Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy
Lin Ju1(), Junxian Liu2, Minghui Wang1, Shenbo Yang3, Shuli Liu1
1. School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China 2. School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia 3. Hongzhiwei Technology (Shanghai) Co. Ltd., 1599 Xinjinqiao Road, Pudong, Shanghai 201206, China
Developing advanced hydrogen storage materials with high capacity and efficient reversibility is a crucial aspect for utilizing hydrogen source as a promising alternate to fossil fuels. In this paper, we have systematically investigated the hydrogen storage properties of neutral and negatively charged C9N4 monolayer based on density functional theory (DFT). Our foundings indicate that injecting additional electrons into the adsorbent significantly boosts the adsorption capacity of C9N4 monolayer to H2 molecules. The gravimetric density of negatively charged C9N4 monolayer can reach up to 10.80 wt% when fully covered with hydrogen. Unlike other hydrogen storage methods, the storage and release processes happen automatically upon introducing or removing extra electrons. Moreover, these operations can be easily adjusted through activating or deactivating the charging voltage. As a result, the method is easily reversible and has tunable kinetics without requiring particular activators. Significantly, C9N4 is proved to be a suitable candidate for efficient electron injection/release due to its well electrical conductivity. Our work can serve as a valuable guide in the quest for a novel category of materials for hydrogen storage with high capacity.
. [J]. Frontiers of Physics, 2024, 19(4): 43208.
Lin Ju, Junxian Liu, Minghui Wang, Shenbo Yang, Shuli Liu. Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy. Front. Phys. , 2024, 19(4): 43208.
Schlapbach L. , Züttel A. . Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353 https://doi.org/10.1038/35104634
3
Schüth F. , Bogdanović B. , Felderhoff M. . Light metal hydrides and complex hydrides for hydrogen storage. Chem. Commun. (Camb.), 2004, 2249(20): 2249 https://doi.org/10.1039/B406522K
4
Ding F. , I. Yakobson B. . Challenges in hydrogen adsorptions: From physisorption to chemisorption. Front. Phys., 2011, 6(2): 142 https://doi.org/10.1007/s11467-011-0171-6
5
Zhou X. , Zhou J. , Sun Q. . Tripyrrylmethane based 2D porous structure for hydrogen storage. Front. Phys., 2011, 6(2): 220 https://doi.org/10.1007/s11467-011-0176-1
6
Li J. , Furuta T. , Goto H. , Ohashi T. , Fujiwara Y. , Yip S. . Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. J. Chem. Phys., 2003, 119(4): 2376 https://doi.org/10.1063/1.1582831
7
Jena P. . Materials for hydrogen storage: Past, present, and future. J. Phys. Chem. Lett., 2011, 2(3): 206 https://doi.org/10.1021/jz1015372
8
Wang L. , T. Yang R. . New sorbents for hydrogen storage by hydrogen spillover – a review. Energy Environ. Sci., 2008, 1(2): 268 https://doi.org/10.1039/b807957a
9
Song L. , Jiang C. , Liu S. , Jiao C. , Si X. , Wang S. , Li F. , Zhang J. , Sun L. , Xu F. , Huang F. . Progress in improving thermodynamics and kinetics of new hydrogen storage materials. Front. Phys., 2011, 6(2): 151 https://doi.org/10.1007/s11467-011-0175-2
10
Zhang H.Li X.Tang Y., DFT study of dihydrogen interactions with lithium containing organic complexes C4H4−mLim and C5H5−mLim (m = 1, 2), Front. Phys. 6(2), 231 (2011)
11
Yoon M. , Yang S. , Hicke C. , Wang E. , Geohegan D. , Zhang Z. . Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys. Rev. Lett., 2008, 100(20): 206806 https://doi.org/10.1103/PhysRevLett.100.206806
12
Sun Q. , Jena P. , Wang Q. , Marquez M. . First-principles study of hydrogen storage on Li12C60. J. Am. Chem. Soc., 2006, 128(30): 9741 https://doi.org/10.1021/ja058330c
13
H. Cheng Y. , Y. Zhang C. , Ren J. , Y. Tong K. . Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers. Front. Phys., 2016, 11(5): 113101 https://doi.org/10.1007/s11467-016-0559-4
14
Zhang Z. , Li J. , Jiang Q. . Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review. Front. Phys., 2011, 6(2): 162 https://doi.org/10.1007/s11467-011-0174-3
15
Zhao Y. , H. Kim Y. , Dillon A. , Heben M. , Zhang S. . Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett., 2005, 94(15): 155504 https://doi.org/10.1103/PhysRevLett.94.155504
16
K. Kong X. , W. Chen Q. , Y. Lun Z. . The influence of N‐doped carbon materials on supported Pd: Enhanced hydrogen storage and oxygen reduction performance. ChemPhysChem, 2014, 15(2): 344 https://doi.org/10.1002/cphc.201300907
17
Li S. , Zhao H. , Jena P. . Ti-doped nano-porous graphene: A material for hydrogen storage and sensor. Front. Phys., 2011, 6(2): 204 https://doi.org/10.1007/s11467-011-0178-z
18
Sun Q. , Wang Q. , Jena P. , Kawazoe Y. . Clustering of Ti on a C60 surface and its effect on hydrogen storage. J. Am. Chem. Soc., 2005, 127(42): 14582 https://doi.org/10.1021/ja0550125
19
Zhang Y. , Dai H. . Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett., 2000, 77(19): 3015 https://doi.org/10.1063/1.1324731
Zhou J. , Wang Q. , Sun Q. , Jena P. , Chen X. . Electric field enhanced hydrogen storage on polarizable materials substrates. Proc. Natl. Acad. Sci. USA, 2010, 107(7): 2801 https://doi.org/10.1073/pnas.0905571107
24
Cheng H.C. Zheng J., Ab initio study of anisotropic mechanical and electronic properties of strained carbon−nitride nanosheet with interlayer bonding, Front. Phys. 16(4), 43505 (2021)
25
Ma Z. , Zhuang J. , Zhang X. , Zhou Z. . SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts. Front. Phys., 2018, 13(3): 138104 https://doi.org/10.1007/s11467-018-0760-8
26
Gao Q. , L. Wang H. , F. Zhang L. , L. Hu S. , P. Hu Z. . Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets. Front. Phys., 2018, 13(3): 138108 https://doi.org/10.1007/s11467-018-0754-6
27
Ju L. , Liu C. , Shi L. , Sun L. . The high-speed channel made of metal for interfacial charge transfer in Z-scheme g-C3N4/MoS2 water-splitting photocatalyst. Mater. Res. Express, 2019, 6(11): 115545 https://doi.org/10.1088/2053-1591/ab509c
28
He C. , H. Zhang J. , X. Zhang W. , T. Li T. . Type-II InSe/g-C3N4 heterostructure as a high-efficiency oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Phys. Chem. Lett., 2019, 10(11): 3122 https://doi.org/10.1021/acs.jpclett.9b00909
29
Liu J.Cheng B.Yu J., A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure, Phys. Chem. Chem. Phys. 18(45), 31175 (2016)
30
Zhang G. , Zhang M. , Ye X. , Qiu X. , Lin S. , Wang X. . Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater., 2014, 26(5): 805 https://doi.org/10.1002/adma.201303611
31
Sun J. , Zhang J. , Zhang M. , Antonietti M. , Fu X. , Wang X. . Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun., 2012, 3(1): 1139 https://doi.org/10.1038/ncomms2152
32
Ye X. , Cui Y. , Wang X. . Ferrocene‐modified carbon nitride for direct oxidation of benzene to phenol with visible light. ChemSusChem, 2014, 7(3): 738 https://doi.org/10.1002/cssc.201301128
33
Zhang J. , Chen Y. , Wang X. . Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci., 2015, 8(11): 3092 https://doi.org/10.1039/C5EE01895A
34
P. Kaur S. , Hussain T. , Kaewmaraya T. , J. D. Kumar T. . Reversible hydrogen storage tendency of light-metal (Li/Na/K) decorated carbon nitride (C9N4) monolayer. Int. J. Hydrogen Energy, 2023, 48(67): 26301 https://doi.org/10.1016/j.ijhydene.2023.03.141
35
Huang J. , Zhou C. , Duan X. . Li decorated C9N4 monolayer as a potential material for hydrogen storage. Int. J. Hydrogen Energy, 2021, 46(65): 32929 https://doi.org/10.1016/j.ijhydene.2021.07.126
36
Tan X. , Kou L. , A. Tahini H. , C. Smith S. . Charge modulation in graphitic carbon nitride as a switchable approach to high‐capacity hydrogen storage. ChemSusChem, 2015, 8(21): 3626 https://doi.org/10.1002/cssc.201501082
P. Perdew J. , Wang Y. . Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45(23): 13244 https://doi.org/10.1103/PhysRevB.45.13244
39
Heyd J. , E. Scuseria G. , Ernzerhof M. . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207 https://doi.org/10.1063/1.1564060
40
Grimme S. . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787 https://doi.org/10.1002/jcc.20495
41
Liu S. , Yin H. , F. Liu P. . Strain-dependent electronic and mechanical properties in one-dimensional topological insulator Nb4SiTe4. Phys. Rev. B, 2023, 108(4): 045411 https://doi.org/10.1103/PhysRevB.108.045411
42
Ju L. , Ma Y. , Tan X. , Kou L. . Controllable electrocatalytic to photocatalytic conversion in ferroelectric heterostructures. J. Am. Chem. Soc., 2023, 145(48): 26393 https://doi.org/10.1021/jacs.3c10271
43
Mortazavi B. , Shahrokhi M. , V. Shapeev A. , Rabczuk T. , Zhuang X. . Prediction of C7N6 and C9N4: Stable and strong porous carbon-nitride nanosheets with attractive electronic and optical properties. J. Mater. Chem. C, 2019, 7(35): 10908 https://doi.org/10.1039/C9TC03513C
44
Yoon M. , Yang S. , Wang E. , Zhang Z. . Charged fullerenes as high-capacity hydrogen storage media. Nano Lett., 2007, 7(9): 2578 https://doi.org/10.1021/nl070809a
45
Liu Y. , Ren L. , He Y. , P. Cheng H. . Titanium-decorated graphene for high-capacity hydrogen storage studied by density functional simulations. J. Phys.: Condens. Matter, 2010, 22(44): 445301 https://doi.org/10.1088/0953-8984/22/44/445301
46
Bi L. , Miao Z. , Ge Y. , Liu Z. , Xu Y. , Yin J. , Huang X. , Wang Y. , Yang Z. . Density functional theory study on hydrogen storage capacity of metal-embedded penta-octa-graphene. Int. J. Hydrogen Energy, 2022, 47(76): 32552 https://doi.org/10.1016/j.ijhydene.2022.07.134
47
Khossossi N. , Benhouria Y. , R. Naqvi S. , K. Panda P. , Essaoudi I. , Ainane A. , Ahuja R. . Hydrogen storage characteristics of Li and Na decorated 2D boron phosphide. Sustain. Energy Fuels, 2020, 4(9): 4538 https://doi.org/10.1039/D0SE00709A
48
Haldar S. , Mukherjee S. , V. Singh C. , storage in Li Hydrogen . Na and Ca decorated and defective borophene: A first principles study. RSC Adv., 2018, 8(37): 20748 https://doi.org/10.1039/C7RA12512G