doi.org/10.1109/TNS.2006.869826
34 Y. Zhang H., H. He H., F. Feng C.. Approaches to composition independent energy reconstruction of cosmic rays based on the LHAASO-KM2A detector. Phys. Rev. D, 2022, 106(12): 123028
https://doi.org/10.1103/PhysRevD.106.123028
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed